CN114591412B - 一种致病性弧菌PirB蛋白的结合蛋白及其应用 - Google Patents

一种致病性弧菌PirB蛋白的结合蛋白及其应用 Download PDF

Info

Publication number
CN114591412B
CN114591412B CN202210222837.5A CN202210222837A CN114591412B CN 114591412 B CN114591412 B CN 114591412B CN 202210222837 A CN202210222837 A CN 202210222837A CN 114591412 B CN114591412 B CN 114591412B
Authority
CN
China
Prior art keywords
protein
dslvfabp
pathogenic vibrio
pirb
prawn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210222837.5A
Other languages
English (en)
Other versions
CN114591412A (zh
Inventor
谷晓倩
刘梅
王雷
王宝杰
蒋克勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Academy Of Marine Sciences Qingdao National Marine Science Research Center
Institute of Oceanology of CAS
Original Assignee
Shandong Academy Of Marine Sciences Qingdao National Marine Science Research Center
Institute of Oceanology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Academy Of Marine Sciences Qingdao National Marine Science Research Center, Institute of Oceanology of CAS filed Critical Shandong Academy Of Marine Sciences Qingdao National Marine Science Research Center
Priority to CN202210222837.5A priority Critical patent/CN114591412B/zh
Publication of CN114591412A publication Critical patent/CN114591412A/zh
Application granted granted Critical
Publication of CN114591412B publication Critical patent/CN114591412B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43509Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from crustaceans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • C12N2310/141MicroRNAs, miRNAs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Insects & Arthropods (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及基因工程,具体的说是一种致病性弧菌PirB蛋白的结合蛋白(LvFABP)及其在对虾急性肝胰腺坏死病(AHPND)防治中的应用。一种致病性弧菌PirB蛋白的结合蛋白,致病性弧菌PirB蛋白的结合蛋白的碱基序列如SEQ ID NO:1所示。SEQ ID NO:1所示致病性弧菌PirB蛋白的结合蛋白的部分基因序列的双链RNA(dsLvFABP)在抑制致病性弧菌感染中的应用。所述致病性弧菌PirB蛋白的结合蛋白的部分基因序列的双链RNA(dsLvFABP)的碱基序列为SEQ ID NO:2所示。本发明的双链RNA注射后可有效降低致病性弧菌感染后的对虾死亡率,对对虾养殖有显著的保护效果。LvFABP基因及其编码蛋白可用于对虾品种选育的分子标记,双链RNA或蛋白抗体可用于病害的防治,在对虾AHPND防治中具有很好的应用前景。

Description

一种致病性弧菌PirB蛋白的结合蛋白及其应用
技术领域
本发明涉及基因工程,具体的说是一种致病性弧菌PirB蛋白的结合蛋白(LvFABP)及其在对虾急性肝胰腺坏死病(AHPND)防治中的应用。
背景技术
凡纳滨对虾(Litopenaeus vannamei)是世界主要的养殖对虾种类,2018年养殖产量接近500万吨[1]。近年来,由于市场对凡纳滨对虾的需求日益加大,导致对虾养殖业发展快速,进而造成养殖密度大、水质恶化、对虾病害频繁发生等问题。
近年来,由细菌引起的对虾急性肝胰腺坏死病(Acute hepatopancreaticnecrosis disease,AHPND)成为许多亚洲国家对虾养殖业的主要威胁。AHPND是一种细菌性传染疾病,主要感染凡纳滨对虾(Litopenaeus vannamei)和斑节对虾(Penaeus monodon)[2]。早期该病主要发生于对虾苗期[3],也被称为早期死亡综合征(Early MortaltySndrome,EMS)。病虾消化器官颜色苍白,肝胰腺萎缩,空肠空胃,发病4d~5d内病死率达到90%以上[4-5]。携带pVA1毒性质粒的致急性肝胰腺坏死病副溶血弧菌(Vibrioparahaemolyticus Causing AHPND,VPAHPND)是诱发该病的主要病原微生物。该质粒中携带编码Photorhabdus Insect-Related(Pir)毒素PirA和PirB的基因序列,该毒素是导致对虾肠道和肝胰腺损伤的主要因素[6]
自2010年以来,该病在全球范围内暴发,每年给全球对虾养殖业造成的直接经济损失超过10亿美元,有效预防和控制AHPND一直是国际上热门的研究课题。抗生素通常被用来控制水产养殖中AHPND,虽然抗生素的应用可有效控制了许多水产疾病的发生,促进了水产养殖业的发展[7]。但是,由于抗生素的不断使用容易产生耐药菌株、存在药物残留以及破坏水生动物微生态平衡,一方面使得水产养殖疾病越来越难治;另一方面水产品质量安全得不到保证[8-9]。另外,消毒剂、水质保护剂、基础饵料生物、益生菌、中草药和微生态制剂等被用于AHPND的防治[10-15],但是这些方法作用效果有限,不能特异性针对某种特定病原达到较好的防治效果。
开发对虾急性肝胰腺坏死病的高效特异性防治技术是目前养殖业急需解决的问题。
发明内容
本发明目的在于提供一种致病性弧菌PirB蛋白的结合蛋白(LvFABP)及其在对虾急性肝胰腺坏死病(AHPND)防治中的应用。
为实现上述目的,本发明采用技术方案为:
一种致病性弧菌PirB蛋白的结合蛋白,致病性弧菌PirB蛋白的结合蛋白的碱基序列如SEQ ID NO:1所示。
一种权利要求1所述的致病性弧菌PirB蛋白的结合蛋白的应用,所述SEQ ID NO:1所示致病性弧菌PirB蛋白的结合蛋白的部分基因序列的双链RNA(dsLvFABP)在抑制致病性弧菌感染中的应用。
所述致病性弧菌PirB蛋白的结合蛋白的部分基因序列的双链RNA(dsLvFABP)的碱基序列为SEQ ID NO:2所示。
一种抑制致病性弧菌感染的基因,抑制致病性弧菌感染的基因为SEQ ID NO:2中所示的碱基序列。
一种抑制致病性弧菌感染的制剂,含所述的凡纳滨对虾基因的双链RNA(dsLvFABP)。
所述制剂中含dsLvFABP浓度为10μg/μL。
所述致病性弧菌PirB蛋白的结合蛋白的部分基因序列的双链RNA为利用TranscriptAid T7 High Yield(Thermo)转录试剂盒在体外转录合成,合成产物经消化后检测dsRNA质量合格后所得。
一种所述制剂的应用,所述制剂在致病性弧菌感染(AHPND)中的应用。
本发明所具有的优点:
本发明通过酵母双杂交技术从对虾肝胰腺中分离得到致病性弧菌PirB蛋白的结合蛋白(LvFABP),根据该蛋白的保守结构域设计合成双链RNA(dsLvFABP),该双链RNA注射后可有效降低致病性弧菌感染后的对虾死亡率,对对虾养殖有显著的保护效果。LvFABP基因及其编码蛋白在对虾AHPND病害发生和防治中表现重要的作用,可用于对虾品种选育的分子标记,双链RNA或蛋白抗体可用于病害的防治,在对虾AHPND防治中具有很好的应用前景。
附图说明
图1为本发明实施例提供的琼脂糖凝胶电泳检测dsLvFABP质量的RNA电泳图,其中泳道M为Marker,泳道1,2为体外转录合成的dsLvFABP。
图2为本发明实施例提供的不同剂量的dsRNA对LvFABP的干扰效果图。
图3为本发明实施例提供的RNA干扰后凡纳对虾LvFABP的相对表达水平效果图。
图4为本发明实施例提供的沉默LvFABP对致病性副溶血弧菌侵袭对虾后对虾存活率的影响图。
图5为本发明实施例提供的沉默LvFABP对致病性副溶血弧菌在对虾胃中定植的影响图。
具体实施方式
以下结合实例对本发明的具体实施方式做进一步说明,应当指出的是,此处所描述的具体实施方式只是为了说明和解释本发明,并不局限于本发明。
实施例1
VPAHPND毒素PirB的候选相互作用蛋白LvFABP的分离鉴定
以凡纳对虾(Litopenaeus vannamei)为研究对象,以侵染该物种的致急性肝胰腺坏死病的副溶血弧菌(VPAHPND)的毒素蛋白PirB为诱饵,筛选对虾酵母文库。对凡纳对虾的肝胰腺、胃及肠道组织进行了总RNA提取后进行了mRNA纯化反转录及cDNA的合成和纯化实验,然后移至pGADT7载体以构建酵母双杂文库,将诱饵基因(pirb)的cDNA克隆构建到酵母双杂交的诱饵载体上,在酵母双杂交文库筛选过程中进行了目的基因自激活和毒性检测;诱饵质粒与文库质粒转化至酵母细胞;酵母筛选;筛选阳性结果PCR检测胶图;筛选阳性结果全部测序;以及对测序结果在NCBI中的Blast比对实验。结果在互作的候选阳性克隆中,共鉴定出9个与PirB相互作用的蛋白,并对这些蛋白进行了表征,结果有一个蛋白经VPAHPND攻毒后,该基因在肝胰腺中表达量最大,因该蛋白与脂肪酸结合蛋白具有高度的序列同源性,故将其命名为LvFABP。
致病性弧菌PirB蛋白的结合蛋白的基因(LvFABP基因序列)的碱基序列如SEQ IDNO:1所示:
ATGTCTCTTGCCGGCACCTACGAGTATGCTTCTAACGAGAACTACAGCG
AGTGGCTCTCCGCCGTCGGTATTCCCGCCGAGTACGTAGCCAAGATGG
TGGCCGCTAAGCCCGTGCTGGAAGTGTCCCAGAATGGCAATGTCGTCA
CCATCAAGACCGTTGCCGGCGACAAGAGCTTCACCAACACCATCAAGC
TCGGCGAGGAGTCCAAGGCTAGCCTGCCCGGCGGCGTCGAGTACACG
GTTAGCCTTTCTCAGTCTGGCAACACCCTGAAGGGAACCTGGGCCATG
GGAGGCAAGTCAGGTGACGCCTGCGTGGAGGTCACCGGCAGCAACCT
CATCCAGAGCATGAGCCTCGGAGGCGTCAAGGCCAAGAGGGTGTACA
ACCGCAAGTAG
LvFABP氨基酸序列:
1mslagtyeya snenysewls avgipaeyva kmvaakpvle vsqngnvvtiktvagdksft61ntiklgeesk aslpggveyt vslsqsgntl kgtwamggks gdacvevtgsnliqsmslgg121vkakrvynrk
实施例2双链RNA(dsLvFABP)合成实验
根据上述获得LvFABP基因的保守结构域设计长度300bp左右的dsLvFABP,并设计引物对其进行扩增,引物为dsLvFABP-F/R和dsEGFP-F/R,所用的引物见表1。利用TranscriptAid T7 High Yield(Thermo)转录试剂盒在体外合成dsRNA,步骤如下:
(a)dsLvFABP扩增:质粒(LvFABP和EGFP)作为模板。PCR体系(50μL):2×Taq PCRMasterMix(Tiangen)25μl,Primer F 1ul,Primer R 1ul,DNA模板2ul,ddH2O 21ul;PCR反应条件:95℃预变性5min,95℃变性30s,55℃退火30s,72℃延伸1.5min,30个循环,72℃温育10min,PCR产物经胶回收后备用。
(b)dsLvFABP转录:用纯化的PCR产物作为模板,转录体系为50μl:5×TranscriptAidTM Reaction Buffer 10ul,TranscriptAidTMEnzyme Mix 5ul,ATP、GTP、CTP、UTP各5ul,Template 2μg,余量为DEPC水。
dsRNA体外合成、纯化步骤如下:将装有模板试剂混合液的离心管于水浴锅中42℃孵育4h;然后加入5μl DNaseⅠ,于水浴锅中37℃孵育15min;加入5μl的EDTA(0.5M,PH 8.0),立即置于水浴锅中65℃孵育10min;加入287.5μl DEPC水、37.5μl醋酸钠;加入等体积的氯仿水饱和酚(1:1),慢慢混匀,冰上静置2min后于4℃离心机中12000rpm离心15min;将上清转移到新离心管,加入等体积三氯甲烷后于4℃离心机中12000rpm离心15min;重复加入等体积的氯仿水饱和酚(1:1),慢慢混匀,冰上静置2min后于4℃离心机中12000rpm离心15min;将上清转移到新离心管中,加入二倍体积的无水乙醇,于-20℃沉淀1h;1h后于4℃离心机12000rpm离心15min;离心结束后弃上清,加入700μl 70%乙醇(预冷),重悬沉淀,于4℃离心机12000rpm离心15min;弃上清,沉淀置于冰上干燥5min,加入30-50μl的DEPC水溶解沉淀,即获得双链RNA(dsLvFABP);最后检测dsRNA浓度,置于-80℃保存备用。
(c)dsLvFABP消化:RNA酶对dsRNA进行消化,检测dsRNA质量是否合格。消化体系(10ul):3M NaCl 1ul,RNaseA(100ng/μl)1ul,dsRNA 4μg,DEPC water Up to 10ul。混匀后于37℃水浴锅消化15min,琼脂糖凝胶电泳检测dsRNA质量(参见图1)。
致病性弧菌PirB蛋白的结合蛋白的基因的双链RNA(dsLvFABP)的碱基序列为SEQID NO:2所示:
CUACUUGCGGUUGUACACCCUCUUGGCCUUGACGCCUCCGAGGCUC
AUGCUCUGGAUGAGGUUGCUGCCGGUGACCUCCACGCAGGCGUCAC
CUGACUUGCCUCCCAUGGCCCAGGUUCCCUUCAGGGUGUUGCCAGA
CUGAGAAAGGCUAACCGUGUACUCGACGCCGCCGGGCAGGCUAGCC
UUGGACUCCUCGCCGAGCUUGAUGGUGUUGGUGAAGCUCUUGUCGC
CGGCAACGGUCUUGAUGGUGACGACAUUGCCAUUCUGGGACACUUC
CAGCACGGGCUUAGCGGCCACCAUCUUGGCUACGUACUCGGCGGGA
AUACCGACGGCGGAGAGCCACUCGCUGUAGUUCUCGUUAGAAGCAU
ACUCGUAGGUGCCGGCAAGAGACAU
实施例3双链RNA(dsLvFABP)干扰实验
(a)dsLvFABP最适干扰剂量实验:
以上述获得双链RNA(dsLvFABP)作为干扰剂,设置不同的干扰剂量,用NaCl对dsLvFABP进行不同浓度的稀释,最终浓度分别为2μg/10μl,6μg/10μl和10μg/10μl。设置实验组(不同剂量的dsLvFABP)两个对照组(NaCl组和EGFP组),3个生物学重复。从凡纳滨对虾尾部第三节肌肉侧部注射,干扰48h后,将每组3只对虾作为一个取样单位,取其肝胰腺、胃、肠道分别置于5ml冻存管内,立即放在液氮中保存,取样结束后,将样品转移到-80℃冰箱中长期保存,以便后续进行总RNA提取和cDNA合成实验(参见图2)。以β-actin作为内参,检测目的基因LvFABP的表达量,所用引物(β-actin-F/R和LvFABP-F/R)见表1,
最佳干扰剂量筛选实验,LvFABP的表达量随着dsLvFABP注射剂量的增加而减少,当每只实验样品的注射剂量为10μg/10μl时,实验组LvFABP的表达量显著低于对照组,故最终确定最佳的双链RNA干扰剂量为10μg/10μl。
图2
(b)dsLvFABP干扰实验:
设置实验组(以上述获得最佳剂量dsLvFABP)两个对照组(NaCl组和EGFP组),3个生物学重复。按最佳干扰剂量从对虾尾部第三节肌肉侧面注射,每四天注射1次,实验周期为两周,每天换水1次,早中晚等量喂食。两周后进行取样,每3只对虾作为一个取样单位,样品放在液氮中暂存,待取样结束后转移到-80℃冰箱中长期保存,检测目的基因的干扰效率(参见图3)。
正式干扰实验持续干扰2个周后,取样进行荧光定量实验,发现dsLvFABP能够显著抑制LvFABP的表达水平,实验组LvFABP的表达量显著低于对照组,与NaCl组相比注射dsLvFABP后LvFABP的抑制率达到了19%,表明双链RNA(dsRNA)干扰实验成功;表明双链RNA(dsRNA)干扰实验成功。
实施例4
沉默LvFABP对致病性副溶血弧菌侵袭对虾后对虾存活率的影响
实验分别设置两个dsLvFABP组、两个dsEGFP组和两个NaCl组,3个生物学重复。各组按最适干扰剂量(10μg/10μl)从对虾尾部第三节肌肉侧面注射,每四天注射1次,实验周期为两周,每天上午换水1次,早中晚等量喂食。
两周后,用终浓度为107CFU/ml的VP-E1[16]进行攻毒实验,VP-E1采用聚合酶链式反应(PCR)扩增pirAVp和pirBVp毒力基因全长序列,PCR扩增产物经DNA纯化试剂盒纯化后,将目标片段pirAVp和pirBVp分别连接到T克隆载体上,连接后的载体转化到感受态细胞Top10中,通过PCR验证获得阳性克隆后经测序验证为致AHPND副溶血弧菌。进行攻毒实验时在相应的对照组中,给虾攻毒时用PBS(pH 7.4)代替致AHPND副溶血弧菌VP-E1,实验分组具体如下:注射NaCl的对虾加入致AHPND副溶血弧菌VP-E1菌株,注射dsEGFP的对虾加入致AHPND副溶血弧菌VP-E1菌株,注射dsLvFABP的对虾加入致AHPND副溶血弧菌VP-E1菌株,注射NaCl的对虾加入PBS,注射dsEGFP的对虾加入PBS,注射dsLvFABP的对虾加入PBS,处理7d后0hpi,12hpi,24hpi,48hpi,84hpi,168hpi观察虾的存活率。结果见图4。
图4显示,注射NaCl,dsEGFP,dsLvFABP后未攻毒的三组(NaCl+PBS,dsEGFP+PBS,dsLvFABP+PBS)存活率均为100%。而攻毒的两组(NaCl+VP-E1,dsEGFP+VP-E1)168h后存活率均为0,但是沉默LvFABP后VP-E1攻毒对虾168h其存活率仍可达到60%以上,说明采用沉默LvFABP的方法可以有效地提高对虾的存活率。
实施例5沉默LvFABP对致病性副溶血弧菌在对虾胃中定植的影响
实验分别设置两个dsLvFABP组、两个dsEGFP组和两个NaCl组,3个生物学重复。各组按最适干扰剂量(10μg/10μl)从对虾尾部第三节肌肉侧面进行注射,每四天注射1次,实验周期为两周,每天换水1次,早中晚等量喂食。两周后,一组用终浓度为107CFU/ml致AHPND副溶血弧菌VP-E1进行攻毒实验,另一组用PBS(pH 7.4)代替致AHPND副溶血弧菌VP-E1。在注射dsRNA后,无攻毒(PBS)和致AHPND的副溶血弧菌VP-E1菌株攻毒48小时后收集虾胃液氮迅速冷冻后存放于-80℃冰箱。通过荧光定量PCR定量检测凡纳滨对虾胃组织中的pirAVp拷贝数来衡量致病性副溶血弧菌的定植情况。
参考Han等[17]实验所得定量检测凡纳滨对虾胃组织中的pirAVp拷贝数qPCR标准曲线回归方程:Ct=–3.235×Lg(N)+37.555式中,N为拷贝数,Ct为循环数。根据未知样品的Ct值,即可计算出拷贝数。使用
Figure GDA0004230598730000061
Top Green qPCR SuperMix试剂盒(TRANS)来进行实时荧光定量PCR实验,得到样品的Ct值,检测LvFABP沉默后凡纳滨对虾胃组织中的pirAVp拷贝数,所用的引物(pirAVp-F/R)见表1。
定量PCR反应体系如下:Template 2ul;Forward Primer(10uM)0.4ul;ReversePrimer(10uM)0.4ul;
Figure GDA0004230598730000062
Top Green qPCR SuperMix 10ul;PassiveReference Dye(50×)(optional)0.4ul;Nuclease-free Water 6.8ul;Total volume20ul。
PCR反应程序如下:94℃30sec;94℃5sec,60℃30sec,40cycles;DissociationStage。沉默LvFABP对致病性副溶血弧菌在对虾胃中定植的结果见图5。
图5显示,采用沉默LvFABP的方法后,凡纳滨对虾胃组织中的pirAVp拷贝数明显降低,也进一步说明注射双链RNA(dsLvFABP)后可有效降低致病性副溶血弧菌在凡纳滨对虾胃组织中定植的数量。
表1双链RNA合成及荧光定量测定目的基因表达量所需引物
Figure GDA0004230598730000071
参考文献:
[1]FAO.The state of world fisheries and aquaculture2020.Sustainability in action.Rome:FAO,2020,30.https://doi.org/10.4060/ca9229en
[2]OIE.Aquatic animal health code,21st Edition.Paris:OIE,2018:161–165.
[3]Eduardo M,Leano,et al.Early Mortality Syndrome Threatens Asia'sShrimp Farms[J].Global Aquaculture Advocate,2012,15(4):38-39.
[4]Loc,Tran,Linda,et al.EMS/AHPNS:Infectious Caused By Bacteria[J].Global Aquaculture Advocate,2013,7(8):18-20.
[5]Noble BL,Lighmer DV,Redman RM,et al.Early Mortality SyndromeAffects Shrimp In Asia[J].GlobalAquaculture Advocate,2012,15(1):40-40.
[6]Lee CT,Chen IT,Yang YT,et al.The opportunistic marine pathogenVibrio parahaemolyticus becomesvirulent by acquiring a plasmid that expressesa leadly toxin[J].Proceedings of the National Academy ofSciences of theUnited States of America.2015,112:10798-10803.
[7]Wang H,Wang C,Tang Y,et al.Pseudoalteromonas probiotics aspotential biocontrol agents improve thesurvival of Penaeus vannameichallenged with acute hepatopancreatic necrosis disease(AHPND)-causingVibrioparahaemolyticus[J].Aquaculture,2018,494:30–36.
[8]Burridge L,Weis JS,Cabello F,et al.Chemical use in salmonaquaculture:A review of currentpractices and possible environmental effects[J].Aquaculture,2010,306(1-4):7–23.
[9]Han JE,Mohney LL,Tang KFJ,et al.Plasmid mediated tetracyclineresistance of Vibrioparahaemolyticus associated with acute hepatopancreaticnecrosis disease(AHPND)in shrimps[J].Aquaculture Reports,2015,2:17–21.
[10]Zhai QQ,Li J.Effectiveness of traditional Chinese herbalmedicine,San-Huang-San,in combinationwith enrofloxacin to treat AHPND-causingstrain of Vibrio parahaemolyticus infection in Litopenaeusvannamei[J].Fish&Shellfish Immunology,2019,87:360–370.
[11]Chang YH,Kuo WC,Wang HC,et al.Biocontrol of acutehepatopancreatic necrosis disease(AHPND)in shrimp using a microalgal-bacterial consortium[J].Aquaculture,2020,512:734990.
[12]Crab R,Defoirdt T,Bossier P,et al.Biofloc technology inaquaculture:Beneficial effects and futurechallenges[J].Aquaculture,2012,356-357:351-356.
[13]Vaughan EE,Devriesmc,Zoetendal EG,et al.The intestinal LABs[J].Antonie Van Leeuwenhoek,2002,82(1-4):341.
[14]Ding X,Li ZJ,Chen YQ,et al.Effects of probiotics on growth andactivities of digestive enzymes ofPennaus vannamei[J].Journal of FisherySciences of China,2004,11:580-584.
[15]Shan H,Obbard J.Ammonia removal from prawn aquaculture waterusing immobilized nitrifyingbacteria[J].Applied Microbiology andBiotechnology,2001,57(5-6):791-798.
[16]Wang,Y.L.,Wang,B.J.,Shao,X.Q.,Shao,J.C.,Liu,M.,Wang,M.Q.,Wang,L.The effect of rearingdensity on immune responses of hepatopancreas andintestine in Litopenaeus vananmei against Vibrioparaheamolyticus E1 challenge[J].Fish&shellfish immunology,2019,93,517-530.
[17]Han JE,Tang KFJ,Pantoja CR,et al.qPCR assay for detecting andquantifying a virulence plasmid inacute hepatopancreatic necrosis disease(AHPND)due to pathogenic Vibrio parahaemolyticus.Aquaculture,2015b,442:12–15.
序列表
<110> 中国科学院海洋研究所
山东省海洋科学研究院(青岛国家海洋科学研究中心)
<120> 一种致病性弧菌PirB蛋白的结合蛋白及其应用
<160> 2
<170> SIPOSequenceListing 1.0
<210> 1
<211> 393
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
atgtctcttg ccggcaccta cgagtatgct tctaacgaga actacagcga gtggctctcc 60
gccgtcggta ttcccgccga gtacgtagcc aagatggtgg ccgctaagcc cgtgctggaa 120
gtgtcccaga atggcaatgt cgtcaccatc aagaccgttg ccggcgacaa gagcttcacc 180
aacaccatca agctcggcga ggagtccaag gctagcctgc ccggcggcgt cgagtacacg 240
gttagccttt ctcagtctgg caacaccctg aagggaacct gggccatggg aggcaagtca 300
ggtgacgcct gcgtggaggt caccggcagc aacctcatcc agagcatgag cctcggaggc 360
gtcaaggcca agagggtgta caaccgcaag tag 393
<210> 2
<211> 393
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 2
cuacuugcgg uuguacaccc ucuuggccuu gacgccuccg aggcucaugc ucuggaugag 60
guugcugccg gugaccucca cgcaggcguc accugacuug ccucccaugg cccagguucc 120
cuucagggug uugccagacu gagaaaggcu aaccguguac ucgacgccgc cgggcaggcu 180
agccuuggac uccucgccga gcuugauggu guuggugaag cucuugucgc cggcaacggu 240
cuugauggug acgacauugc cauucuggga cacuuccagc acgggcuuag cggccaccau 300
cuuggcuacg uacucggcgg gaauaccgac ggcggagagc cacucgcugu aguucucguu 360
agaagcauac ucguaggugc cggcaagaga cau 393

Claims (5)

1.一种抑制对虾致病性弧菌PirB蛋白的结合蛋白表达的双链RNA(dsLvFABP)在制备抑制对虾致病性弧菌感染制剂中的应用,其特征在于:编码对虾致病性弧菌PirB蛋白的结合蛋白的碱基序列如SEQ ID NO:1所示。
2.按权利要求1所述的应用,其特征在于:所述dsLvFABP的碱基序列为SEQ ID NO:2所示。
3.按权利要求1所述的应用,其特征在于:所述制剂中含dsLvFABP浓度为10 μg/μL。
4.按权利要求3所述的应用,其特征在于:所述dsLvFABP为利用Thermo TranscriptAidT7 High Yield 转录试剂盒在体外转录合成,合成产物经消化后检测dsRNA质量合格后所得。
5.按权利要求1所述应用中的制剂的应用,其特征在于:所述制剂在制备防治对虾急性肝胰腺坏死病(AHPND)制剂中的应用。
CN202210222837.5A 2022-03-09 2022-03-09 一种致病性弧菌PirB蛋白的结合蛋白及其应用 Active CN114591412B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210222837.5A CN114591412B (zh) 2022-03-09 2022-03-09 一种致病性弧菌PirB蛋白的结合蛋白及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210222837.5A CN114591412B (zh) 2022-03-09 2022-03-09 一种致病性弧菌PirB蛋白的结合蛋白及其应用

Publications (2)

Publication Number Publication Date
CN114591412A CN114591412A (zh) 2022-06-07
CN114591412B true CN114591412B (zh) 2023-06-27

Family

ID=81807991

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210222837.5A Active CN114591412B (zh) 2022-03-09 2022-03-09 一种致病性弧菌PirB蛋白的结合蛋白及其应用

Country Status (1)

Country Link
CN (1) CN114591412B (zh)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114980750A (zh) * 2019-09-05 2022-08-30 美国卵石实验室公司 用于抑制细菌毒素以治疗水生动物早期死亡综合征的系统、方法和组合物

Also Published As

Publication number Publication date
CN114591412A (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
Lei et al. Difference between hemocyanin subunits from shrimp Penaeus japonicus in anti-WSSV defense
de la Vega et al. Differential expression of immune-related genes and transposable elements in black tiger shrimp (Penaeus monodon) exposed to a range of environmental stressors
Kamaishi et al. Mass mortality of giant abalone Haliotis gigantea caused by a Francisella sp. bacterium
Wang et al. A new shrimp peritrophin-like gene from Exopalaemon carinicauda involved in white spot syndrome virus (WSSV) infection
CN109735471B (zh) 一株微小杆菌及其作为益生菌在水产上的应用
Zhang et al. Isolation and identification of a viral haemorrhagic septicaemia virus (VHSV) isolate from wild largemouth bass Micropterus salmoides in China
CN113201501A (zh) 一株具有跨种裂解能力的弧菌噬菌体及其应用
CN111433349A (zh) 用于急性肝胰腺坏死病的控制的系统和方法
CN112375712A (zh) 一株乳酸乳球菌及其应用
Duan et al. Characterization of ADP ribosylation factor 1 gene from Exopalaemon carinicauda and its immune response to pathogens challenge and ammonia-N stress
Huang et al. Co-infection of infectious spleen and kidney necrosis virus and Francisella sp. in farmed pearl gentian grouper (♀ Epinephelus fuscoguttatus×♂ E. lanceolatus) in China-A case report
Feng et al. Identification and analysis of a Marsupenaeus japonicus ferritin that is regulated at the transcriptional level by WSSV infection
CN114591412B (zh) 一种致病性弧菌PirB蛋白的结合蛋白及其应用
Duan et al. The role of oncoprotein NM23 gene from Exopalaemon carinicauda is response to pathogens challenge and ammonia-N stress
CN112011647A (zh) 一种lamp法检测水产病原用内参质控引物组及其应用
CN113403241A (zh) 新型爱德华氏菌减毒疫苗株、其制备方法及其应用
Suebsing et al. Detection of viruses in farmed rainbow trout (Oncorhynchus mykiss) in Korea by RT-LAMP assay
Ge et al. Isolation of prawn (Exopalaemon carinicauda) lipopolysaccharide and β-1, 3-glucan binding protein gene and its expression in responding to bacterial and viral infections
EP3155088B1 (en) Novel tenacibaculum sp isolate
CN109913453B (zh) 一种AMO-miR-137在制备广谱抗白斑综合症病毒制剂中的应用
CN113209126A (zh) 一种基于rna干扰技术的对虾免疫增强剂及其制备方法与应用
CN110013485B (zh) 反义核酸AMO-miR-9875在制备抗白斑综合症病毒制剂中的应用
Grove et al. Infectious salmon anaemia virus (ISAV) in experimentally challenged Atlantic cod (Gadus morhua)
CN112725338A (zh) 一种靶向斑节对虾trim9基因的小干扰rna及其用途
CN111304347A (zh) 一种在养殖现场快速检测轮虫弧菌的pcr反应体系

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant