CN114525487A - 一种金属-高熵合金多层膜中空微点阵材料制备方法 - Google Patents

一种金属-高熵合金多层膜中空微点阵材料制备方法 Download PDF

Info

Publication number
CN114525487A
CN114525487A CN202210180636.3A CN202210180636A CN114525487A CN 114525487 A CN114525487 A CN 114525487A CN 202210180636 A CN202210180636 A CN 202210180636A CN 114525487 A CN114525487 A CN 114525487A
Authority
CN
China
Prior art keywords
metal
entropy alloy
multilayer film
preparation
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210180636.3A
Other languages
English (en)
Inventor
王永静
封晨鑫
宋忠孝
张志家
陈亚奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202210180636.3A priority Critical patent/CN114525487A/zh
Publication of CN114525487A publication Critical patent/CN114525487A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明属于复合点阵材料设计制备技术领域,且公开了一种金属‑高熵合金多层膜中空微点阵材料制备方法,具体操作步骤如下:步骤1:在CAD软件建立微点阵材料模型,将CAD文件转成STL格式文件,并将其导入3D的打印设备,利用快速成型技术加工聚合物掩模。本发明所制备的结构可设计性强;得到金属/高熵合金多层膜中空微点阵材料的成本低廉,方法简便、易行,可通过控制溅射时间控制膜层厚度,可实现了管壁厚度在50nm~20μm之间的调控;本发明所制备的微点阵材料具有突出强度和韧性,缓解了传统材料强度和韧性突出的矛盾问题;本发明使用的磁控溅射技术,相对于其他沉积方法,材料选着范围广(金属、高熵合金),膜层均匀性和结合性较好。

Description

一种金属-高熵合金多层膜中空微点阵材料制备方法
技术领域
本发明属于复合点阵材料设计制备技术领域,具体为一种金属-高熵合金多层膜中空微点阵材料制备方法。
背景技术
目前,点阵材料因其同时具有轻质、高承载、高强韧、隔声、传热、电磁屏蔽等多功能性性能而成为实现结构-功能一体化的理想材料。然而,随着超级电容器电极、电池电极、生物骨架以及催化剂载体等微小功能器件朝着更轻、更小的方向不断发展,宏观尺度的点阵材料已经无法满足以上性能需求。近些年来,逐渐兴起的微点阵材料因具有多尺度(从纳米跨度到厘米)使其具有优异的力学性能、高度的可设计性以及超乎寻常的多功能性,这些特点为上述微小器件的轻量化及多功能性设计提供了更大的空间。
高熵合金具有独特的结构、新颖的合金设计理念以及优异的综合性能,诸如高强度、高硬度、优异的耐蚀性和热稳定性、突出的的抗疲劳强度及断裂强度等,引起了大家广泛的关注。研究表明,材料的结构决定性能,对于面心立方结构的高熵合金,它往往表现出大塑性、低强度的特点,这在一定程度上限制了它的实际应用。所以,面心立方高熵合金的强化是一个亟待解决的问题。
发明内容
本发明的目的在于提供一种金属-高熵合金多层膜中空微点阵材料制备方法,以解决上述背景技术中提出的问题。
为了实现上述目的,本发明提供如下技术方案:一种金属-高熵合金多层膜中空微点阵材料制备方法,具体操作步骤如下:
步骤1:在CAD软件建立微点阵材料模型,将CAD文件转成STL格式文件,并将其导入3D的打印设备,利用快速成型技术加工聚合物掩模;
步骤2:将聚合物模板放入丙酮中超声清洗10~25min,去离子水中超声清洗10~25min,乙醇中超声清洗10~25min,自然干燥;
步骤3:磁控溅射技术在聚合物掩模上依次沉积金属、高熵合金多层膜;
步骤4:利用化学侵蚀或高温烧蚀方法去除光敏树脂掩模,获得金属/高熵合金多层膜中空微点阵材料;
步骤5:金属/高熵合金多层膜中空微点阵材料热在100~600℃条件下热处理1~3h。
优选的,所述步骤1中微点阵材料掩模构型下列任意一种:八面体、边心立方体、面心立方体、金刚石正方体、菱形十二面体、螺旋二十四面体结构。
优选的,所述步骤1中所选用的材料为光敏树脂,快速成型技术为光固化立体成型技术、数字光处理技术,光固化立体成型技术工艺参数为:紫外线激光扫描速度:扫描间距0.1~0.6mm,光斑补偿直径0.1~0.3mm,层间等待时间1~5s,工作台提升速度1~10mm/s;数字光处理技术工艺参数为:投影分辨率768X480,投影光波段300~500nm,切片厚20~100μm,每层曝光时间1~10s,工作台提升时间1~5s。
优选的,所述步骤1中微点阵掩模相对密度为1~15%,单元杆径为0.1~0.5mm。
优选的,所述步骤3中金属/高熵合金多层膜为金属、高熵合金多层膜交替叠加,膜层厚50nm~20μm。
优选的,所述步骤3中所涉及金属为纯度大于99.0%~99.99wt.%的Ti、Al、Ni、Cu、Cr、Zr等单质金属靶材,高熵合金为纯度大于99.95wt.%的Fe50Mn30Co10Cr10、Fe50Mn30Co10Ni10、CrCuFeMoNi或CoCrFeNiMn靶材;制备金属薄膜磁控溅射工艺参数为:金属与高熵合进行交替溅射,且最外层为高熵合金,真空度在0.0001Pa以下,模板转速为10~20r/min,衬底温度大于25℃,衬底与溅射靶距离为50~100mm,氩气气压0.01~1Pa,溅射功率50~300W,溅射电压为50~500V,溅射电流0.1~1A,预溅射时间0~30min,溅射时间20~120min。
优选的,所述步骤4中化学侵蚀或高温烧蚀方法去除光敏树脂掩模,高温烧蚀工艺参数为:采用高温烧结炉,以体积百分比浓度为99.99%的惰性气体为保护气氛,在升温速度为10~20℃/min条件下升温至200~500℃,保温30~90分钟;化学侵蚀工艺参数为:将甲醇与水按体积比为1:1的比例混合,形成混合溶液,以此混合溶液作为溶剂制备出浓度为3mol/L的氢氧化钠溶液,然后氢氧化钠溶液为60℃的条件下去除光敏树脂掩模。
优选的,所述步骤5中金属/高熵合金多层膜中空微点阵材料热在300~600℃条件下热处理1~3h。
本发明的有益效果如下:
1、本发明所制备的结构可设计性强;得到金属/高熵合金多层膜中空微点阵材料的成本低廉,方法简便、易行,可通过控制溅射时间控制膜层厚度,可实现了管壁厚度在50nm~20μm之间的调控;本发明所制备的微点阵材料具有突出强度和韧性,缓解了传统材料强度和韧性突出的矛盾问题;本发明使用的磁控溅射技术,相对于其他沉积方法,材料选着范围广(金属、高熵合金),膜层均匀性和结合性较好。
附图说明
图1为本发明金属/高熵合金多层膜中空微点阵材料示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
具体实施方式
下面举例对本发明进行进一步说明,但不限于此:
实施例1:
在CAD软件建立相对密度为5%,单元杆径为0.1mm的微点阵材料模型,将CAD文件转成STL格式文件,并将其导入3D的打印设备,利用数字光处理技术加工PR48光敏树脂八面体微点阵材料掩模。工艺参数为:投影分辨率768X480,投影光波段350nm,切片厚度50um,每层曝光时间5s,工作台提升时间3s。
将聚合物模板放入丙酮中超声清洗15min,去离子水中超声清洗15min,乙醇中超声清洗15min,自然干燥。
将金属靶材为纯度为99.99%的Al单质金属靶材、Fe50Mn30Co10Ni10靶材和清洗干净的聚合物模板放入磁控溅射室。对Al单质金属靶材启辉,模板转速为10r/min,衬底温度25℃,衬底与溅射靶距离为60mm,氩气气压0.3Pa,溅射功率140W,溅射电压为220V,溅射电流0.3A,预溅射时间20min,溅射时间60min,获得厚度为1μm的Al膜层。随后对Fe50Mn30Co10Ni10靶材启辉,溅射时间10min,获得厚度为50nm的Fe50Mn30Co10Ni10膜层。重复以上步骤,获得第二层Al膜层和Fe50Mn30Co10Ni10膜层。
将上述工艺获得样件放入高温烧结炉,以体积百分比浓度为99.99%的惰性气体为保护气氛,在升温速度为10℃/min条件下升温至500℃,保温60分钟去除光敏树脂掩模,获得金属/高熵合金多层膜多层膜八面体中空微点阵材料。
实施例2:
在CAD软件建立相对密度为8%,单元杆径为0.15mm的微点阵材料模型,将CAD文件转成STL格式文件,并将其导入3D的打印设备,利用数字光处理技术加工PR48光敏树脂面心立方体微点阵材料掩模。工艺参数为:投影分辨率768X480,投影光波段350nm,切片厚度50um,每层曝光时间5s,工作台提升时间3s。
将聚合物模板放入丙酮中超声清洗15min,去离子水中超声清洗15min,乙醇中超声清洗15min,自然干燥。
将金属靶材为纯度为99.99%的单质Ti金属靶材、Fe50Mn30Co10Ni10靶材和清洗干净的聚合物模板放入磁控溅射室。对Ti单质金属靶材启辉,模板转速为10r/min,衬底温度25℃,衬底与溅射靶距离为60mm,氩气气压0.3Pa,溅射功率140W,溅射电压为220V,溅射电流0.3A,预溅射时间20min,溅射时间60min,获得厚度为1μm的Ti膜层。随后对Fe50Mn30Co10Ni10靶材启辉,溅射时间10min,获得厚度为50nm的Fe50Mn30Co10Ni10膜层。重复以上步骤,获得第二层Ti膜层和Fe50Mn30Co10Ni10膜层。
将上述工艺获得样件放入将甲醇与水按体积比为1:1的比例混合,形成混合溶液,以此混合溶液作为溶剂制备出浓度为3mol/L的氢氧化钠溶液,然后氢氧化钠溶液为60℃的条件下去除光敏树脂掩模,获得金属/高熵合多层膜面心立方体中空微点阵材料。
实施例3:
在CAD软件建立相对密度为10%,单元杆径为0.2mm的微点阵材料模型,将CAD文件转成STL格式文件,并将其导入3D的打印设备,利用数字光处理技术加工复合光敏树脂EX-200型材料面心立方体微点阵材料掩模。工艺参数为:紫外线激光355nm,扫描速度300mm/s:扫描间距0.3mm,光斑补偿直径0.3mm,层间等待时间3s,工作台提升速度5mm/s。
将聚合物模板放入丙酮中超声清洗15min,去离子水中超声清洗15min,乙醇中超声清洗15min,自然干燥。
将金属靶材为纯度为99.99%的Cu单质金属靶材、CrCuFeMoNi靶材和清洗干净的聚合物模板放入磁控溅射室。对Al单质金属靶材启辉,模板转速为15r/min,衬底温度25℃,衬底与溅射靶距离为60mm,氩气气压0.5Pa,溅射功率200W,溅射电压为220V,溅射电流0.3A,预溅射时间20min,溅射时间60min,获得厚度为1μm的Cu膜层。随后溅射CrCuFeMoNi靶材,溅射时间15min,获得厚度为50nm的CrCuFeMoNi膜层。重复以上步骤,获得第二层Cu膜层和CrCuFeMoNi膜层。
将上述工艺获得样件放入高温烧结炉,以体积百分比浓度为99.99%的惰性气体为保护气氛,在升温速度为20℃/min条件下升温至500℃,保温60分钟去除光敏树脂掩模,获得金属/高熵合金面心立方体八面体中空微点阵材料。
实施例4:
在CAD软件建立相对密度为5%,单元杆径为0.1mm的微点阵材料模型,将CAD文件转成STL格式文件,并将其导入3D的打印设备,利用数字光处理技术加工复合光敏树脂EX-200型材料面心立方体微点阵材料掩模。工艺参数为:紫外线激光355nm,扫描速度300mm/s:扫描间距0.3mm,光斑补偿直径0.3mm,层间等待时间3s,工作台提升速度5mm/s。
将聚合物模板放入丙酮中超声清洗15min,去离子水中超声清洗10min,乙醇中超声清洗10min,自然干燥。
将金属靶材为纯度为99.99%的Al单质金属靶材、CrCuFeMoNi靶材和清洗干净的聚合物模板放入磁控溅射室。对Al单质金属靶材启辉,模板转速为10r/min,衬底温度25℃,衬底与溅射靶距离为60mm,氩气气压0.5Pa,溅射功率200W,溅射电压为220V,溅射电流0.3A,预溅射时间20min,溅射时间60min,获得厚度为1μm的Al膜层。随后对CrCuFeMoNi靶材启辉,溅射时间20min,获得厚度为50nm的CrCuFeMoNi膜层。重复上述溅射过程2~5周期,可以得不同层数的金属/高熵合金多层膜。
将上述工艺获得样件放入高温烧结炉,以体积百分比浓度为99.99%的惰性气体为保护气氛,在升温速度为10℃/min条件下升温至500℃,保温60分钟去除光敏树脂掩模,获得金属/高熵合金多层膜面心立方体中空微点阵材料。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (8)

1.一种金属-高熵合金多层膜中空微点阵材料制备方法,其特征在于:具体操作步骤如下:
步骤1:在CAD软件建立微点阵材料模型,将CAD文件转成STL格式文件,并将其导入3D的打印设备,利用快速成型技术加工聚合物掩模;
步骤2:将聚合物模板放入丙酮中超声清洗10~25min,去离子水中超声清洗10~25min,乙醇中超声清洗10~25min,自然干燥;
步骤3:磁控溅射技术在聚合物掩模上依次沉积金属、高熵合金多层膜;
步骤4:利用化学侵蚀或高温烧蚀方法去除光敏树脂掩模,获得金属/高熵合金多层膜中空微点阵材料;
步骤5:金属/高熵合金多层膜中空微点阵材料热在100~600℃条件下热处理1~3h。
2.根据权利要求1所述的一种金属-高熵合金多层膜中空微点阵材料制备方法,其特征在于:所述步骤1中微点阵材料掩模构型下列任意一种:八面体、边心立方体、面心立方体、金刚石正方体、菱形十二面体、螺旋二十四面体结构。
3.根据权利要求1所述的一种金属-高熵合金多层膜中空微点阵材料制备方法,其特征在于:所述步骤1中所选用的材料为光敏树脂,快速成型技术为光固化立体成型技术、数字光处理技术,光固化立体成型技术工艺参数为:紫外线激光扫描速度:扫描间距0.1~0.6mm,光斑补偿直径0.1~0.3mm,层间等待时间1~5s,工作台提升速度1~10mm/s;数字光处理技术工艺参数为:投影分辨率768X480,投影光波段300~500nm,切片厚20~100μm,每层曝光时间1~10s,工作台提升时间1~5s。
4.根据权利要求1所述的一种金属-高熵合金多层膜中空微点阵材料制备方法,其特征在于:所述步骤1中微点阵掩模相对密度为1~15%,单元杆径为0.1~0.5mm。
5.根据权利要求1所述的一种金属-高熵合金多层膜中空微点阵材料制备方法,其特征在于:所述步骤3中金属/高熵合金多层膜为金属、高熵合金多层膜交替叠加,膜层厚50nm-20μm。
6.根据权利要求1所述的一种金属-高熵合金多层膜中空微点阵材料制备方法,其特征在于:所述步骤3中所涉及金属为纯度大于99.0%~99.99wt.%的Ti、Al、Ni、Cu、Cr、Zr等单质金属靶材,高熵合金为纯度大于99.95wt.%的Fe50Mn30Co10Cr10、Fe50Mn30Co10Ni10、CrCuFeMoNi或CoCrFeNiMn靶材;制备金属薄膜磁控溅射工艺参数为:金属与高熵合进行交替溅射,且最外层为高熵合金,真空度在0.0001Pa以下,模板转速为10~20r/min,衬底温度大于25℃,衬底与溅射靶距离为50~100mm,氩气气压0.01~1Pa,溅射功率50~300W,溅射电压为50~500V,溅射电流0.1~1A,预溅射时间0~30min,溅射时间20~120min。
7.根据权利要求1所述的一种金属-高熵合金多层膜中空微点阵材料制备方法,其特征在于:所述步骤4中化学侵蚀或高温烧蚀方法去除光敏树脂掩模,高温烧蚀工艺参数为:采用高温烧结炉,以体积百分比浓度为99.99%的惰性气体为保护气氛,在升温速度为10~20℃/min条件下升温至200~500℃,保温30~90分钟;化学侵蚀工艺参数为:将甲醇与水按体积比为1:1的比例混合,形成混合溶液,以此混合溶液作为溶剂制备出浓度为3mol/L的氢氧化钠溶液,然后氢氧化钠溶液为60℃的条件下去除光敏树脂掩模。
8.根据权利要求1所述的一种金属-高熵合金多层膜中空微点阵材料制备方法,其特征在于:所述步骤5中金属/高熵合金多层膜中空微点阵材料热在300~600℃条件下热处理1~3h。
CN202210180636.3A 2022-02-26 2022-02-26 一种金属-高熵合金多层膜中空微点阵材料制备方法 Pending CN114525487A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210180636.3A CN114525487A (zh) 2022-02-26 2022-02-26 一种金属-高熵合金多层膜中空微点阵材料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210180636.3A CN114525487A (zh) 2022-02-26 2022-02-26 一种金属-高熵合金多层膜中空微点阵材料制备方法

Publications (1)

Publication Number Publication Date
CN114525487A true CN114525487A (zh) 2022-05-24

Family

ID=81625630

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210180636.3A Pending CN114525487A (zh) 2022-02-26 2022-02-26 一种金属-高熵合金多层膜中空微点阵材料制备方法

Country Status (1)

Country Link
CN (1) CN114525487A (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104694904A (zh) * 2014-12-31 2015-06-10 北京航空航天大学 一种采用模板法构筑空心管微点阵陶瓷材料及其制备方法
US20150362473A1 (en) * 2014-06-12 2015-12-17 Intermolecular Inc. Low-E Panels Utilizing High-Entropy Alloys and Combinatorial Methods and Systems for Developing the Same
US20180128952A1 (en) * 2016-11-04 2018-05-10 National Tsing Hua University Multi-Film Structure
US20180223417A1 (en) * 2017-02-07 2018-08-09 City University Of Hong Kong High entropy alloy thin film coating and method for preparing the same
CN109737299A (zh) * 2018-12-03 2019-05-10 董亮 八面体点阵结构及其衍生拓扑构型点阵结构的加工方法
CN110344040A (zh) * 2019-08-16 2019-10-18 哈尔滨工业大学 一种超轻的具有微点阵结构的高熵合金的制备方法
US20200023584A1 (en) * 2017-10-03 2020-01-23 California Institute Of Technology Fabrication and design of composites with architected layers
CN112481589A (zh) * 2020-10-22 2021-03-12 西安交通大学 一种具有可控相变特性的纯金属/高熵合金纳米多层薄膜及其制备方法
KR20210061608A (ko) * 2019-11-20 2021-05-28 한국생산기술연구원 용사 코팅용 고엔트로피 세라믹 분말의 제조 방법 및 이를 이용한 용사 코팅막의 제조 방법
CN113862519A (zh) * 2021-10-14 2021-12-31 西安交通大学 一种形状记忆合金中空微点阵材料及其制备方法
CN113913751A (zh) * 2021-09-29 2022-01-11 西安交通大学 一种Cu-高熵合金薄膜及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150362473A1 (en) * 2014-06-12 2015-12-17 Intermolecular Inc. Low-E Panels Utilizing High-Entropy Alloys and Combinatorial Methods and Systems for Developing the Same
CN104694904A (zh) * 2014-12-31 2015-06-10 北京航空航天大学 一种采用模板法构筑空心管微点阵陶瓷材料及其制备方法
US20180128952A1 (en) * 2016-11-04 2018-05-10 National Tsing Hua University Multi-Film Structure
US20180223417A1 (en) * 2017-02-07 2018-08-09 City University Of Hong Kong High entropy alloy thin film coating and method for preparing the same
US20200023584A1 (en) * 2017-10-03 2020-01-23 California Institute Of Technology Fabrication and design of composites with architected layers
CN109737299A (zh) * 2018-12-03 2019-05-10 董亮 八面体点阵结构及其衍生拓扑构型点阵结构的加工方法
CN110344040A (zh) * 2019-08-16 2019-10-18 哈尔滨工业大学 一种超轻的具有微点阵结构的高熵合金的制备方法
KR20210061608A (ko) * 2019-11-20 2021-05-28 한국생산기술연구원 용사 코팅용 고엔트로피 세라믹 분말의 제조 방법 및 이를 이용한 용사 코팅막의 제조 방법
CN112481589A (zh) * 2020-10-22 2021-03-12 西安交通大学 一种具有可控相变特性的纯金属/高熵合金纳米多层薄膜及其制备方法
CN113913751A (zh) * 2021-09-29 2022-01-11 西安交通大学 一种Cu-高熵合金薄膜及其制备方法
CN113862519A (zh) * 2021-10-14 2021-12-31 西安交通大学 一种形状记忆合金中空微点阵材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
戴贵鑫等: "超轻质微点阵结构金属材料的研究进展", 《铸造》 *

Similar Documents

Publication Publication Date Title
JP4971187B2 (ja) 多層化構造体の焼結の際のシュリンケージとポロシティを制御する方法
CN104843691B (zh) 一种石墨烯及其制备方法
CN101555167B (zh) 一种加压微波烧结制备陶瓷涂层的方法
CN103469185B (zh) 锆合金基体表面碳化硅涂层材料的制备方法
KR20190055002A (ko) 고온 내산화성이 향상된 지르코늄 합금 피복관 및 이의 제조방법
JP2005264274A (ja) 金属間化合物系多孔質材料の製造方法
CN113862519A (zh) 一种形状记忆合金中空微点阵材料及其制备方法
CN111101019B (zh) 金属卤化物净化颗粒表面制备高性能钛及钛合金的方法
CN111349807A (zh) 一种镀铜石墨膜增强铜基层压块体复合材料及其制备方法
CN110004347B (zh) 一种仿生贝壳结构陶瓷与金属复合材料的制备方法
CN114164425A (zh) 一种激光熔覆用低密度难熔高熵合金熔覆层制备方法
TWI737968B (zh) 多孔銅複合材料及其製備方法
CN110239194B (zh) 一种高Nb-TiAl合金材料的制备方法
CN114525487A (zh) 一种金属-高熵合金多层膜中空微点阵材料制备方法
CN106567050A (zh) 一种基于Cr2O3模板低温制备Zr掺杂α‑Al2O3纳米多层阻氚涂层工艺
CN107974671A (zh) 一种光催化还原氧化石墨烯用复合膜的制备方法
CN113584422B (zh) 质子交换膜燃料电池金属钛双极板表面Ti4O7涂层的制备方法
CN103741104B (zh) 通过磁控溅射在锆表面镀锆铜镍三元非晶合金薄膜的方法
KR100567472B1 (ko) 무기공의 분말야금 합금 물품, 이의 제조 방법, 연속 플라즈마 스퍼터링 장치, 연속 플라즈마 스퍼터링 방법 및 ito 관상 타겟 제조 방법
CN115142018A (zh) 一种耐高温液态铅/铅铋合金腐蚀的高熵合金涂层及其制备方法
CN111690926B (zh) 热压烧结法制备不锈钢连接体致密Mn-Co尖晶石保护层的方法
CN109536904B (zh) 一种掺杂TiO2阻挡层薄膜及其制备方法
JP2023550677A (ja) 複数層の正孔輸送層を有するペロブスカイト電池及びその製造方法
CN114540782A (zh) 一种金属-陶瓷多层膜中空微点阵材料制备方法
KR20140067193A (ko) 다공성 복합체 박막의 제조방법 및 전극용 다공성 복합체 박막

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination