CN114551992B - 一种硫化物固态电解质及其制备方法和应用 - Google Patents

一种硫化物固态电解质及其制备方法和应用 Download PDF

Info

Publication number
CN114551992B
CN114551992B CN202210266876.5A CN202210266876A CN114551992B CN 114551992 B CN114551992 B CN 114551992B CN 202210266876 A CN202210266876 A CN 202210266876A CN 114551992 B CN114551992 B CN 114551992B
Authority
CN
China
Prior art keywords
sulfide solid
equal
solid electrolyte
electrolyte
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210266876.5A
Other languages
English (en)
Other versions
CN114551992A (zh
Inventor
陈少杰
刘景超
黄海强
姚霞银
李瑞杰
王磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Svolt Energy Technology Wuxi Co Ltd
Original Assignee
Svolt Energy Technology Wuxi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Svolt Energy Technology Wuxi Co Ltd filed Critical Svolt Energy Technology Wuxi Co Ltd
Priority to CN202210266876.5A priority Critical patent/CN114551992B/zh
Publication of CN114551992A publication Critical patent/CN114551992A/zh
Application granted granted Critical
Publication of CN114551992B publication Critical patent/CN114551992B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/446Sulfides, tellurides or selenides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Conductive Materials (AREA)

Abstract

本发明提供了一种硫化物固态电解质及其制备方法和应用,所述硫化物固态电解质的化学式为LiaSibSbcSdI1‑xBrx,其中,6≤a≤7,0.5≤b≤0.7,0.3≤c≤0.5,4.5≤d≤5.5,0<x<1,所述硫化物固态电解质的物相包括硫银锗矿相和LiI结晶相,本发明所述硫化物固态电解质通过在电解质中掺杂锑和溴元素可以提高其在有机溶剂和空气中的稳定性,同时提高其电导率。

