CN107321347A - 一种蜂窝状氧化锌纳米墙阵列的制备方法 - Google Patents
一种蜂窝状氧化锌纳米墙阵列的制备方法 Download PDFInfo
- Publication number
- CN107321347A CN107321347A CN201710414417.6A CN201710414417A CN107321347A CN 107321347 A CN107321347 A CN 107321347A CN 201710414417 A CN201710414417 A CN 201710414417A CN 107321347 A CN107321347 A CN 107321347A
- Authority
- CN
- China
- Prior art keywords
- zinc
- honeycomb
- wall array
- gains
- sputtering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 title claims abstract description 25
- 230000001590 oxidative effect Effects 0.000 title claims abstract description 25
- 229910052725 zinc Inorganic materials 0.000 title claims abstract description 25
- 239000011701 zinc Substances 0.000 title claims abstract description 25
- 238000002360 preparation method Methods 0.000 title claims abstract description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 57
- 239000000463 material Substances 0.000 claims abstract description 27
- 239000011787 zinc oxide Substances 0.000 claims abstract description 27
- 230000001699 photocatalysis Effects 0.000 claims abstract description 19
- 238000006555 catalytic reaction Methods 0.000 claims abstract description 18
- 238000007146 photocatalysis Methods 0.000 claims abstract description 18
- 239000000758 substrate Substances 0.000 claims abstract description 17
- 238000000137 annealing Methods 0.000 claims abstract description 15
- 230000015556 catabolic process Effects 0.000 claims abstract description 15
- 238000006731 degradation reaction Methods 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 15
- 238000004544 sputter deposition Methods 0.000 claims abstract description 13
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 10
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000006243 chemical reaction Methods 0.000 claims abstract description 8
- 239000011888 foil Substances 0.000 claims abstract description 8
- 229960001296 zinc oxide Drugs 0.000 claims description 26
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 24
- 239000007789 gas Substances 0.000 claims description 19
- 229910052786 argon Inorganic materials 0.000 claims description 12
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 claims description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 230000001413 cellular effect Effects 0.000 claims description 6
- 239000011259 mixed solution Substances 0.000 claims description 6
- 239000002105 nanoparticle Substances 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 238000002791 soaking Methods 0.000 claims description 6
- 238000001755 magnetron sputter deposition Methods 0.000 claims 1
- STZCRXQWRGQSJD-UHFFFAOYSA-M sodium;4-[[4-(dimethylamino)phenyl]diazenyl]benzenesulfonate Chemical compound [Na+].C1=CC(N(C)C)=CC=C1N=NC1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-UHFFFAOYSA-M 0.000 abstract description 6
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 238000013033 photocatalytic degradation reaction Methods 0.000 abstract description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 8
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000005030 aluminium foil Substances 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- STZCRXQWRGQSJD-GEEYTBSJSA-M methyl orange Chemical compound [Na+].C1=CC(N(C)C)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-GEEYTBSJSA-M 0.000 description 4
- 229940012189 methyl orange Drugs 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000002086 nanomaterial Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/48—Silver or gold
- B01J23/50—Silver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/56—Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/647—2-50 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/308—Dyes; Colorants; Fluorescent agents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/34—Organic compounds containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/38—Organic compounds containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/40—Organic compounds containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/10—Photocatalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Water Supply & Treatment (AREA)
- Environmental & Geological Engineering (AREA)
- Composite Materials (AREA)
- Hydrology & Water Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Catalysts (AREA)
Abstract
本发明公布了一种蜂窝状氧化锌纳米墙阵列的制备方法,包括以下步骤:(1)清洗铝箔基底;(2)通过射频磁控法溅射种子层;(3)将步骤(2)所得物进行水热法反应,得到蜂窝状氧化锌纳米墙阵列;(4)将步骤(3)所得物进行直流溅射镀银;(5)将步骤(4)所得物进行退火处理。室温下,本发明的光催化材料在90min后可将甲基橙溶液降解93%,降解速率符合一阶常数,达0.02952min‑1。本方法制备的氧化锌光催化材料无需模板、成本低、可回收性好、光催化性能优异、稳定性好,利于进行大规模的生产,因而可在光催化降解染料有机污染物中得到应用。
Description
技术领域
本发明属于光催化技术领域,具体涉及一种蜂窝状介孔纳米墙阵列结构的光催化材料的制备方法,尤其是蜂窝状氧化锌纳米墙阵列的制备方法。
背景技术
半导体材料被广泛应用在光催化领域、气敏传感器、太阳能电池和记忆器件中,其中应用最广泛的材料之一是氧化锌。氧化锌是典型的n型半导体材料,具有成本低、易制备、载流子移动率高和光敏感性好等特点,因此成为被广泛运用的光催化材料。但是氧化锌的直接带隙禁带宽度为3.37eV,以及有大的激子结合能(60meV),从而限制了其对可见光的利用效率。同时,氧化锌中光致电子空穴对的复合率大,并具有严重的光腐蚀现象,其作为光催化材料的循环利用率低。
纳米材料拥有小尺寸效应、表面效应、量子效应及隧道效应等特点,使其有别于块状材料的物理化学性能,因此纳米结构氧化锌光催化材料是近年来研究的热点。纳米结构的材料具有大的比表面积,为光催化反应提供了充足的反应活性位点,同时有利于光生电子空穴对移动到表面发生快速反应而产生有效分离。但是,目前的纳米结构光催化材料普遍为粉末结构,不利于光催化材料的回收循环利用,限制了其工业器件的大规模生产。因此,在基板上制备一种新型的、可大规模生产且易于循环利用的纳米结构至关重要。目前制纳米阵列结构的方法包括电化学沉积法、模板法、刻蚀法,成本昂贵、操作复杂、产量不高,限制了氧化锌纳米阵列结构的实际应用。因此开发一种低成本、高速高效、大量制备氧化锌纳米阵列的工艺尤为重要。
近年来,研究者们在纳米光催化材料表面修饰一些贵金属颗粒,以提高光催化性能。例如,在氧化锌纳米结构上修饰Ag、Au、Pt等,实现了不同程度的光催化性能的提高。不同含量的贵金属纳米颗粒在一定程度上增加了光催化材料的表面积,同时提供了电子槽有利于光生电子空穴对分离,因此表面修饰是目前有应用前景的光催化研究方向。Ag相对于Au、Pt价格便宜,修饰后提高性能明显,因此被广泛运用。
发明内容
本发明的目的是提供一种新型的蜂窝状氧化锌介孔纳米墙阵列的光催化降解有机污染物的材料的制备方法。
本发明的技术方案是:一种蜂窝状氧化锌纳米墙阵列的制备方法,包括以下步骤:
(1)清洗铝箔基底;
(2)以流量5—50SCCM的氧气、5—50SCCM的氩气作为反应气体,在压强5*10-1—1.2Pa,功率30~100W的条件下,在铝箔基底上通过射频磁控法溅射氧化锌种子层,镀膜时间是1—10min;
(3)将步骤(2)所得镀有种子层的基底置于硝酸锌和六亚甲基四胺的混合溶液(摩尔比1:1)中,进行水热法反应,温度是90—100℃,水热生长时间为1—6h,得到蜂窝状氧化锌纳米墙阵列;
(4)将步骤(3)所得物进行直流溅射镀银,条件是以流量5—60SCCM氩气,功率为10—50W,溅射10~60s,使所述所得物表面沉积一层Ag纳米颗粒;
(5)将步骤(4)所得物进行退火处理,退火温度为200—600℃,保温时间1—5h。
本发明的有益效果为:
(1)本发明的方法无需使用模板,使用简单的水热法即可在基板上大规模制备出蜂窝状氧化锌纳米墙阵列,孔隙率大,阵列规则,柔性基底易于多领域应用;
(2)本发明的方法通过Ag修饰蜂窝状氧化锌纳米墙阵列,得到最合适的镀银时间,通过退火制备出光催化材料,表现出良好的光催化性能;
(3)本发明成本低、产率高、稳定性好、易于循环利用、无污染,因此有望在光催化领域得到实际应用。90min可见光照射下,所制备的纳米墙阵列的甲基橙溶液降解光催化率达到93%,一阶常数达到0.02952min-1,是氧化锌纳米线光催化性能的9.08倍。
附图说明
图1(a)为本发明蜂窝状氧化锌介孔纳米墙阵列结构大范围扫描电镜图;图1(b)为蜂窝状氧化锌纳米墙阵列结构小范围局部扫描电镜图。
图2为本发明镀银后的蜂窝状氧化锌纳米墙阵列结构的扫描电镜图:其中镀银时间分别为(a)40s;(b)45s;(c)50s;(d)60s。
图3为本发明修饰最合适Ag颗粒表面的透射电镜照片。
图4为本发明蜂窝状氧化锌纳米墙阵列的光催化降解图;其中(a)不同Ag颗粒表面修饰的氧化锌纳米墙阵列的光催化图;(b)氧化锌纳米线、氧化锌纳米墙阵列、最佳Ag颗粒表面修饰的氧化锌纳米墙阵列的光催化图。
具体实施方式
下面将通过附图和具体实施例对本发明作进一步说明。
实施例1
(1)将铝箔切割成合适的形状,依次用丙酮、酒精、去离子水进行超声清洗;
(2)以流量5SCCM的氧气、40SCCM的氩气作为反应气体,在压强5*10-1Pa,功率40W条件下,在铝箔基底上制备氧化锌种子层,镀膜时间10min;
(3)将步骤(2)所得镀有种子层的基底置于硝酸锌和六亚甲基四胺的混合溶液(摩尔比1:1)中,进行水热法反应,温度是95℃,水热生长时间为3h,得到蜂窝状氧化锌纳米墙阵列;
(4)将步骤(3)所得物进行直流溅射镀银,条件是以流量40SCCM氩气,功率为40W,溅射45s,使所述所得物表面沉积一层Ag纳米颗粒;
(5)将步骤(4)所得物进行退火处理,退火温度为400℃,保温时间3h,得到蜂窝状氧化锌纳米墙阵列的光催化材料;
(6)将步骤(5)所得物用作光催化材料降解甲基橙,降解性能如附图4所示。
利用本方法制备出的蜂窝状氧化锌纳米墙阵列结构材料,蜂窝直径在1um~2um,介孔为2nm~6nm,纳米墙厚度100nm。该阵列具有优良的光催化性能:在可见光90min照射下,甲基橙溶液的降解率达到了93%,一阶降解常数为0.02952min-1,为氧化锌纳米线光催化性能的9.08倍。
实施例2
(1)将铝箔切割成合适的形状,依次用丙酮、酒精、去离子水进行超声清洗;
(2)以流量10SCCM的氧气、50SCCM的氩气作为反应气体,在压强1.0Pa,功率70W的条件下,在铝箔基底上制备氧化锌种子层,镀膜时间10min;
(3)将步骤(2)所得镀有种子层的基底置于硝酸锌和六亚甲基四胺的混合溶液(摩尔比1:1)中,进行水热法反应,温度是95℃,水热生长时间为4h,得到蜂窝状的氧化锌纳米墙阵列;
(4)将步骤(3)所得物进行直流溅射镀银,条件是以流量10SCCM氩气,功率为20W,溅射45s,使其表面沉积一层Ag纳米颗粒;
(5)将步骤(4)所得物进行退火处理,退火温度为200℃,保温时间4h,得到蜂窝状氧化锌纳米墙阵列的光催化材料;
(6)将步骤(5)所得物用作光催化材料降解甲基橙,降解性能如附图4所示。
利用本方法制备出的蜂窝状氧化锌纳米墙阵列结构材料,蜂窝直径在1um~2um,介孔为2nm~6nm,纳米墙厚度100nm。该阵列具有优良的光催化性能:在可见光90min照射下,甲基橙溶液的降解率达到了93%,一阶降解常数为0.02952min-1,为氧化锌纳米线光催化性能的9.08倍。
实施例3
(1)将铝箔切割成合适的形状,依次用丙酮、酒精、去离子水进行超声清洗;
(2)以流量10SCCM的氧气、50SCCM的氩气作为反应气体,在压强1.0Pa,功率70W的条件下,在铝箔基底上制备氧化锌种子层,镀膜时间10min;
(3)将(2)中镀有种子层的基底置于硝酸锌和六亚甲基四胺的混合溶液(摩尔比1:1)中,水热法温度是95℃,水热生长时间为4h,得到蜂窝状的氧化锌纳米墙阵列;
(4)将(3)中的样品在直流溅射镀银的条件是以流量10SCCM氩气,功率为20W,溅射30s,使其表面沉积一层Ag纳米颗粒;
(5)在退火温度为200℃退火处理,保温时间4h,得到蜂窝状氧化锌纳米墙阵列的光催化材料;
(6)将(5)中的样品用作光催化材料降解甲基橙,降解性能如附图4所示。
利用本方法制备出的蜂窝状氧化锌纳米墙阵列结构材料,蜂窝直径在1um~2um,介孔为2nm~6nm,纳米墙厚度100nm。该阵列具有优良的光催化性能:在可见光90min照射下,甲基橙溶液的降解率达到了93%,一阶降解常数为0.02952min-1,为氧化锌纳米线光催化性能的9.08倍。
实施例4
(1)将铝箔切割成合适的形状,依次用丙酮、酒精、去离子水进行超声清洗;
(2)以流量10SCCM的氧气、50SCCM的氩气作为反应气体,在压强1.0Pa,功率70W的条件下,在铝箔基底上制备氧化锌种子层,镀膜时间10min;
(3)将(2)中镀有种子层的基底置于硝酸锌和六亚甲基四胺的混合溶液(摩尔比1:1)中,水热法温度是95℃,水热生长时间为4h,得到蜂窝状的氧化锌纳米墙阵列;
(4)将(3)中的样品在直流溅射镀银的条件是以流量10SCCM氩气,功率为20W,溅射60s,使其表面沉积一层Ag纳米颗粒;
(5)在退火温度为200℃退火处理,保温时间4h,得到蜂窝状氧化锌纳米墙阵列的光催化材料;
(6)将(5)中的样品用作光催化材料降解甲基橙,降解性能如附图4所示。
利用本方法制备出的蜂窝状氧化锌纳米墙阵列结构材料,蜂窝直径在1μm~2μm,介孔为2nm~6nm,纳米墙厚度100nm。该阵列具有优良的光催化性能:在可见光90min照射下,甲基橙溶液的降解率达到了93%,一阶降解常数为0.02952min-1,为氧化锌纳米线光催化性能的9.08倍。
上述实施例对本发明的技术方案进行了详细说明。显然,本发明并不局限于所描述的实施例。基于本发明中的实施例,熟悉本技术领域的人员还可据此做出多种变化,但任何与本发明等同或相类似的变化都属于本发明保护的范围。
Claims (6)
1.一种蜂窝状氧化锌纳米墙阵列的制备方法,其特征在于,包括以下步骤:
(1)清洗铝箔基底;
(2)通过射频磁控法溅射种子层;
(3)将步骤(2)所得物进行水热法反应,得到蜂窝状氧化锌纳米墙阵列;
(4)将步骤(3)所得物进行直流溅射镀银;
(5)将步骤(4)所得物进行退火处理。
2.根据权利要求1所述方法,其特征在于:步骤(2)所述射频磁控溅射的条件是以流量5—50SCCM的氧气、5—50SCCM的氩气作为反应气体,在压强5*10-1—1.2Pa,功率30~100W的条件下,镀膜时间是1—10min。
3.根据权利要求1所述方法,其特征在于:步骤(3)所述水热法反应是将步骤(2)所得镀有种子层的基底置于摩尔比为1:1的硝酸锌和六亚甲基四胺混合溶液中,进行水热法反应,温度是90—100℃,水热生长时间为1—6h,得到蜂窝状的氧化锌纳米墙阵列。
4.根据权利要求1所述方法,其特征在于:步骤(4)所述直流溅射镀银的条件是以流量5—60SCCM氩气,功率为10—50W,溅射10~60s。使表面沉积一层Ag纳米颗粒。
5.根据权利要求1所述方法,其特征在于:步骤(5)所述退火处理,退火温度为200—600℃,保温时间1—5h,得到蜂窝状氧化锌纳米墙阵列的光催化材料。
6.根据权利要求1所述方法,其特征在于:所述蜂窝状氧化锌纳米墙阵列,其蜂窝直径为1um~2um,介孔为2nm~6nm,纳米墙厚度100nm,在可见光90min照射下,降解率达到93%,一阶降解常数为0.02952min-1,为氧化锌纳米线光催化性能的9.08倍。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710414417.6A CN107321347A (zh) | 2017-06-05 | 2017-06-05 | 一种蜂窝状氧化锌纳米墙阵列的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710414417.6A CN107321347A (zh) | 2017-06-05 | 2017-06-05 | 一种蜂窝状氧化锌纳米墙阵列的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107321347A true CN107321347A (zh) | 2017-11-07 |
Family
ID=60194893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710414417.6A Pending CN107321347A (zh) | 2017-06-05 | 2017-06-05 | 一种蜂窝状氧化锌纳米墙阵列的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107321347A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109030578A (zh) * | 2018-07-30 | 2018-12-18 | 清华大学 | 一种基于CdTe/ZnO纳米异质结结构的NO2气敏传感器的制备方法 |
CN110127914A (zh) * | 2019-05-21 | 2019-08-16 | 东南大学 | 一种基于三维氧化锌的废水处理装置及其使用方法 |
CN110552037A (zh) * | 2019-09-29 | 2019-12-10 | 西安邮电大学 | 一种基于电化学沉积制备氧化锌纳米墙的方法 |
CN111293304A (zh) * | 2020-02-19 | 2020-06-16 | 湖北大学 | 一种碳纤维-氧化锌纳米棒复合材料及其制备方法和应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101270468A (zh) * | 2008-05-05 | 2008-09-24 | 浙江大学 | 一种增强氧化锌薄膜发光的方法 |
CN101823759A (zh) * | 2010-04-01 | 2010-09-08 | 江苏工业学院 | 连续大面积氧化锌纳米薄片及其制备方法 |
CN102050481A (zh) * | 2009-11-04 | 2011-05-11 | 中国科学院半导体研究所 | 一种制备氧化锌纳米材料的方法 |
CN103526291A (zh) * | 2013-10-28 | 2014-01-22 | 中国工程物理研究院化工材料研究所 | 表面增强拉曼散射基底及其制备方法和应用 |
WO2014120722A1 (en) * | 2013-01-31 | 2014-08-07 | Sunpower Technologies Llc | Photocatalyst for the reduction of carbon dioxide |
-
2017
- 2017-06-05 CN CN201710414417.6A patent/CN107321347A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101270468A (zh) * | 2008-05-05 | 2008-09-24 | 浙江大学 | 一种增强氧化锌薄膜发光的方法 |
CN102050481A (zh) * | 2009-11-04 | 2011-05-11 | 中国科学院半导体研究所 | 一种制备氧化锌纳米材料的方法 |
CN101823759A (zh) * | 2010-04-01 | 2010-09-08 | 江苏工业学院 | 连续大面积氧化锌纳米薄片及其制备方法 |
WO2014120722A1 (en) * | 2013-01-31 | 2014-08-07 | Sunpower Technologies Llc | Photocatalyst for the reduction of carbon dioxide |
CN103526291A (zh) * | 2013-10-28 | 2014-01-22 | 中国工程物理研究院化工材料研究所 | 表面增强拉曼散射基底及其制备方法和应用 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109030578A (zh) * | 2018-07-30 | 2018-12-18 | 清华大学 | 一种基于CdTe/ZnO纳米异质结结构的NO2气敏传感器的制备方法 |
CN110127914A (zh) * | 2019-05-21 | 2019-08-16 | 东南大学 | 一种基于三维氧化锌的废水处理装置及其使用方法 |
CN110127914B (zh) * | 2019-05-21 | 2022-03-25 | 东南大学 | 一种基于三维氧化锌的废水处理装置及其使用方法 |
CN110552037A (zh) * | 2019-09-29 | 2019-12-10 | 西安邮电大学 | 一种基于电化学沉积制备氧化锌纳米墙的方法 |
CN111293304A (zh) * | 2020-02-19 | 2020-06-16 | 湖北大学 | 一种碳纤维-氧化锌纳米棒复合材料及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Han et al. | High-efficiency photoelectrochemical electrodes based on ZnIn2S4 sensitized ZnO nanotube arrays | |
Chen et al. | Direct growth of BiVO4/Bi2S3 nanorod array on conductive glass as photocatalyst for enhancing the photoelectrochemical performance | |
CN102569508B (zh) | 一种纳米线阵列结构薄膜太阳能光伏电池及其制备方法 | |
CN107321347A (zh) | 一种蜂窝状氧化锌纳米墙阵列的制备方法 | |
Lee et al. | Scalable binder-free supersonic cold spraying of nanotextured cupric oxide (CuO) films as efficient photocathodes | |
CN108796532B (zh) | 氧化镍—氧化亚铜同质结光电阴极及其制备方法和在光催化中的应用 | |
CN101708471B (zh) | 氧化锌/氧化亚铜纳米异质结光催化材料及其制备方法 | |
Bielinski et al. | Atomic layer deposition of bismuth vanadate core–shell nanowire photoanodes | |
Li et al. | CdS/CdSe co-sensitized 3D SnO 2/TiO 2 sea urchin-like nanotube arrays as an efficient photoanode for photoelectrochemical hydrogen generation | |
CN103117173B (zh) | 可双面进光的量子点敏化太阳能电池及其制备方法 | |
Chen et al. | Effective silicon nanowire arrays/WO3 core/shell photoelectrode for neutral pH water splitting | |
Regmi et al. | Radio frequency (RF) sputtered ZrO2-ZnO-TiO2 coating: An example of multifunctional benefits for thin film solar cells on the flexible substrate | |
CN103515536B (zh) | 一种反型有机太阳能电池的简易制备方法 | |
Hou et al. | Efficient photoelectrochemical hydrogen production over p-Si nanowire arrays coupled with molybdenum–sulfur clusters | |
CN102709399A (zh) | 一种高效纳米天线太阳能电池的制作方法 | |
CN104465807B (zh) | 一种czts纳米阵列薄膜太阳能光伏电池及其制备方法 | |
Bian et al. | Wafer-scale fabrication of silicon nanocones via controlling catalyst evolution in all-wet metal-assisted chemical etching | |
CN107579257B (zh) | 一种过渡金属核壳结构薄膜电催化剂及其制备方法 | |
CN103715280B (zh) | 一种微米/纳米二级阵列结构薄膜太阳能电池及其制备方法 | |
Shen et al. | In Situ Growth Facilitating the Piezo-Photocatalytic Effect of Zn1–x Cd x S/ZnO Nanorods for Highly Efficient H2 Production | |
WO2024113850A1 (zh) | 一种基于空心砖硒化亚锗薄膜的光解水产氧光阳极及其电极系统 | |
CN102992389B (zh) | 一种生长氧化锌纳米线阵列的制备方法 | |
Irwan et al. | Effect of hexamethylenetetramine surfactant in morphology and optical properties of TiO2 nanoparticle for dye-sensitized solar cells | |
CN107604333A (zh) | 一种半导体薄膜材料 | |
CN111020501A (zh) | 一种铋酸铜薄膜的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20171107 |