CN114538926B - 一种微波陶瓷介质材料及其制备方法 - Google Patents

一种微波陶瓷介质材料及其制备方法 Download PDF

Info

Publication number
CN114538926B
CN114538926B CN202210260814.3A CN202210260814A CN114538926B CN 114538926 B CN114538926 B CN 114538926B CN 202210260814 A CN202210260814 A CN 202210260814A CN 114538926 B CN114538926 B CN 114538926B
Authority
CN
China
Prior art keywords
heating
glass powder
tio
mass
dielectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210260814.3A
Other languages
English (en)
Other versions
CN114538926A (zh
Inventor
郭雅晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan Normal University
Original Assignee
Taiyuan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan Normal University filed Critical Taiyuan Normal University
Priority to CN202210260814.3A priority Critical patent/CN114538926B/zh
Publication of CN114538926A publication Critical patent/CN114538926A/zh
Application granted granted Critical
Publication of CN114538926B publication Critical patent/CN114538926B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3265Mn2O3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种微波陶瓷介质材料及其制备方法,该材料包括如下质量百分比的原料:Li1.19Ta0.81Ti0.19O360‑80%、TiO25‑20%、Ta2O55‑20%、Mn2O35‑20%、和玻璃粉5‑20%。所述玻璃粉包括如下质量百分比的原料:CaF25‑40%、P2O55‑30%、CaCO35‑30%和AlF35‑40%。该陶瓷介质材料烧结温度低、介电常数高、介电损耗低,和温度稳定性高。

Description

一种微波陶瓷介质材料及其制备方法
技术领域
本发明一种微波陶瓷介质材料及其制备方法,属于陶瓷介质材料技术领域。
背景技术
随着4G/5G通信、航天通信、雷达等领域迅速发展,以及微波器件多层设计思想的提出,微波器件越来越轻量化、小型化、工作高频化以及多频化,这成为当前众多企业和科研所的研究热点。低温共烧陶瓷技术出现于上世纪80年代,核心在于将低温烧结陶瓷粉制成厚度精确且致密的生瓷带,利用激光打孔、微孔注浆和精密导体浆料印刷等工艺按照设计好的电路版图制作成形,并将多个元器件(如:电容器、电阻器、电感器、变压器等)埋入多层陶瓷基板中,叠压在一起,外电极可选用Ag、Cu和Au等金属,在小于900℃的温度条件下烧结成型,最终制作成三维网络的高密度集成电路,也可以制成内置无源元件的3D电路基板。目前大多数性能微波介电性能优异的介质陶瓷的烧结温度比较高,一般都在1300℃以上,远高于电极材料(Ag,Cu,Au)的熔点,难以完成低温共烧工艺,因此降低微波介质陶瓷的烧结温度也成为当前研究热点之一。
为了降低微波介质陶瓷烧结温度,通常可以采取以下方式:一,采用具有低烧结温度的陶瓷原材料;二,向已有材料中加入一定量的低熔点氧化物或玻璃相(如B2O3、CuO、V2O5等)助烧从而降低烧结温度;三,采用先进的制粉方法如化学合成法(水热合成法、沉淀法、溶胶凝胶法等)制备烧结活性高的超细纳米粉体,或者利用高能球磨设备将原材料加工至纳米级也能达到降低烧结温度的效果。方式二是目前应用最广泛的一种,但是烧结温度高的介质陶瓷需要加入大量的低熔点助烧剂才能降低烧结温度,这会对其微波介电性能产生一定的不利影响,介电损耗变大、温度稳定性差,此法制得的陶瓷材料的低温烧结和优异的微波介电性能不可兼得。因此寻找新型固有烧结温度低的原材料是当前微波介质陶瓷研究热点之一。
目前报道较多的微波陶瓷材料有BaO-TiO2、Ca(Li1/3Nb2/3)O3-δ、Bi2O3-ZnO-Nb2O5/Ta2O5、BaO-Ln2O3-TiO2(Ln=Nd,Sm)和Pb1-xCax(Fe1/2,Nb1/2)O3等介质陶瓷材料,但这些陶瓷材料存在烧结温度高、介电常数低和损耗偏高等问题。
发明内容
为解决现有技术存在的不足,本发明公开了一种微波陶瓷介质材料及其制备方法,该陶瓷介质材料烧结温度低、介电常数高、介电损耗低、和温度稳定性高。
本发明通过以下技术方案实现:
一种微波陶瓷介质材料,包括如下质量百分比的原料:Li1.19Ta0.81Ti0.19O3 60-80%、TiO2 5-20%、Ta2O5 5-20%、Mn2O3 5-20%、和玻璃粉5-20%。
所述玻璃粉包括如下质量百分比的原料:CaF2 5-40%、P2O5 5-30%、CaCO3 5-30%和AlF3 5-40%。
一种微波陶瓷介质材料的制备方法,包括如下依次进行的步骤:
1)将原料Li2CO3、Ta2O5和TiO2按通式Li1.19Ta0.81Ti0.19O3的化学计量比称量配料,球磨后,过120-250孔/cm2分样筛,升温至1000-1100℃,保温2-4小时,制得熔块A;
2)按照质量百分比将CaF2 5-40%、P2O5 5-30%、CaCO3 5-30%和AlF3 5-40%熔融水冷,研磨过筛制得玻璃粉B;
3)按照质量百分比将熔块A 60-80%、TiO2 5-20%、Ta2O5 5-20%、Mn2O3 5-20%、和玻璃粉B 5-20%进行二次配料,获得配料C;
4)将配料C进行球磨,过120-250孔/cm2分样筛,加入质量百分比为配料C 5-8%的黏合剂,造粒,压制成生坯,缓慢升温至500-530℃后保温1小时,随后将样品在氮氢气混合的还原气氛下烧结2小时,烧结温度为1100-1150℃,体积流量比N2∶H2=8∶1。随炉冷却至室温,然后再在空气中加热至900-950℃后保温1小时,冷却后制得陶瓷介质。
所述步骤1)中球磨时间为6-9小时。
所述步骤1)中升温速率为5-8℃/min。
所述步骤4)中升温过程分为三个阶段:第一阶段,按2-4℃/min的升温速率,从室温加热至500-530℃;第二阶段,按5-8℃/min的升温速率,从500-530℃加热至1100-1150℃;第三阶段,按5-8℃/min的升温速率,从室温加热至900-950℃。
所述黏合剂为聚乙烯醇或者石蜡中的一种。
本发明与现有技术相比具有以下有益效果:本发明Li1.19Ta0.81Ti0.19O3-TiO2系介质陶瓷具有适中的烧结温度,一般在1200℃左右,具有较高的介电常数。另外还具有可调的电容温度系数和较低的损耗,是一种性能优异的介质陶瓷材料。本发明选择Li1.19Ta0.81Ti0.19O3-TiO2系统,采取添加Ta2O5、Mn2O3及玻璃粉为掺杂剂的方法,主要是制备TiO2晶界层电容陶瓷,使其烧结温度低于1000℃而且不破坏系统的复合结构,从而达到微波性能优良的目的。
附图说明
下面结合附图对本发明做进一步的说明。
图1为实施例1、实施例2、实施例3和实施例4制备获得的陶瓷介质材料的电容温度系数TCC的测试结果图。由图可以看出:随着温度升高,电容温度系数整体上比较稳定,电容温度系数都在±15%内,达到了较高的温度稳定性。
具体实施方式
下面结合具体实施例对本发明做进一步的详细说明,但是本发明的保护范围并不限于这些实施例,凡是不背离本发明构思的改变或等同替代均包括在本发明的保护范围之内。
实施例1
一种微波陶瓷介质材料,包括如下质量百分比的原料:Li1.19Ta0.81Ti0.19O3 60%、TiO2 20%、Ta2O5 5%、Mn2O3 5%、和玻璃粉10%,所述玻璃粉包括如下质量百分比的原料:CaF2 5%、P2O5 25%、CaCO3 30%和AlF3 40%。
其制备过程如下:
1)将原料Li2CO3、Ta2O5和TiO2按通式Li1.19Ta0.81Ti0.19O3,进行配料,在转速为400r/min的球磨机上球磨6小时,在3.3Gw的普通烘箱中,100℃条件下干燥后,过120孔/cm2分样筛,以5℃/min的速率升温至1000℃,并在1000℃下保温2小时,得到熔块A。
2)称取CaF2 5g、P2O5 25g、CaCO3 30g和AlF3 40g,混合,熔融水冷,研磨,过筛制得玻璃粉B。
3)进行二次配料,按照质量百分比称取熔块A 60g、TiO2 20g、Ta2O5 5g、Mn2O3 5g、和玻璃粉B 10g,均匀混合。加去离子水,在转速为400r/min球磨机上球磨7小时,于120℃干燥后,过120孔/cm2分样筛,加入8wt%石蜡造粒,压制成生坯,先按2℃/min的升温速率加热至500℃,保温1小时。随后将样品在氮氢气体积流量比N2∶H2=8∶1混合的还原气氛下按5℃/min的升温速率加热至1100℃,保温2小时,随炉冷却至室温。然后再按5℃/min的升温速率在空气中加热至900℃,保温1小时,冷却后制得陶瓷介质。
对本实施例制得的陶瓷介质进行介电性能的测试,测试频率为15GHz,结果见表1和图1。
表1
烧成温度(℃) 保温时间(h) 介电常数ε 损耗tanδ
实施例1 900 1 50 0.0012
实施例2
一种微波陶瓷介质材料,包括如下质量百分比的原料:Li1.19Ta0.81Ti0.19O3 80%、TiO2 5%、Ta2O5 5%、Mn2O3 5%、和玻璃粉5%,所述玻璃粉包括如下质量百分比的原料:CaF2 40%、P2O5 5%、CaCO3 30%和AlF3 25%。
其制备过程如下:
1)将原料Li2CO3、Ta2O5和TiO2按通式Li1.19Ta0.81Ti0.19O3,进行配料,在转速为400r/min的球磨机上球磨7小时,在3.3Gw的普通烘箱中,100℃条件下干燥后,过200孔/cm2分样筛,以6℃/min的速率升温至1020℃,并在1020℃下保温3小时,得到熔块A。
2)称取CaF2 40g、P2O5 5g、CaCO3 30g和AlF3 25g,混合,熔融水冷,研磨,过筛制得玻璃粉B。
3)进行二次配料,按照质量百分比称取熔块A 80g、TiO2 5g、Ta2O5 5g、Mn2O3 5g、和玻璃粉B 5g,均匀混合。加去离子水,在转速为400r/min球磨机上球磨7小时,于120℃干燥后,过200孔/cm2分样筛,加入7wt%石蜡造粒,压制成生坯,先按3℃/min的升温速率加热至510℃,保温1小时。随后将样品在氮氢气体积流量比N2∶H2=8∶1混合的还原气氛下按6℃/min的升温速率加热至1110℃,保温2小时,随炉冷却至室温。然后再按6℃/min的升温速率在空气中加热至910℃,保温1小时,冷却后制得陶瓷介质。
对本实施例制得的陶瓷介质进行介电性能的测试,测试频率为15GHz,结果见表2和图1。
表2
烧成温度(℃) 保温时间(h) 介电常数ε 损耗tanδ
实施例2 910 1 51 0.0011
实施例3
一种微波陶瓷介质材料,包括如下质量百分比的原料:Li1.19Ta0.81Ti0.19O3 70%、TiO2 10%、Ta2O5 10%、Mn2O3 5%、和玻璃粉5%,所述玻璃粉包括如下质量百分比的原料:CaF2 20%、P2O5 30%、CaCO3 20%和AlF3 30%。
其制备过程如下:
1)将原料Li2CO3、Ta2O5和TiO2按通式Li1.19Ta0.81Ti0.19O3,进行配料,在转速为400r/min的球磨机上球磨8小时,在3.3Gw的普通烘箱中,100℃条件下干燥后,过250孔/cm2分样筛,以7℃/min的速率升温至1050℃,并在1050℃下保温4小时,得到熔块A。
2)称取CaF2 20g、P2O5 30g、CaCO3 20g和AlF3 30g,混合,熔融水冷,研磨,过筛制得玻璃粉B。
3)进行二次配料,按照质量百分比称取熔块A 70g、TiO2 10g、Ta2O5 10g、Mn2O3 5g、和玻璃粉B 5g,均匀混合。加去离子水,在转速为400r/min球磨机上球磨7小时,于120℃干燥后,过250孔/cm2分样筛,加入6wt%石蜡造粒,压制成生坯,先按4℃/min的升温速率加热至520℃,保温1小时。随后将样品在氮氢气体积流量比N2∶H2=8∶1混合的还原气氛下按7℃/min的升温速率加热至1120℃,保温2小时,随炉冷却至室温。然后再按7℃/min的升温速率在空气中加热至920℃,保温1小时,冷却后制得陶瓷介质。
对本实施例制得的陶瓷介质进行介电性能的测试,测试频率为15GHz,结果见表3和图1。
表3
烧成温度(℃) 保温时间(h) 介电常数ε 损耗tanδ
实施例3 920 1 52 0.001
实施例4
一种微波陶瓷介质材料,包括如下质量百分比的原料:Li1.19Ta0.81Ti0.19O3 60%、TiO2 5%、Ta2O5 5%、Mn2O3 10%、和玻璃粉20%,所述玻璃粉包括如下质量百分比的原料:CaF2 30%、P2O5 30%、CaCO3 5%和AlF3 35%。
其制备过程如下:
1)将原料Li2CO3、Ta2O5和TiO2按通式Li1.19Ta0.81Ti0.19O3,进行配料,在转速为400r/min的球磨机上球磨9小时,在3.3Gw的普通烘箱中,100℃条件下干燥后,过250孔/cm2分样筛,以8℃/min的速率升温至1100℃,并在1100℃下保温4小时,得到熔块A。
2)称取CaF2 30g、P2O5 30g、CaCO3 5g和AlF3 35g,混合,熔融水冷,研磨,过筛制得玻璃粉B。
3)进行二次配料,按照质量百分比称取熔块A 60g、TiO2 5g、Ta2O5 5g、Mn2O3 10g、和玻璃粉B 20g,均匀混合。加去离子水,在转速为400r/min球磨机上球磨7小时,于120℃干燥后,过250孔/cm2分样筛,加入5wt%聚乙烯醇造粒,压制成生坯,先按4℃/min的升温速率加热至530℃,保温1小时。随后将样品在氮氢气体积流量比N2∶H2=8∶1混合的还原气氛下按8℃/min的升温速率加热至1150℃,保温2小时,随炉冷却至室温。然后再按8℃/min的升温速率在空气中加热至950℃,保温1小时,冷却后制得陶瓷介质。
对本实施例制得的陶瓷介质进行介电性能的测试,测试频率为15GHz,结果见表4和图1。
表4
烧成温度(℃) 保温时间(h) 介电常数ε 损耗tanδ
实施例4 950 1 51 0.0011
实施例1-4中介电性能的测试,使用的测试方法和检测设备如下:
a、介电常数ε和损耗tanδ的测试
采用HEWLETT PACGARD 4278A电容测试仪,测试电容器的电容量C和介电损耗tanδ(测试频率为15GHz),并通过下面的公式计算介电常数ε:
Figure BSA0000268827210000061
式中:C-样片的电容量,单位pF;d-样片的厚度,单位cm;D-样片烧结后的直径,单位cm。
b、电容温度系数TCC的测试(-55℃~150℃)
利用6425型WAYGERR电桥、GZ-ESPEC MC一710F高低温箱及HM27002型电容器C-T/V特性专用测试仪测量样品的电容量随温度的变化情况,从而求出电容器的电容温度系数(测试频率为15GHz),计算公式如下:
Figure BSA0000268827210000062
式中:基准温度选择25℃,C0为温度25℃的容量,C1为温度t1的容量。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。
本发明不会限制于本文所示的实施例,而是要符合与本文所公开的原理和新颖性特点相一致的最宽范围。

Claims (5)

1.一种微波陶瓷介质材料,其特征在于,包括如下质量百分比的原料:Li1.19Ta0.81Ti0.19O360-80%、TiO25-20%、Ta2O55-20%、Mn2O35-20%、和玻璃粉5-20%,所述玻璃粉包括如下质量百分比的原料:CaF25-40%、P2O55-30%、CaCO35-30%和AlF35-40%。
2.一种微波陶瓷介质材料的制备方法,其特征在于,包括如下依次进行的步骤:
1)将原料Li2CO3、Ta2O5和TiO2按通式Li1.19Ta0.81Ti0.19O3的化学计量比称量配料,球磨后,过120-250孔/cm2分样筛,升温至1000-1100℃,保温2-4小时,制得熔块A;
2)按照质量百分比将CaF25-40%、P2O55-30%、CaCO35-30%和AlF35-40%熔融水冷,研磨过筛制得玻璃粉B;
3)按照质量百分比将熔块A 60-80%、TiO25-20%、Ta2O55-20%、Mn2O35-20%、和玻璃粉B 5-20%进行二次配料,获得配料C;
4)将配料C进行球磨,过120-250孔/cm2分样筛,加入质量百分比为配料C 5-8%的黏合剂,造粒,压制成生坯,缓慢升温至500-530℃后保温1小时,随后将样品在氮氢气混合的还原气氛下烧结2小时,烧结温度为1100-1150℃,体积流量比N2∶H2=8∶1,随炉冷却至室温,然后再在空气中加热至900-950℃后保温1小时,冷却后制得陶瓷介质。
3.根据权利要求2所述的一种微波陶瓷介质材料的制备方法,其特征在于,所述步骤1)中球磨时间为6-9小时。
4.根据权利要求2所述的一种微波陶瓷介质材料的制备方法,其特征在于,所述步骤1)中升温速率为5-8℃/min。
5.根据权利要求2所述的一种微波陶瓷介质材料的制备方法,其特征在于,所述步骤4)中升温过程分为三个阶段:第一阶段,按2-4℃/min的升温速率,从室温加热至500-530℃;第二阶段,按5-8℃/min的升温速率,从500-530℃加热至1100-1150℃;第三阶段,按5-8℃/min的升温速率,从室温加热至900-950℃。
CN202210260814.3A 2022-03-09 2022-03-09 一种微波陶瓷介质材料及其制备方法 Active CN114538926B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210260814.3A CN114538926B (zh) 2022-03-09 2022-03-09 一种微波陶瓷介质材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210260814.3A CN114538926B (zh) 2022-03-09 2022-03-09 一种微波陶瓷介质材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114538926A CN114538926A (zh) 2022-05-27
CN114538926B true CN114538926B (zh) 2023-05-05

Family

ID=81664529

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210260814.3A Active CN114538926B (zh) 2022-03-09 2022-03-09 一种微波陶瓷介质材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114538926B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI9600232A (sl) * 1996-07-19 1998-02-28 Inštitut JOŽEF STEFAN Mikrovalovna dielektrična keramika na osnovi oksidov srebra, nioba in tantala.
CN100575301C (zh) * 2006-08-29 2009-12-30 中国科学院上海硅酸盐研究所 一种低温烧结的锂铌钛系复合微波介质陶瓷及其制备方法
CN101260001A (zh) * 2008-02-29 2008-09-10 上海大学 新型高q微波介质陶瓷材料及其制备方法
CN112166094A (zh) * 2018-05-30 2021-01-01 魁北克电力公司 陶瓷、其生产方法及其用途
CN108975905A (zh) * 2018-08-16 2018-12-11 天津大学 一种异种氧化物共掺钛酸锂基微波介质材料的制备方法
CN112759378B (zh) * 2021-02-01 2022-09-02 郴州功田电子陶瓷技术有限公司 低温共烧微波介质陶瓷材料及其制备方法、电子元器件

Also Published As

Publication number Publication date
CN114538926A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
CN101823877B (zh) 一种低温共烧陶瓷介质材料及其制备方法
CN111116173B (zh) 一种低温烧结ntc热敏电阻器陶瓷材料及制备方法
CN106699150B (zh) 一种低温烧结低介c0g微波介质材料及其制备方法
CN106505144A (zh) 多层电卡陶瓷元件及其制备方法
CN111574212A (zh) 一种低温烧结低介微波陶瓷材料及制备方法
CN109734480A (zh) 一种氮化铝陶瓷加热器用共烧高温发热浆料及其制备方法
CN110156457B (zh) 一种低温共烧陶瓷介质材料及其制备方法
CN113666731A (zh) 一种硅酸盐微波介质陶瓷材料及其制备方法
CN114773060B (zh) 一种多层陶瓷电容器用Mg-Ta基介质陶瓷及其低温制备方法
CN108863348A (zh) 一种超宽温度稳定性的介电陶瓷材料及其制备方法
CN114751734A (zh) 一种低温烧结Mg-Ti-Nb多层陶瓷电容器用介质材料及其制备方法
CN102531558A (zh) 一种低温烧结微波介质陶瓷材料及其制备方法
CN112489906B (zh) 一种ntc热敏电阻芯片及其制备方法
CN114538926B (zh) 一种微波陶瓷介质材料及其制备方法
CN111635227B (zh) 一种高频陶瓷介质材料及其制备方法和多层陶瓷电容器
CN114538916A (zh) 一种低温共烧陶瓷介质材料及其制备方法
CN109293247B (zh) 一种高电导玻璃粉及其制备方法,及基于其的钛酸钡基玻璃陶瓷及其制备方法
CN111063477A (zh) 一种不锈钢基板厚膜电路绝缘介质浆料及其制备方法
CN107056277B (zh) 一种低温烧结中介电常数微波介质材料及其制备方法
CN113307622B (zh) 高性能抗还原钛酸钡基介质陶瓷及其制备方法
CN110171967A (zh) 一种低温共烧陶瓷介质材料及其制备方法
CN104609852A (zh) 一种线性高压低损耗电容器陶瓷材料及其制备方法
CN103864417A (zh) 一种低温稳定型陶瓷介质材料及其制备方法
CN114550977B (zh) 一种低温共烧陶瓷介质材料及其制备方法
CN111205066A (zh) 一种微波介质陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant