CN108975905A - 一种异种氧化物共掺钛酸锂基微波介质材料的制备方法 - Google Patents
一种异种氧化物共掺钛酸锂基微波介质材料的制备方法 Download PDFInfo
- Publication number
- CN108975905A CN108975905A CN201810925719.4A CN201810925719A CN108975905A CN 108975905 A CN108975905 A CN 108975905A CN 201810925719 A CN201810925719 A CN 201810925719A CN 108975905 A CN108975905 A CN 108975905A
- Authority
- CN
- China
- Prior art keywords
- doped
- xenogenesis
- dielectric material
- microwave dielectric
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/495—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
- C04B2235/3203—Lithium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3251—Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3294—Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
本发明公开了一种异种氧化物共掺钛酸锂基微波介质材料的制备方法,以Li2CO3、TiO2、MgO、Nb2O5、Ta2O5、Sb2O5为原料,目标合成物表达式为Li2Ti1‑x(Mg1/3M2/3)xO3,其中M=Nb、Ta或Sb,x=0.15~0.95。先按化学计量式进行配料,经球磨、烘干、过筛后于800~1000℃预烧,再进行造粒,压制成生坯,生坯于1200~1280℃烧结,制成异种氧化物共掺的钛酸锂基微波介质材料。本发明在微波频段下,测得Qf值高达到107,346~142,168GHz,具有较低的介电损耗,同时兼具较高的εr值18.08~19.87,较小的τf值+17.32~+21.23ppm/℃,该陶瓷体系制备工艺简单,由其制作成的微波介质器件具有广泛的应用前景。
Description
技术领域
本发明属于一种以成分为特征的陶瓷组合物,特别涉及一种异种氧化物共掺钛酸锂基微波介质材料的制备方法
背景技术
在5G移动通信协议下,发展具有模块化、集成化、高传输、高可靠和多接入等特点的军事和民用宽兼容型射频系统具有重要意义,高性能微波滤波器作为其核心器件,朝着高频点、小型化、抗干扰和全频覆盖等新方向发展。目前,微波滤波器常用Q值较低的PCB基板,导致滤波器插入损耗较大(>3.0dB),并且PCB板的介电常数较小、使用温度范围窄,尚不能满足高性能微波滤波器的需求。微波介质陶瓷是现代通信中的关键材料,它的高Qf值和较高的介电常数等优点可用于微波滤波器高性能的实现。
最近有研究表明,具有岩盐结构的钛酸锂基微波介质材料,具有较高的介电常数(~20),高的Qf值(~63,000)和较小的谐振频率温度系数(~+28ppm/℃),且原料相对便宜,制备工艺简单易行。然而,其Qf值(<100,000GHz)无法提高滤波器通带边缘信号频率相应陡度及频带的利用率,尚不能满足高性能微波滤波器。因此,通过添加剂协同改性将Li2TiO3的Qf值提高至100,000GHz以上,成为目前亟待解决的问题。
发明内容
本发明的目的,是为满足高性能微波滤波器的需要,将异种金属氧化物MgO和M2O5(M=Nb、Ta或Sb)引入到Li2TiO3微波介质材料的体系设计中,其中,MgO能够抑制由过弱Li-O键引起的解理作用,M2O5(M=Nb、Ta或Sb)可以补偿电荷,同时调控晶粒均匀生长。最终,制备出具有高Qf值(>100,000GHz)的钛酸锂基微波介质材料。
本发明通过如下技术方案予以实现。
一种异种氧化物共掺钛酸锂基微波介质材料的制备方法,以Li2CO3、TiO2、MgO、Nb2O5、Ta2O5、Sb2O5为原料,目标合成物表达式为Li2Ti1-x(Mg1/3M2/3)xO3,其中M=Nb、Ta或Sb,x=0.15~0.95。
具体实施步骤如下:
(1)将Li2CO3、TiO2、MgO、Nb2O5、Ta2O5和Sb2O5按化学计量式Li2Ti1-x(Mg1/3M2/3)xO3,M=Nb、Ta或Sb,x=0.15~0.95进行配料,将粉料放入聚酯球磨罐中,加入无水乙醇和氧化锆球后,球磨4~24小时;
(2)将步骤(1)球磨后的原料放入干燥箱中,于100~120℃烘干,然后过40目筛;
(3)将步骤(2)过筛后的粉料放入氧化铝坩埚内置于中温炉中,于800~1000℃预烧,保温2~8小时,然后过40目筛;
(4)将步骤(3)过筛后的粉料外加质量百分比含量为0.7%的PVA粉末进行混合,放入聚酯球磨罐中,加入无水乙醇和氧化锆球后,球磨4~24小时进行造粒;
(5)将步骤(4)造粒后的的粉料放入干燥箱中,于100~120℃烘干4~6小时,然后过80目筛;
(6)将步骤(5)的粉料用粉末压片机压制成生坯;
(7)将步骤(6)的生坯于1200~1280℃烧结,保温2~8小时,制成异种氧化物共掺的钛酸锂基微波介质材料
所述步骤(1)、(4)均采用行星式球磨机进行球磨,球磨机转速为400转/分。
所述步骤(1)、(4)的原料与无水乙醇和氧化锆球的质量比为1:30:15。
所述步骤(6)的生坯直径为10mm,厚度为4~5mm。
所述步骤(6)的粉末压片机的工作压力为4~8MPa。
所述步骤(7)的烧结温度为1200℃。
本发明以Li2CO3、TiO2、MgO、Nb2O5、Ta2O5和Sb2O5为原料制备异种氧化物共掺的钛酸锂基微波介质材料Li2Ti1-x(Mg1/3M2/3)xO3,M=Nb、Ta或Sb,x=0.15~0.95。在微波频段下,该材料制品在最佳烧结温度下,测得Qf值高达到107,346~142,168GHz,具有较低的介电损耗,同时兼具较高的εr值18.08~19.87,较小的τf值+17.32~+21.23ppm/℃。该陶瓷体系制备工艺简单,由其制作成的微波介质器件具有广泛的应用前景。
具体实施方式
本发明以纯度大于99%的Li2CO3、TiO2、MgO、Nb2O5、Ta2O5和Sb2O5为初始原料,通过固相法制备微波介质材料。具体实施方案如下:
(1)将Li2CO3、TiO2、MgO、Nb2O5、Ta2O5和Sb2O5按化学计量式Li2Ti1-x(Mg1/3M2/3)xO3,M=Nb、Ta或Sb,x=0.15~0.95,进行配料。将13g粉料放入聚酯球磨罐中,原料与无水乙醇和氧化锆球的质量比为1:30:15,在行星式球磨机上球磨12小时,球磨转速为400/转分;
(2)将步骤(1)球磨后的原料分别放入干燥箱中,于110℃烘干5小时,然后过40目筛;
(3)将步骤(2)过筛后的粉料放入氧化铝坩埚内置于中温炉中,于800~1000℃预烧,保温4小时,然后过40目筛;
(4)将步骤(3)过筛后的粉料外加质量百分比含量为0.7%的PVA粉末进行混合,放入聚酯球磨罐中,原料与无水乙醇和氧化锆球的质量比为1:30:15,在行星式球磨机上球磨12小时,转速为400转/分进行造粒;
(5)将步骤(4)球磨后的原料分别放入干燥箱中,于110℃烘干5小时,然后过80目筛;
(6)将步骤(5)的粉料用粉末压片机以6MPa的压力制成生坯,生坯直径为10mm,厚度为4.3mm;
(7)将步骤(6)的生坯于1200~1280℃烧结,保温2~8小时;
(8)通过网络分析仪测试所得样品的微波介电性能。
具体实施例1-11为共掺不同金属氧化物、不同含量的Li2Ti1-x(Mg1/3M2/3)xO3,M=Nb、Ta或Sb,x=0.15~0.95,其预烧温度、烧结温度、烧结时间及其介电性能详见表1。
表1
本发明并不局限于上述实施例,很多细节的变化是可能的,但这并不因此违背本发明的范围和精神。
Claims (6)
1.一种异种氧化物共掺钛酸锂基微波介质材料的制备方法,以Li2CO3、TiO2、MgO、Nb2O5、Ta2O5、Sb2O5为原料,目标合成物表达式为Li2Ti1-x(Mg1/3M2/3)xO3,其中M=Nb、Ta或Sb,x=0.15~0.95。
具体实施步骤如下:
(1)将Li2CO3、TiO2、MgO、Nb2O5、Ta2O5和Sb2O5按化学计量式Li2Ti1-x(Mg1/3M2/3)xO3,M=Nb、Ta或Sb,x=0.15~0.95进行配料,将粉料放入聚酯球磨罐中,加入无水乙醇和氧化锆球后,球磨4~24小时;
(2)将步骤(1)球磨后的原料放入干燥箱中,于100~120℃烘干,然后过40目筛;
(3)将步骤(2)过筛后的粉料放入氧化铝坩埚内置于中温炉中,于800~1000℃预烧,保温2~8小时,然后过40目筛;
(4)将步骤(3)过筛后的粉料外加质量百分比含量为0.7%的PVA粉末进行混合,放入聚酯球磨罐中,加入无水乙醇和氧化锆球后,球磨4~24小时进行造粒;
(5)将步骤(4)造粒后的的粉料放入干燥箱中,于100~120℃烘干4~6小时,然后过80目筛;
(6)将步骤(5)的粉料用粉末压片机压制成生坯;
(7)将步骤(6)的生坯于1200~1280℃烧结,保温2~8小时,制成异种氧化物共掺的钛酸锂基微波介质材料。
2.根据权利要求1所述的一种异种氧化物共掺钛酸锂基微波介质材料的制备方法,其特征在于,所述步骤(1)、(4)均采用行星式球磨机进行球磨,球磨机转速为400转/分。
3.根据权利要求1所述的一种异种氧化物共掺钛酸锂基微波介质材料的制备方法,其特征在于,所述步骤(1)、(4)的原料与无水乙醇和氧化锆球的质量比为1:30:15。
4.根据权利要求1所述的一种异种氧化物共掺钛酸锂基微波介质材料的制备方法,其特征在于,所述步骤(6)的生坯直径为10mm,厚度为4~5mm。
5.根据权利要求1所述的一种异种氧化物共掺钛酸锂基微波介质材料的制备方法,其特征在于,所述步骤(6)的粉末压片机的工作压力为4~8MPa。
6.根据权利要求1所述的一种异种氧化物共掺钛酸锂基微波介质材料的制备方法,其特征在于,所述步骤(7)的烧结温度为1200℃。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810925719.4A CN108975905A (zh) | 2018-08-16 | 2018-08-16 | 一种异种氧化物共掺钛酸锂基微波介质材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810925719.4A CN108975905A (zh) | 2018-08-16 | 2018-08-16 | 一种异种氧化物共掺钛酸锂基微波介质材料的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108975905A true CN108975905A (zh) | 2018-12-11 |
Family
ID=64553486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810925719.4A Pending CN108975905A (zh) | 2018-08-16 | 2018-08-16 | 一种异种氧化物共掺钛酸锂基微波介质材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108975905A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109970444A (zh) * | 2019-04-30 | 2019-07-05 | 天津大学 | 一种超高q值微波介质材料及其制备方法 |
CN111606705A (zh) * | 2020-04-16 | 2020-09-01 | 天津大学 | 5g基站陶瓷滤波器用高q轻质微波介质材料 |
CN114538926A (zh) * | 2022-03-09 | 2022-05-27 | 太原师范学院 | 一种微波陶瓷介质材料及其制备方法 |
CN115093220A (zh) * | 2022-06-14 | 2022-09-23 | 西安电子科技大学 | 一种低温烧结的Mg0.5Ti0.5TaO4基微波介质陶瓷材料及其制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107500750A (zh) * | 2017-08-04 | 2017-12-22 | 天津大学 | 镁铌共掺制备高q值锂基微波介质材料 |
-
2018
- 2018-08-16 CN CN201810925719.4A patent/CN108975905A/zh active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107500750A (zh) * | 2017-08-04 | 2017-12-22 | 天津大学 | 镁铌共掺制备高q值锂基微波介质材料 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109970444A (zh) * | 2019-04-30 | 2019-07-05 | 天津大学 | 一种超高q值微波介质材料及其制备方法 |
CN111606705A (zh) * | 2020-04-16 | 2020-09-01 | 天津大学 | 5g基站陶瓷滤波器用高q轻质微波介质材料 |
CN114538926A (zh) * | 2022-03-09 | 2022-05-27 | 太原师范学院 | 一种微波陶瓷介质材料及其制备方法 |
CN115093220A (zh) * | 2022-06-14 | 2022-09-23 | 西安电子科技大学 | 一种低温烧结的Mg0.5Ti0.5TaO4基微波介质陶瓷材料及其制备方法 |
CN115093220B (zh) * | 2022-06-14 | 2023-03-10 | 西安电子科技大学 | 一种低温烧结的Mg0.5Ti0.5TaO4基微波介质陶瓷材料及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108975905A (zh) | 一种异种氧化物共掺钛酸锂基微波介质材料的制备方法 | |
CN104944939A (zh) | 一种温度稳定型中温烧结微波介质陶瓷及其制备方法 | |
CN105000877A (zh) | 一种高品质因数温度稳定型微波介质材料及其制备方法 | |
CN108314444A (zh) | 一种高q值岩盐类微波介质材料 | |
CN108249913A (zh) | 一种温度稳定型低损耗微波介质陶瓷及其制备方法和应用 | |
CN105272233A (zh) | 一种陶瓷电容器用介质材料及其制备方法 | |
CN106986635A (zh) | 一种中温烧结低损耗微波介质陶瓷材料及其制备方法 | |
CN107311646A (zh) | 一种提高钛酸锶陶瓷材料介电性能的制备方法 | |
CN112851346B (zh) | 超低损耗铌酸锆镁体系微波介质陶瓷材料及制备方法 | |
CN104961453A (zh) | 一种温度稳定型低损耗微波介质陶瓷及其制备方法 | |
CN104860672A (zh) | 一种高介微波陶瓷介质材料及其制备方法 | |
CN108821764A (zh) | 一种谐振器用微波介质陶瓷及其制备方法 | |
CN108147809B (zh) | 中低温烧结钡-钛系微波介质材料及制备方法 | |
CN104944940A (zh) | 一种温度稳定型钛酸镁基微波介质陶瓷及其制备方法 | |
CN108191426A (zh) | 一种中温烧结高q值微波介质材料 | |
CN107500750A (zh) | 镁铌共掺制备高q值锂基微波介质材料 | |
CN104987070A (zh) | 中介电常数温度稳定型微波介质陶瓷及其制备方法 | |
CN110229004A (zh) | 一种低温烧结微波介质陶瓷材料及其制备方法 | |
CN103992105A (zh) | 高品质因数的钛酸镁基微波介质陶瓷及其制备方法 | |
CN106904969A (zh) | 一种谐振频率温度系数可调的中介电常数微波介质陶瓷 | |
CN108975906A (zh) | 一种中介电常数高稳定型微波介质陶瓷及其制备方法 | |
CN109251028A (zh) | 一种低介高q锂镁铌系微波介质陶瓷及其制备方法 | |
CN106007707B (zh) | Mg-Nb掺杂钛酸铋微波介质陶瓷及其制备方法 | |
CN108285344A (zh) | 一种低损耗锰钽矿结构微波介质陶瓷材料 | |
CN107721421A (zh) | 一种Zn‑Nb‑Ti系LTCC材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20181211 |
|
WD01 | Invention patent application deemed withdrawn after publication |