Description

一种硫化物固态电解质及其制备方法和应用
技术领域
本发明属于锂离子电池技术领域,涉及一种硫化物固态电解质及其制备方法和应用。
背景技术
全固态电池具有本征的高安全性,同时具有较高的理论能量密度,是下一代大规模储能器件的重要发展方向。
固态电解质是全固态电池的关键部分,其中,硫化物固体电解质具有最高的室温离子电导率,较强的可加工性以及与较好的界面接触性,是最具应用潜力的无机固体电解质。但硫化物固体电解质在空气中易分解,对有机溶剂不稳定,限制了其进一步应用。
CN113451638A公开了一种硫化物固态电解质膜及固态锂离子电池,所述硫化物固态电解质膜包括具有三维骨架结构的聚合物膜和形成连续相的硫化物固态电解质材料。
CN113745651A公开了一种包覆型硫化物固态电解质及其制备方法和应用。其所述一种包覆型硫化物固态电解质,其为氧化物固态电解质层包覆在硫化物固态电解质颗粒表面的包覆型硫化物固态电解质。将特定的氧化物固态电解质包覆在硫化物固态电解质表面得到包覆型硫化物固态电解质。
上述方案提供的硫化物固态电解质存在有稳定性差或电导率低的问题,因此,开发一种稳定性好且电导率高的硫化物固态电解质是十分必要的。
发明内容
本发明的目的在于提供一种硫化物固态电解质及其制备方法和应用,本发明所述硫化物固态电解质通过在电解质中掺杂锑和溴元素可以提高其在有机溶剂和空气中的稳定性,同时提高其电导率。
为达到此发明目的,本发明采用以下技术方案:
第一方面,本发明提供了一种硫化物固态电解质,其特征在于,所述硫化物固态电解质的化学式为LiaSibSbcSdI1-xBrx,其中,6≤a≤7,例如:6、6.2、6.6、6.8或7等,0.5≤b≤0.7,例如:0.5、0.55、0.6、0.65或0.7等,0.3≤c≤0.5,例如:0.3、0.35、0.4、0.45或0.5等,4.5≤d≤5.5,例如:4.5、4.8、5、5.2或5.5等,0<x<1,例如:0.02、0.1、0.5、0.8或0.9等,所述硫化物固态电解质的物相包括硫银锗矿相和LiI结晶相。
本发明所述硫化物固态电解质具有优异的对有机溶剂(所述有机溶剂包括碳酸乙烯酯、氟代碳酸乙烯酯、碳酸甲乙酯、碳酸二甲酯、N-甲基-2-吡咯烷酮、四氢呋喃、乙二醇二甲醚、苯甲醚、1,3-氧环戊烷中的任意一种或至少两种的组合)和对空气稳定性,有机溶剂中室温和80℃下浸泡2h,离子电导率下降≤20%,干房露点-40℃中暴露4h,离子电导率下降≤20%。
优选地,所述硫化物固态电解质的电导率为10-4~10-2S cm-1,例如:10-4S cm-1、10-3.5S cm-1、10-3S cm-1、10-2.5S cm-1或10-2S cm-1
优选地,所述硫化物固态电解质的D50为1~10μm,例如:1μm、2μm、5μm、8μm或10μm等。
优选地,所述硫化物固态电解质的片致密度≥90%,例如:90%、92%、93%、95%或98%等。
第二方面,本发明提供了一种如第一方面所述硫化物固态电解质的制备方法,所述制备方法包括以下步骤:
将Li2S、LiI、LiBr、硅源和锑源混合,经退火烧结处理得到所述硫化物固态电解质。
本发明所述方法工艺简单,原料广泛易得,制备过程可控且重复度高;该方法制备出的硫化物固体电解质室温锂离子电导率可大幅提高,同时具有优异的对空气稳定性和对有机溶剂稳定性。
优选地,所述硅源包括单质硅和/或二硫化硅。
优选地,所述锑源包括Sb、Sb2S3或Sb2S5中的任意一种或至少两种的组合。
优选地,所述氧源包括SiO2、Sb2O3或Sb2O5中的任意一种或至少两种的组合。
优选地,所述混合的方式包括手动研磨、机械搅拌、机械震荡、球磨或辊磨中的任意一种或至少两种的组合优选为球磨和/或辊磨。
优选地,所述球磨的球料比为(1~60):1,例如:1:1、5:1、10:1、20:1、40:1或60:1等。
优选地,所述球磨的转速为200~600rpm,例如:200rpm、300rpm、400rpm、500rpm或600rpm等。
优选地,所述球磨的时间为4~24h,例如:4h、8h、12h、16h、20h或24h等。
优选地,所述退火烧结处理的气氛为真空、氩气或氮气中的任意一种或至少两种的组合。
优选地,所述退火烧结处理的温度为400~600℃,例如:400℃、450℃、500℃、550℃或600℃等。
优选地,所述退火烧结处理的时间为1~48h,例如:1h、12h、18h、24h或48h等。
第三方面,本发明提供了一种锂离子电池,所述锂离子电池包含如第一方面所述的硫化物固态电解质。
相对于现有技术,本发明具有以下有益效果:
(1)本发明所述硫化物固态电解质具有优异的对有机溶剂和对空气稳定性,有机溶剂中室温和80℃下浸泡2h,离子电导率下降≤20%,干房露点-40℃中暴露4h,离子电导率下降≤20%,片致密度在90%以上。
(2)本发明所述硫化物固态电解质具有优异的锂离子导电性,常温电导率为10-4~10-2S cm-1
附图说明
图1是实施例1所述硫化物固态电解质的X射线衍射谱图。
图2是实施例1所述硫化物固态电解质的室温交流阻抗图。
图3是对比例2所述硫化物固态电解质的室温交流阻抗图。
具体实施方式
下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
实施例1
本实施例提供了一种硫化物固态电解质,所述硫化物固态电解质的通过如下方法制得:
将Li2S,SiS2,Sb2S5,LiI,LiBr按照28:6:4:7:3的摩尔比加入辊磨罐中,同时加入氧化锆球,球与原料质量比为10:1,300rpm下混合24小时得到前驱体粉末。混合完成后,将产物于氩气气氛下,550℃下烧结12小时,得到最终产物Li6.6Si0.6Sb0.4S5I0.7Br0.3,所述硫化物固态电解质的片致密度为95%。
所述硫化物固态电解质的X射线衍射谱图如图1所示,在X射线衍射图谱中,所述硫化物固态电解质的特征峰2Theta值依次为24.55°,17.32°,30.17°,28.86°,43.18°,50.26°,39.28°和45.93°。LiI结晶相的(111)面的强度II(111)相对于硫银锗矿相的(200)面的峰强度IA(200)的比例,即II(111)/IA(200)为0.18以下。
实施例2
本实施例提供了一种硫化物固态电解质,所述硫化物固态电解质的通过如下方法制得:
将Li2S,SiS2,Sb2S5,LiI,LiBr按照28:6:4:9:1的摩尔比加入高能球磨罐中,同时加入氧化锆球,球与原料质量比为20:1,550rpm下混合12小时得到前驱体粉末。将产物于真空下,450℃下烧结6小时,得到最终产物Li6.6Si0.6Sb0.4S5I0.9Br0.1,所述硫化物固态电解质的片致密度为96%。
实施例3
本实施例提供了一种硫化物固态电解质,所述硫化物固态电解质的通过如下方法制得:
将Li2S,SiS2,Sb2S5,LiI,LiBr按照28:6:4:3:7的摩尔比加入研钵中,手磨混合4小时得到前驱体粉末。将产物于氮气气氛下,500℃下烧结12小时,得到最终产物Li6.6Si0.6Sb0.4S5I0.3Br0.7,所述硫化物固态电解质的片致密度为93%。
实施例4
本实施例与实施例1区别仅在于,所述烧结的温度为350℃,其他条件与参数与实施例1完全相同。
实施例5
本实施例与实施例1区别仅在于,所述烧结的温度为650℃,其他条件与参数与实施例1完全相同。
对比例1
本对比例与实施例1区别仅在于,不加入锑源,其他条件与参数与实施例1完全相同。
对比例2
本对比例提供了一种硫化物固态电解质,所述硫化物固态电解质的通过如下方法制得:
将Li2S,SiS2,Sb2S5,LiI按照14:3:1:5的摩尔比加入辊磨罐中,同时加入氧化锆球,球与原料质量比为10:1,300rpm下混合24小时得到前驱体粉末。将产物于氩气气氛下,550℃下烧结12小时,得到最终产物Li6.6Si0.6Sb0.4S5I。
性能测试:
(1)将实施例1-5和对比例1-2得到的硫化物固态电解质测试其电导率,测试后分别浸泡于四氢呋喃和苯甲醚混合溶剂中,室温和80℃下浸泡2h后干燥,浸泡后测试其电导率,将所得硫化物固态电解质干房露点-40℃中暴露4h后,测试其电导率,测试结果如表1所示:
表1
由表1可以看出,由实施例1-5可得,本发明所述硫化物固态电解质的初始电导率可达4.21mS cm-2以上,有机溶剂中室温和80℃下浸泡2h,离子电导率下降≤20%,干房露点-40℃中暴露4h,离子电导率下降≤20%,片致密度在90%以上。一定比例的锑、溴掺杂十分有利于电导率的提升,同时烧结温度对电解质电导率影响显著。
由实施例1和实施例4-5对比可得,本发明所述硫化物固态电解质的制备过程中,退火烧结处理的温度会影响制得硫化物固态电解质的性能,将退火烧结处理的温度控制在400~600℃,制得硫化物固态电解质的性能较好,若退火烧结处理的温度过低,各组分相无法充分熔融进行固相反应,若退火烧结处理的温度过高,陶瓷相明显,晶界阻抗明显变大,不利于锂离子传导。
由实施例1和对比例1对比可得,本发明在硫化物固态电解质中掺杂锑元素,有利于拓宽锂离子传输通道,提高锂离子超导能力。
由实施例1和对比例2对比可得,本发明在硫化物固态电解质中掺杂溴元素,有利于弱化锂离子结合能力,提高锂离子传输能力。
(2)对实施例1得到的硫化物固态电解质在有机溶剂或空气中暴露后的厚度及阻抗进行测量,测试结果如表2所示:
表2
处理方式 厚度(cm) 阻抗(Ω)
初始 0.1 63.7
室温有机溶剂浸泡 0.1 91.7
80℃有机溶剂浸泡 0.1 119.5
干房露点-40℃中暴露 0.1 100.0
由表2可以看出,本发明所述硫化物固态电解质具有良好的溶剂稳定性和空气稳定性,所述固态电解质材料在有机溶剂中浸泡2h(与测试电导率条件相同),该固态电解质材料的阻抗≤120Ω,干房露点-40℃中暴露4h的阻抗≤100Ω。
实施例1所述硫化物固态电解质的室温交流阻抗图如图2所示,对比例2所述硫化物固态电解质的室温交流阻抗图如图3所示,由图2和图3可以看出,经过掺杂改性后的电解质无论是电导率,溶剂稳定性和空气稳定性均得到大幅度的提升。
申请人声明,以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,均落在本发明的保护范围和公开范围之内。

Claims (11)

1.一种提高硫化物固态电解质在有机溶剂和空气中稳定性的方法,其特征在于,所述方法采用化学式为LiaSibSbcSdI1-xBrx的硫化物固态电解质,其中,6≤a≤7,0.5≤b≤0.7,0.3≤c≤0.5,4.5≤d≤5.5,0.3<x<0.7,所述硫化物固态电解质的物相包括硫银锗矿相和LiI结晶相;
所述硫化物固态电解质的电导率为7.49~10mS cm-1
所述硫化物固态电解质的制备方法包括以下步骤:
将Li2S、LiI、LiBr、硅源和锑源混合,经450-550℃退火烧结处理1-24h得到所述硫化物固态电解质。
2.如权利要求1所述的方法,其特征在于,所述硫化物固态电解质的D50为1~10μm。
3.如权利要求1所述的方法,其特征在于,所述硫化物固态电解质的片致密度≥90%。
4.如权利要求1所述的方法,其特征在于,所述硅源包括单质硅和/或二硫化硅。
5.如权利要求1所述的方法,其特征在于,所述锑源包括Sb、Sb2S3或Sb2S5中的任意一种或至少两种的组合。
6.如权利要求1所述的方法,其特征在于,所述混合的方式包括手动研磨、机械搅拌、机械震荡、球磨或辊磨中的任意一种或至少两种的组合。
7.如权利要求6所述的方法,其特征在于,所述混合的方式为球磨和/或辊磨。
8.如权利要求7所述的方法,其特征在于,所述球磨的球料比为(1~60):1。
9.如权利要求7所述的方法,所述球磨的转速为200~600rpm。
10.如权利要求7所述的方法,所述球磨的时间为4~24h。
11.如权利要求1所述的方法,其特征在于,所述退火烧结处理的气氛为真空、氩气或氮气中的任意一种或至少两种的组合。
CN202210266876.5A 2022-03-17 2022-03-17 一种硫化物固态电解质及其制备方法和应用 Active CN114551992B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210266876.5A CN114551992B (zh) 2022-03-17 2022-03-17 一种硫化物固态电解质及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210266876.5A CN114551992B (zh) 2022-03-17 2022-03-17 一种硫化物固态电解质及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114551992A CN114551992A (zh) 2022-05-27
CN114551992B true CN114551992B (zh) 2024-04-19

Family

ID=81663210

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210266876.5A Active CN114551992B (zh) 2022-03-17 2022-03-17 一种硫化物固态电解质及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114551992B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116031377B (zh) * 2022-12-29 2023-11-17 有研(广东)新材料技术研究院 一种硅负极活性物质及其制备方法和在全固态电池中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099834A1 (ja) * 2011-12-28 2013-07-04 三井金属鉱業株式会社 硫化物系固体電解質
CN109526242A (zh) * 2016-08-10 2019-03-26 出光兴产株式会社 硫化物固体电解质
CN110800149A (zh) * 2017-07-07 2020-02-14 三井金属矿业株式会社 锂二次电池的固体电解质及该固体电解质用硫化物系化合物
CN111430808A (zh) * 2020-03-23 2020-07-17 广东东邦科技有限公司 一种具有掺杂物的含锂硫银锗矿固态电解质及其制备方法
WO2021013824A1 (en) * 2019-07-24 2021-01-28 Basf Se Lithium ion conducting solid materials
CN113659199A (zh) * 2021-08-20 2021-11-16 蜂巢能源科技有限公司 硫化物固体电解质及其制备方法、锂离子电池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101797510B1 (ko) * 2014-12-26 2017-11-14 미쓰이금속광업주식회사 리튬 이온 전지용 황화물계 고체 전해질 및 고체 전해질 화합물

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099834A1 (ja) * 2011-12-28 2013-07-04 三井金属鉱業株式会社 硫化物系固体電解質
CN109526242A (zh) * 2016-08-10 2019-03-26 出光兴产株式会社 硫化物固体电解质
CN110800149A (zh) * 2017-07-07 2020-02-14 三井金属矿业株式会社 锂二次电池的固体电解质及该固体电解质用硫化物系化合物
WO2021013824A1 (en) * 2019-07-24 2021-01-28 Basf Se Lithium ion conducting solid materials
CN111430808A (zh) * 2020-03-23 2020-07-17 广东东邦科技有限公司 一种具有掺杂物的含锂硫银锗矿固态电解质及其制备方法
CN113659199A (zh) * 2021-08-20 2021-11-16 蜂巢能源科技有限公司 硫化物固体电解质及其制备方法、锂离子电池

Also Published As

Publication number Publication date
CN114551992A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
KR20180063860A (ko) 리튬이차전지용 니켈계 활물질 전구체, 그 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지
CN109888378B (zh) 一种基于液相法的高离子电导率硫化物固态电解质及其制备方法
KR20200130471A (ko) 탄소 - 셀레늄 복합체의 제조 방법 및 용도
KR20020066548A (ko) 수명특성이 우수한 리튬 2 차 전지의 양극 활물질 및 그제조 방법
CN113659146B (zh) 钾镧硅三元共掺杂磷酸钒钠电极材料及其制备方法和应用
WO2020004882A1 (en) Lithium ion battery and cathode active material therefor
CN112216863A (zh) 一种卤化固态电解质材料、柔性固态电解质膜和锂电池及其制备方法
CN113793976B (zh) 半固态锂离子电池及其制备方法
JP2011238594A (ja) リチウムイオン二次電池正極材料およびその製造方法
CN114551992B (zh) 一种硫化物固态电解质及其制备方法和应用
CN111384390A (zh) 一种固体电解质表面的酸化反应改性方法
KR20200052651A (ko) 대기 안정성이 향상된 황화물 고체전해질 및 이의 제조방법
CN114421004B (zh) 硫化物固态电解质及其制备方法和应用
CN116344775A (zh) 一种钠离子电池正极材料及钠离子电池
CN113659199B (zh) 硫化物固体电解质及其制备方法、锂离子电池
CN110383543A (zh) 包含锂锰基氧化物的高电压正极活性材料及其制备方法
CN114597483A (zh) 一种硫化物固态电解质及其制备方法和应用
KR20190057571A (ko) 이차전지용 장수명 음극 활물질 및 그 제조 방법
CN109687016B (zh) 一种锂离子固体电解质及其制备方法
KR20200141656A (ko) 고온안정성이 향상된 리튬이차전지용 리튬-니켈-망간 산화물 양극활물질, 그 제조방법, 리튬이차전지의 양극 제조방법 및 리튬이차전지
CN112510254B (zh) 一种新型硫化物固态电解质及其制备方法和用途
CN110642293B (zh) 一种氧空位Li3VO4锂离子电池负极材料及其制备方法
Pan et al. Ammonium fluoride induced barrier-free and oxygen vacancy enhanced LLZO powder for fast interfacial lithium-ion transport in composite solid electrolytes
Hayashi et al. Co-sintering a cathode material and garnet electrolyte to develop a bulk-type solid-state Li metal battery with wide electrochemical windows
KR102180352B1 (ko) 황화물계 글래스 세라믹, 이의 제조방법 및 이를 고체전해질로 함유하는 전고체 이차전지

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant