CN114436281A - 一种sba-15/y核壳型复合分子筛及其制备方法和应用 - Google Patents

一种sba-15/y核壳型复合分子筛及其制备方法和应用 Download PDF

Info

Publication number
CN114436281A
CN114436281A CN202011115309.7A CN202011115309A CN114436281A CN 114436281 A CN114436281 A CN 114436281A CN 202011115309 A CN202011115309 A CN 202011115309A CN 114436281 A CN114436281 A CN 114436281A
Authority
CN
China
Prior art keywords
molecular sieve
silicon source
sba
type molecular
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011115309.7A
Other languages
English (en)
Other versions
CN114436281B (zh
Inventor
孙晓艳
于正敏
樊宏飞
王继锋
陈玉晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Dalian Petrochemical Research Institute Co ltd
China Petroleum and Chemical Corp
Original Assignee
China Petroleum and Chemical Corp
Sinopec Dalian Research Institute of Petroleum and Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Dalian Research Institute of Petroleum and Petrochemicals filed Critical China Petroleum and Chemical Corp
Priority to CN202011115309.7A priority Critical patent/CN114436281B/zh
Publication of CN114436281A publication Critical patent/CN114436281A/zh
Application granted granted Critical
Publication of CN114436281B publication Critical patent/CN114436281B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/24Type Y
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/005Silicates, i.e. so-called metallosilicalites or metallozeosilites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/04Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof using at least one organic template directing agent, e.g. an ionic quaternary ammonium compound or an aminated compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/12Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/307Cetane number, cetane index
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种SBA‑15/Y核壳型复合分子筛及其制备方法和应用,所述方法包括如下步骤:(1)将模板剂、硅源、Y型分子筛混合进行反应;反应后的物料进行固液分离获得固相和液相,控制液相的固含量为0.1wt%~3wt%;(2)将步骤(1)获得的液相同模板剂、硅源、Y型分子筛混合进行反应;反应后的物料进行固液分离获得固相和液相,控制液相的固含量为0.1wt%~3wt%;(3)步骤(2)获得固相进行晶化,经干燥、焙烧后制得SBA‑15/Y核壳型复合分子筛。所述方法减少了分相SBA分子筛的形成,复分子筛形貌更均匀,“核壳”结构更完整。

Description

一种SBA-15/Y核壳型复合分子筛及其制备方法和应用
技术领域
本发明涉及一种SBA-15/Y核壳型复合分子筛及其制备方法和应用,具体地说涉及一种适用于用于加氢裂化和加氢改质催化剂的SBA-15/Y核壳型复合分子筛及其制备方法。
背景技术
随着石油资源不断开采,原油质量日趋重质化。加氢裂化,加氢改质等是重油深加工制备轻质汽柴油的重要加工过程,然而目前以传统Y等微孔分子筛为酸性组元的加氢催化剂,在处理这种高硫、氮含量、分子结构复杂、高碳数的重质化油品时,受分子筛微孔限制,大分子重油无法有效进入分子筛内孔道,严重制约了催化剂对重油的处理能力。近年来,将微孔分子筛的高催化活性和高水热稳定性与介孔分子筛的孔道特性相结合的微孔-介孔复合材料,使微孔分子筛和介孔分子筛在酸性和孔结构上达到互补,其良好的水热稳定性和催化性能在烃类的催化转化方面应用前景广阔。SBA-15/Y介-微核壳型复合分子筛结合介孔材料和微孔沸石分子筛的优点,可以解决因石油资源不足,石化产品升级换代以及环保法规越来越严格而导致的石化产业发展的问题。
Bouizi等将全硅纳米沸石Silicalite-1包裹在β-zeolite上得到了Silicalite-1/β-zeolite壳–核复合分子筛,该复合材料在特殊客体分子的分离、储存和可控释放等方面有着潜在应用前景。此外,韩国科学家利用带有烷基链的硅烷作为表面活性剂和部分硅源,在沸石分子筛Silicalite-1表面包裹蠕虫状的介孔氧化硅,得到了具有无序介孔氧化硅包裹的复合沸石分子筛。
CN201611031037.6介绍了一种介孔-微孔复合加氢异构脱蜡催化剂的制备方法,所述的介孔-微孔复合分子筛以微孔ZSM-23为核,以介孔分子筛MCM-41或SBA-15为壳,采用共晶化的方式复合形成具有核壳结构的复合分子筛,特别适用于长链正构烷烃和蜡含量较高原料的加氢异构化反应。所得润滑油基础油倾点低、收率高,表现出较高的异构化反应活性和选择性,
CN201010228038.6介绍了一种介孔–微孔核–壳复合分子筛催化剂的制备方法,其中微孔沸石作为核,介孔氧化硅或含铝介孔氧化硅为壳层。所得到的复合分子筛具有保留的沸石微孔骨架、有序的二维六方介孔结构,且介孔孔道与沸石颗粒表面垂直,孔道开放性高,介孔壳层厚度可调,并且包裹介孔壳层后,介孔–微孔之间能保持高度的通畅性。
CN201310112647.9介绍了核壳型USY@SBA-15复合材料及其制备方法和应用,通过调变硅源/模板剂/USY/H2O的比例,促使介孔SBA-15材料在USY分子筛表面进行定向组装,形成有序、均匀、厚度可控的介孔层,具有酸性和孔径双梯度复配特性的新颖核壳材料。相比于USY分子筛,该材料在壳层补铝后作为加氢处理催化剂的载体组成部分,能显著提升催化剂的活性和选择性。
上述具有壳核结构的复合分子筛中,不可避免的出现壳核分离的情况,形成分相SBA-15,影响壳核结构复合分子筛的催化性能。
发明内容
为了克服现有技术中的不足之处,本发明提供了一种SBA-15/Y核壳型复合分子筛及其制备方法和应用,所述方法减少了分相SBA分子筛的形成,复分子筛形貌更均匀,“核壳”结构更完整。
一种SBA-15/Y核壳型复合分子筛的制备方法,所述方法包括如下步骤:
(1)将模板剂、硅源、Y型分子筛混合进行反应;反应后的物料进行固液分离获得固相和液相,控制液相的固含量为 0.1wt%~3wt%,优选0.2wt%-2wt%,进一步优选为 0.3wt%-1.5wt%;
(2)将步骤(1)获得的液相同模板剂、硅源、Y型分子筛混合进行反应;反应后的物料进行固液分离获得固相和液相,控制液相的固含量为0.1wt%~3wt%,优选为0.2wt%-2wt%,进一步优选为 0.3%-1.5%;
(3)步骤(2)获得固相进行晶化,经干燥、焙烧后制得SBA-15/Y核壳型复合分子筛。
上述方法步骤(1)中,所述硅源为正硅酸甲酯、正硅酸乙酯、正硅酸丙酯、正硅酸异丙酯、正硅酸丁酯中的一种或几种。
上述方法步骤(1)中,所述硅源通过预水解制得,所述硅源预水解过程如下:将硅源加入到酸性溶液中,经老化后制得,所述酸为盐酸、硫酸、磷酸中的一种或几种。
本发明实施例中采用的一种具体的硅源预水解过程如下:将硅源加入到pH=1~4,优选的稀酸溶液中,在室温下搅拌1~12h后,静置老化4~120h后制得,优选将硅源加入到pH=2.5~3.5的稀酸溶液中,在室温下搅拌6~8h后,静置老化24~96h后制得。
上述方法步骤(1)中,所述模板剂为P123,可以将模板剂P123先溶解在酸性水溶液中,然后同硅源、Y型分子筛等物料混合进行反应。
上述方法步骤(1)中,所述Y型分子筛为改性Y型分子筛,改性Y型分子筛为超稳Y分子型(USY)、低钠高硅Y分子筛(SSY)、高耐氮Y分子筛(NTY)、深度脱铝Y(UDY)、改性超稳Y(MUY)中的一种或几种。
上述方法步骤(1)中,所述Y型分子筛的粒径为200nm~2000nm,硅铝摩尔比为SiO2/Al2O3=10~50;优选 15~45,进一步优选25~40。
上述方法步骤(1)中,模板剂、硅源、Y型分子筛混合物料中酸性溶液的摩尔浓度为0.1~1.0mol/L,优选0.2~0.4mol/L,模板剂的质量含量为0.2%~2%,优选 0.2%~2%;硅源质量含量为1%~10%,优选2%~8%;Y型分子筛质量含量为1%~15%,优选2%~10%。
上述方法步骤(1)中,所述反应温度为20~40℃,优选为25~30℃;反应时间为时间为2~12h,优选4~8h。
本发明实施例一种具体的模板剂、硅源、Y型分子筛混合反应过程如下:将一定量模板剂(如P123)溶解在酸性水溶液中, Y加水后加入上述溶液中,搅拌10~15min后,加入预水解的硅源,在一定温度下恒温搅拌2~12h。
上述方法步骤(1)中,所述的分离采用离心分离、过滤分离中的一种或几种,同常规方法分离目的并不相同,此分离过程需要保留液相中含有适宜的固含量。
上述方法步骤(2)中,将步骤(1)获得的液相同模板剂、硅源、Y型分子筛混合进行反应,加入的模板剂在体系中的质量含量为0.2%~2%,优选 0.2%~ 2%;加入的硅源在体系中的质量含量为1%~10%,优选2%~8%;加入的Y型分子筛在体系中的质量含量为1%~15%,优选2%~10%,步骤(1)获得的液相加入量占体系的质量分数为50%~80%。
上述方法步骤(2)中,所述的分离采用离心分离、过滤分离中的一种或几种,同常规方法分离目的并不相同,此分离过程需要保留液相中含有适宜的固含量。
上述方法步骤(2)的过程可以重复进行,重复的次数不限,可以根据实际而定。
上述方法步骤(3)中晶化过程为将步骤(2)获得固相同步骤(1)和/或步骤(2)分离的液相混合,控制液固比为10:1~1:1,优选8:1~1:1,进一步优选5:1~1:1。向上述体系中加入碱性物质或者碱性溶剂调整体系pH=3~6,优选pH为4~5;晶化温度为80~140℃,优选100~120℃;晶化时间为4~48h,优选24~30h。
上述方法步骤(3)中,所述干燥温度为 100~120℃ ,干燥时间为6~10h,焙烧温度为500~550℃,焙烧时间为 4~6h。
一种Al-SBA-15/Y分子筛的制备方法,将一定量铝源溶解在酸性溶液中,所述酸性溶液pH值为1~3,优选为 1.5~2.5;加入适量上述制备的SBA-15/Y核壳型复合分子筛,在28-32℃搅拌10-20h,洗涤后在500-560℃焙烧4-6h,制得Al-SBA-15/Y分子筛,所述Al-SBA-15/Y分子筛中引入的Al以氧化物计的重量含量为 5%~30%,优选为 10%~20%。
一种加氢裂化催化剂,以上述方法制备的Al-SBA-15/Y分子筛为载体,以VIIB族金属和/或VIIIB族金属氧化物为活性金属,所述VIIB族金属为W和/或Mo,所述VIIIB族金属为Co和/或Ni,以最终催化剂的重量为基准,VIIB族金属氧化物含量为 10wt%~30wt%,VIIIB族金属氧化物含量为 2wt%~10w t%。
一种加氢裂化方法,采用上述方法制备的加氢裂化催化剂,操作条件如下:以绝压计的反应压力 12.0~18.0MPa,体积空速为0.8~2.0,反应温度为360~ 380℃。
本发明方法制备的SBA-15/Y分子筛具有较大的孔容、比表面积和介孔和微孔组成的梯级酸分布和孔分布孔道,适用于大分子催化领域,并有利于提高反应转化率和选择性。
本发明方法中采用适当固含量的液相料,抑制分相SBA-15材料与Y分子筛相分离和Y分子筛在强酸介质中不稳定,合成形貌更均匀,“核壳”结构更完整SBA-15/Y的复合材料。
附图说明
图1为实施例4制备的复合分子筛SBA-15/Y-4 TEM图;
图2为比较例1制备的复合分子筛SBA-15/Y-4-1 TEM图;
图3为实施例4制备的复合分子筛SBA-15/Y-4 SEM图;
图4为比较例1制备的复合分子筛SBA-15/Y-4-1SEM图。
具体实施方式
本发明产品的比表面积和孔容是采用ASAP2405,低温液氮吸附法测定的。酸量采用红外光谱仪测得,所使用吸附剂为吡啶。TEM的分析是在JEM-2100型高分辨率透射电镜装置上进行的。SEM的分析所使用的仪器是日本JEOL公司SEM 7500F型冷场发射扫描电子显微镜。相对结晶度采用XRD测得,标准样品NaY为100。本发明中%如无特殊说明均为质量分数。本发明方法所述液相固含量的含义为蒸发除去水后的固体重量同液相的总质量之比。
实施例1:
1、(a) 搅拌下,将5.0gTEOS加入至12.0gpH=2.5的HCl溶液中,室温搅拌4h后,溶液由浑浊液变为澄清溶液,静置24h,备用。(b)1.0gP123表面活性剂溶于80g0.3mol/L的盐酸溶液中,取1.9g改性Y-1分子筛(比表面积782 m2/g,孔容0.51 mL/g,平均孔直径1.72nm,相对结晶度101%,酸量0.451 mmol/g)加水溶解后,搅拌5min,再加入由(1)预先配制的TEOS预水解溶液,30℃条件下恒温搅拌4h,进行分离,分离出得到固相和液相,控制液相的固含量为0.5%。
2、将步骤(1)获得的液相加入0.72gP123、12.3g浓HCL和24g水。重复步骤1;反应后的物料进行固液分离获得固相和液相,控制液相的固含量为 0.5%。
3、水热晶化:将步骤2中得到的固体加入步骤(1)获得的液相20g,搅拌均匀,用氨水调整(2)反应液的pH为4.0,在100℃下晶化24h,过滤、洗涤、干燥,550℃焙烧6h后得到核壳结构SBA-15/Y-1材料。复合分子筛的物性参数见表1
实施例2:
1、(a) 搅拌下,将5.0gTEOS加入至12.0gpH=2.5的HCl溶液中,室温搅拌4h后,溶液由浑浊液变为澄清溶液,静置24h,备用。(b)1.0gP123表面活性剂溶于80g0.3mol/L的盐酸溶液中,取2.8g改性Y-1分子筛(比表面积782 m2/g,孔容0.51 mL/g,平均孔直径1.72nm,相对结晶度101%,酸量0.451 mmol/g)加水溶解后,搅拌5min,再加入由(1)预先配制的TEOS预水解溶液,30℃条件下恒温搅拌4h,进行分离,分离出得到固相和液相。控制液相的固含量为0.5%。
2、将步骤(1)获得的液相加入0.72gP123、12.3g浓HCL和24g水。重复步骤1;反应后的物料进行固液分离获得固相和液相,控制液相的固含量为 0.5%。
3、水热晶化:将步骤2中得到的固体加入步骤(1)获得的液相20g,搅拌均匀,用氨水调整(2)反应液的pH为4.5,在100℃下晶化24h,过滤、洗涤、干燥,550℃焙烧6h后得到核壳结构SBA-15/Y-2材料。复合分子筛的物性参数见表1。
实施例3:
1、(a) 搅拌下,将5.0gTEOS加入至12.0gpH=2.5的HCl溶液中,室温搅拌4h后,溶液由浑浊液变为澄清溶液,静置24h,备用。(b)1.1gP123表面活性剂溶于85g0.3mol/L的盐酸溶液中,取4.4g改性Y-1分子筛(比表面积782 m2/g,孔容0.51 mL/g,平均孔直径1.72nm,相对结晶度101%,酸量0.451 mmol/g)加水溶解后,搅拌5min,再加入由(1)预先配制的TEOS预水解溶液,30℃条件下恒温搅拌4h,进行分离,分离出得到固相和液相。控制液相的固含量为0.8%。
2、将步骤(1)获得的液相加入0.78gP123、14.1g浓HCL和28g水。重复步骤1;反应后的物料进行固液分离获得固相和液相,控制液相的固含量为 0.8%。
3、水热晶化:将步骤2中得到的固体加入步骤(1)获得的液相22g,搅拌均匀,用氨水调整(2)反应液的pH为4.0,在100℃下晶化24h,过滤、洗涤、干燥,550℃焙烧6h后得到核壳结构SBA-15/Y-3材料。复合分子筛的物性参数见表1。
实施例4:
1、(a) 搅拌下,将5.0gTEOS加入至12.0gpH=2.5的HCl溶液中,室温搅拌4h后,溶液由浑浊液变为澄清溶液,静置24h,备用。(b)0.9gP123表面活性剂溶于70g0.3mol/L的盐酸溶液中,取7.5g改性Y-1分子筛(比表面积782 m2/g,孔容0.51 mL/g,平均孔直径1.72nm,相对结晶度101%,酸量0.451 mmol/g)加水溶解后,搅拌5min,再加入由(1)预先配制的TEOS预水解溶液,30℃条件下恒温搅拌4h,进行分离,分离出得到固相和液相。控制液相的固含量为1.0%。
2、将步骤(1)获得的液相加入0.58P123、11.3g浓HCL和25g水。重复步骤1;反应后的物料进行固液分离获得固相和液相,控制液相的固含量为 1.0%。
3、水热晶化:将步骤2中得到的固体加入步骤(1)获得的液相18g,搅拌均匀,用氨水调整(2)反应液的pH为5.0,在100℃下晶化24h,过滤、洗涤、干燥,550℃焙烧6h后得到核壳结构SBA-15/Y-4材料。复合分子筛的物性参数见表1。TEM图和SEM图见图1、图3。
比较例1:
1、(a) 搅拌下,将5.0gTEOS加入至12.0gpH=2.5的HCl溶液中,室温搅拌4h后,溶液由浑浊液变为澄清溶液,静置24h,备用。(b)0.9gP123表面活性剂溶于70g0.3mol/L的盐酸溶液中,取7.5g改性Y-1分子筛(比表面积782 m2/g,孔容0.51 mL/g,平均孔直径1.72nm,相对结晶度101%,酸量0.451 mmol/g)加水溶解后,搅拌5min,再加入由(1)预先配制的TEOS预水解溶液,30℃条件下恒温搅拌4h。
2、水热晶化:2用氨水调整步骤1反应液的pH为4.0,在100℃下晶化24h,过滤、洗涤、干燥,550℃焙烧6h后得到核壳结构SBA-15/Y-4-1材料。复合分子筛的物性参数见表1。TEM图和SEM图见图2、图4。
实施例5
1.5g异丙醇铝溶解于200ml0.2mol/LHCl溶液中,加入25g核壳结构SBA-15/Y-1材料,在30℃搅拌20h,经洗涤、干燥、550℃焙烧5h,得AlSBA-15/Y-1介孔壳层补铝的材料。将33克AlSBA-15/Y-1分子筛、112克无定形硅铝(孔容0.7mL/g,比表面积330m2/g,氧化硅重量含量为30%)、40克小孔氧化铝与稀硝酸做成的粘合剂(硝酸与小孔氧化铝的摩尔比为0.25)放入碾压机中混碾,加水,碾压成糊膏,挤条,挤出条在110℃干燥4小时,然后在550℃焙烧4小时,得载体TCAT-1。
载体用含钨和镍的浸渍液室温浸渍2小时,120℃干燥4小时,程序升温500℃焙烧4小时,得催化剂CAT-1,相应催化剂性质见表2。
实施例6~8
AlSBA-15/Y分子筛和催化剂的制备方法同实施例5,SBA-15/Y-2、SBA-15/Y-3、SBA-15/Y-4替换SBA-15/Y-1,得催化剂CAT-2、CAT-3和CAT-4
比较例2
AlSBA-15/Y分子筛和催化剂的制备方法同实施例5,SBA-15/Y-4-1替换SBA-15/Y-1,得催化剂CCAT-4,相应催化剂性质见表2。
表1 复合分子筛的物化性质
Figure 515408DEST_PATH_IMAGE001
由图1可见复合分子筛为核壳SBA-15/Y复合分子筛。SBA-15/Y-1-1与SBA-15/Y-1相比,分相SBA-15更少,形貌更均匀,“核壳”结构更完整。从表1可见,从表1可见,采用本发明制备的分子筛孔容和比表面积更大,酸量更多,结晶度更高。
表2催化剂的物化性质
Figure 432548DEST_PATH_IMAGE003
由表2可见,含有本发明分子筛的催化剂与比较例相比,由于本发明专利制备的分子筛具有形貌更均匀,“核壳”结构更完整,所以催化剂的的金属分散更均匀,具有更大的孔容和比表面积。红外总酸度也有所增加。
将上述本发明催化剂CAT-1、CAT-2、CAT-3、CAT-4及比较例催化剂CCAT-4进行活性评价试验。试验是在200mL小型加氢装置上进行的,采用一段串联工艺所用原料油性质见表3。操作条件如下:反应压15.7MPa,氢油体积比1500:1,液时体积空速1.5h-1,控制裂化段氮含量5~10µg/g。催化剂活性试验结果见表4。
表3原料油性质
Figure 274602DEST_PATH_IMAGE005
表4 催化剂活性评价结果
Figure 669811DEST_PATH_IMAGE007
由表4催化剂的评价结果可看出,在工艺条件相同的条件下,保持基本相同的转化率,本发明所制备的催化剂具有更高的的中油选择性,产品性质好。

Claims (19)

1.一种SBA-15/Y核壳型复合分子筛的制备方法,其特征在于:所述方法包括如下步骤:
(1)将模板剂、硅源、Y型分子筛混合进行反应;反应后的物料进行固液分离获得固相和液相,控制液相的固含量为 0.1wt%~3wt%,优选0.2wt%-2wt%,进一步优选为 0.3wt%-1.5wt%;
(2)将步骤(1)获得的液相同模板剂、硅源、Y型分子筛混合进行反应;反应后的物料进行固液分离获得固相和液相,控制液相的固含量为0.1wt%~ 3wt%,优选为0.2wt%-2wt%,进一步优选为 0.3%-1.5%;
(3)步骤(2)获得固相进行晶化,经干燥、焙烧后制得SBA-15/Y核壳型复合分子筛。
2.根据权利要求1所述的方法,其特征在于:步骤(1)中控制液相的固含量为 0.2wt%-2wt%,优选为 0.3wt%-1.5wt%。
3.根据权利要求1所述的方法,其特征在于:骤(1)中所述硅源为正硅酸甲酯、正硅酸乙酯、正硅酸丙酯、正硅酸异丙酯、正硅酸丁酯中的一种或几种。
4.根据权利要求1所述的方法,其特征在于:骤(1)中所述硅源通过预水解制得,所述硅源预水解过程如下:将硅源加入到酸性溶液中,经老化后制得,所述酸为盐酸、硫酸、磷酸中的一种或几种。
5.根据权利要求4所述的方法,其特征在于:硅源预水解过程如下:将硅源加入到pH=1~4的稀酸溶液中,在室温下搅拌1~12h后,静置老化4~120h后制得。
6.根据权利要求1所述的方法,其特征在于:骤(1)中所述模板剂为P123,将模板剂P123先溶解在酸性水溶液中,然后同硅源、Y型分子筛混合进行反应。
7.根据权利要求1所述的方法,其特征在于:骤(1)中所述Y型分子筛为改性Y型分子筛,改性Y型分子筛为超稳Y分子型、低钠高硅Y分子筛(SSY)、高耐氮Y分子筛、深度脱铝Y、改性超稳Y中的一种或几种。
8.根据权利要求1所述的方法,其特征在于:骤(1)中所述Y型分子筛的粒径为200nm~2000nm,硅铝摩尔比为SiO2/Al2O3=10~50。
9.根据权利要求1所述的方法,其特征在于:骤(1)中模板剂、硅源、Y型分子筛混合物料中酸性溶液的摩尔浓度为0.1~1.0mol/L,模板剂的质量含量为0.2%~2%;硅源质量含量为1%~10%;Y型分子筛质量含量为1%~15%。
10.根据权利要求1所述的方法,其特征在于:骤(1)中所述反应温度为20~40℃;反应时间为时间为2~12h。
11.根据权利要求1所述的方法,其特征在于:骤(1)中将一定量模板剂P123溶解在酸性水溶液中, Y型分子筛加水后加入上述溶液中,搅拌10~15min后,加入预水解的硅源,在一定温度下恒温搅拌2~12h。
12.根据权利要求1所述的方法,其特征在于:骤(1)中所述的分离采用离心分离、过滤分离中的一种或几种。
13.根据权利要求1所述的方法,其特征在于:骤(2)中将步骤(1)获得的液相同模板剂、硅源、Y型分子筛混合进行反应,加入的模板剂在体系中的质量含量为0.2%~2%;加入的硅源在体系中的质量含量为1%~10%;加入的Y型分子筛在体系中的质量含量为1%~15%,步骤(1)获得的液相加入量占体系的质量分数为50%~80%。
14.根据权利要求1所述的方法,其特征在于:骤(2)中重复进行。
15.根据权利要求1所述的方法,其特征在于:步骤(3)中晶化过程为将步骤(2)获得固相同步骤(1)和/或步骤(2)分离的液相混合,控制液固比为 10:1~1:1,加入碱性物质或者碱性溶剂调整体系pH=3~6,优选pH为4~5;晶化温度为80~140℃,优选100~120℃;晶化时间为4~48h,优选24~30h。
16.根据权利要求1所述的方法,其特征在于:步骤(3)中所述干燥温度为 100~120℃ ,干燥时间为6~10h,焙烧温度为500~550℃,焙烧时间为 4~6h。
17.一种Al-SBA-15/Y分子筛的制备方法,其特征在于:将一定量铝源溶解在酸性溶液中,所述酸性溶液pH值为1~3,优选为 1.5~2.5;加入适量权利要求1-16任一方法制备的SBA-15/Y核壳型复合分子筛,在28-32℃搅拌10-20h,洗涤后在500-560℃焙烧4-6h,制得Al-SBA-15/Y分子筛,所述Al-SBA-15/Y分子筛中引入的Al以氧化物计的重量含量为 5%~30%,优选为 10%~20%。
18.一种加氢裂化催化剂,其特征在于:以权利要求17制备的Al-SBA-15/Y分子筛为载体,以VIIB族金属和/或VIIIB族金属氧化物为活性金属,所述VIIB族金属为W和/或Mo,所述VIIIB族金属为Co和/或Ni,以最终催化剂的重量为基准,VIIB族金属氧化物含量为 10wt%~30wt%,VIIIB族金属氧化物含量为 2wt%~10w t%。
19.一种加氢裂化方法,其特征在于:采用权利要求18所述的加氢裂化催化剂,操作条件如下:以绝压计的反应压力 12.0~18.0MPa,体积空速为 0.8~2.0 h-1,反应温度为360~380℃。
CN202011115309.7A 2020-10-19 2020-10-19 一种sba-15/y核壳型复合分子筛及其制备方法和应用 Active CN114436281B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011115309.7A CN114436281B (zh) 2020-10-19 2020-10-19 一种sba-15/y核壳型复合分子筛及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011115309.7A CN114436281B (zh) 2020-10-19 2020-10-19 一种sba-15/y核壳型复合分子筛及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114436281A true CN114436281A (zh) 2022-05-06
CN114436281B CN114436281B (zh) 2023-07-28

Family

ID=81356671

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011115309.7A Active CN114436281B (zh) 2020-10-19 2020-10-19 一种sba-15/y核壳型复合分子筛及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114436281B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103191771A (zh) * 2013-04-02 2013-07-10 复旦大学 核壳型usy@sba-15复合材料及其制备方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103191771A (zh) * 2013-04-02 2013-07-10 复旦大学 核壳型usy@sba-15复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN114436281B (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
WO2020192724A1 (zh) 一种催化裂化催化剂及其制备方法
CN103466654A (zh) 一种zsm-5型中微双孔复合分子筛的制备方法
CN116060106B (zh) 一种Al-SBA-15/β核壳型复合分子筛及其制备方法和应用
CN114436281A (zh) 一种sba-15/y核壳型复合分子筛及其制备方法和应用
CN102019197B (zh) 一种含小晶粒NaY分子筛的高岭土微球原位晶化物的合成方法
CN110342533B (zh) 分子筛及其制备方法和应用
CN112661166A (zh) 多级孔y型分子筛及其制备方法与应用
CN114433213A (zh) 一种复合载体及其制备方法和应用
CN107345154B (zh) 一种劣质柴油的加氢裂化方法
CN114425421B (zh) 一种催化裂化催化剂及其制备方法与应用
CN112934258B (zh) 复合分子筛及其制备方法和加氢异构催化剂及费托合成油加氢异构的方法
CN116060113B (zh) 一种直馏柴油加氢改质催化剂及其制备方法和应用
CN107345159B (zh) 一种生产低凝柴油的加氢裂化方法
CN107344117B (zh) 加氢裂化催化剂及其制法
CN114433207B (zh) 一种生产乙烯原料的加氢裂化催化剂及其制备方法和应用
CN114425420B (zh) 一种孔道结构丰富的催化裂解催化剂及其制备方法与应用
CN114433208B (zh) 一种加氢裂化生产中间馏分油的方法
TWI827328B (zh) Zsm-5分子篩及其製備方法和應用和加氫處理催化劑和臨氫降凝催化劑及其應用
CN116062764B (zh) 具有核壳结构的y-y复合型分子筛及其制备方法和应用
CN116060107A (zh) 一种加氢裂化催化剂及其制备方法和应用
CN116060109A (zh) 生产优质乙烯原料的加氢裂化催化剂及其制备方法和应用
KR20240018514A (ko) 탄화수소 공급물 탈랍에서의 메조기공성 제올라이트 및 이의 용도
US20240173701A1 (en) Method for synthesizing mesoporous nano-sized ultra-stable y zeolite
CN116060112A (zh) 一种加氢脱芳烃催化剂及其制备方法和应用
CN116060111A (zh) 一种生产中间馏分油加氢裂化催化剂及制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231214

Address after: 100728 No. 22 North Main Street, Chaoyang District, Beijing, Chaoyangmen

Patentee after: CHINA PETROLEUM & CHEMICAL Corp.

Patentee after: Sinopec (Dalian) Petrochemical Research Institute Co.,Ltd.

Address before: 100728 No. 22 North Main Street, Chaoyang District, Beijing, Chaoyangmen

Patentee before: CHINA PETROLEUM & CHEMICAL Corp.

Patentee before: DALIAN RESEARCH INSTITUTE OF PETROLEUM AND PETROCHEMICALS, SINOPEC Corp.