CN114380600A - 一种高通量制备陶瓷材料的合成方法 - Google Patents

一种高通量制备陶瓷材料的合成方法 Download PDF

Info

Publication number
CN114380600A
CN114380600A CN202011137470.4A CN202011137470A CN114380600A CN 114380600 A CN114380600 A CN 114380600A CN 202011137470 A CN202011137470 A CN 202011137470A CN 114380600 A CN114380600 A CN 114380600A
Authority
CN
China
Prior art keywords
electric field
blocks
prefabricated blocks
prefabricated
synthesis method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011137470.4A
Other languages
English (en)
Other versions
CN114380600B (zh
Inventor
贺刚
邓书香
杨增朝
双爽
王良
李江涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technical Institute of Physics and Chemistry of CAS
Original Assignee
Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technical Institute of Physics and Chemistry of CAS filed Critical Technical Institute of Physics and Chemistry of CAS
Priority to CN202011137470.4A priority Critical patent/CN114380600B/zh
Publication of CN114380600A publication Critical patent/CN114380600A/zh
Application granted granted Critical
Publication of CN114380600B publication Critical patent/CN114380600B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种Zr‑Ti‑C体系超高温陶瓷的高通量合成方法,将多个不同组分的预制块以阵列的形式摆放于电场中对所述预制块进行直接通电,在电场的作用下,诱发所述预制块发生燃烧合成反应形成Zr1‑xTixC块体陶瓷,采用电场辅助燃烧合成的方式,实现短时间内多个不同组分陶瓷坯体的同步制备,产物的化学计量比与原料计量比相同,且提高了制备效率。

Description

一种高通量制备陶瓷材料的合成方法
技术领域
本发明涉及超高温陶瓷高通量制备领域,尤其涉及Zr-Ti-C体系超高温陶瓷的高效率制备工艺问题。
背景技术
陶瓷的高通量制备技术是近年来的研究热点,它改变了传统单组分制备样品进行测试的实验模式,将多个组分的样品同步合成,在短期内获得大量的样品,迅速获得大量样品的性能数据,从而进行材料筛选,同时也可以与高通量计算相结合,将批量计算的结果迅速进行实验验证,从而加快材料研发速率。
陶瓷的烧结温度高,现有的陶瓷制备方法难以高通量化。常规的烧结方法如热压烧结、无压烧结通常需要数小时的处理时间,这是超高温陶瓷高通量合成的主要障碍。近年来开发的新烧结技术,如微波辅助烧结、放电等离子烧结能够大幅降低烧结所需时间,但是需要使用特定的压缩模具,且一次只能产生一个样品。最近开发的闪速烧结、光子烧结和快速热退火方法显示出超高的加热速率,能够将合成时间缩短至几分钟,但是能够使用的材料体系受到材料性质的限制,对Zr-Ti-C体系不适用。燃烧合成能够形成瞬时超高温,是一种低能耗的合成方式,燃烧前沿的温度高,可达到2000~3000℃,但是超高温阶段维持的时间无法延长,在受扩散控制的反应中,无法维持充足的高温合成时间。
ZrC、TiC的熔点在3000℃以上,二者形成固溶体后,硬度、发射率、耐烧蚀性能发生变化,部分组分显示出性能强化的效果,在热防护材料方面具有应用前景。C在Zr-Ti熔体中溶解形成ZrxTi1-xC1-δ,随着C含量的增加,硬度增加。已有的ZrxTi1-xC1-δ制备技术中,反应熔渗法能够在C材料表面形成ZrxTi1-xC1-δ保护层,防止C在高温环境下氧化,但是无法严格控制产物中Zr、Ti和C三种元素的比例;SPS法能够制备出富Ti和富Zr的固溶体块体,从而进行相关性能测试,但对Zr和Ti原子比例接近的固溶体,受到设备温度的限制,无法形成完全固溶的固溶体;燃烧合成能够达到无限固溶体形成所需要的2100℃以上的高温,但是高温阶段维持时间较短,无法实现原料中C的充分固溶。
发明内容
本发明的一个目的在于提供一种高通量制备陶瓷材料的合成方法,解决Zr-Ti-C体系超高温陶瓷材料制备的高通量化问题,实现高升温速率、高烧结温度、特定化学计量比多样品同时制备。
为达到上述目的,本发明采用下述技术方案:
一种Zr-Ti-C体系超高温陶瓷的高通量合成方法,包括如下步骤:①根据Zr1-xTixC中x的取值,称取锆粉、钛粉和碳粉作为原料混匀,制成N个致密度45—60%的预制块;②将N个预制块以n×m×p的阵列的形式摆放于电场中对预制块进行直接通电,在电场的作用下,诱发预制块发生燃烧合成反应形成Zr1-xTixC块体陶瓷,其中电场强度在电压0-20V,电流0-200A的范围内进行设置;其中x的取值范围为0≤x≤1,N的取值范围内为N≥3,n为阵列横向数量,n的取值范围为1,2,3,…,m为阵列纵向数量,m的取值范围为1,2,3,…,p为阵列摆放的层数,p的取值范围为1或2。
一种Zr-Ti-C体系超高温陶瓷的高通量合成方法,包括如下步骤:①根据Zr1-xTixC中x的取值,称取锆粉、钛粉和碳粉作为原料混匀,制成N个致密度45—60%的预制块;②将N个预制块以环形阵列的形式摆放于电场中对预制块进行直接通电,在电场的作用下,诱发预制块发生燃烧合成反应形成Zr1-xTixC块体陶瓷,其中电场强度在电压0-20V,电流0-200A的范围内进行设置;其中x的取值范围为0≤x≤1,N=M×p,N的取值范围内为N≥3,M为单层阵列数量,p为阵列摆放的层数,p的取值范围为1或2。
优选的,当p=2的时候,上层和下层预制块之间用碳纸隔开。
优选的,预制块为圆柱体或长方体,相邻之间的间距不小于其底面的直径或长边的一半。
优选的,步骤②中,N个预制块的组分可不一致。
需要说明的是,该技术能够实现阵列预制块的同步合成,不同预制块的组分可不一致,且产物的形状与预制块的形状相同,各个预制块不会发生粘连变形,产物的致密度同样分布在45—60%的范围内,各个预制块各自发生反应,不会发生相互影响。
优选的,步骤②中,预制块的燃烧合成反应在在真空气氛下进行。
优选的,步骤②中,电流是以2—10A/s的速率增大,直至发生反应。
一种实现上述高通合成方法的电场辅助燃烧合成装置,其使用负压反应釜作为反应容器,其特征在于,所述反应容器中包括两块高电导的石墨块和两块低电导的碳毡作为电极,其中所述预制块的两端依次连接所述碳毡和所述石墨块形成连通电路。
需要说明的是,低电导的碳毡在电场作用下能够迅速发热升温,对样品进行辐射和传导加热,预制块也具有导电性,可以焦耳加热,达到引燃点后引发样品的燃烧合成反应,其中所述预制块阵列的最大数量与石墨块的尺寸有关。
优选的,电场辅助燃烧合成装置还包括石英管、观察窗口、电源控制装置和排气口,所述预制块和所述碳毡设置在石英管内部,所述排气口用于抽真空。
本发明的有益效果为:本发明的合成方法能实现阵列预制块的同步合成,不同预制块的组分可不一致。产物的形状与预制块的形状相同,各块体不会粘连变形,产物的致密度同样分布在45—60%的范围内,同时Zr和Ti与C发生反应的机制是扩散控制,因而各组分以坯体块为单位各自发生反应,不会发生相互影响。本发明的合成方法利用电场产生的焦耳热和陶瓷合成时产生的化学热的共同作用下对陶瓷材料进行加热,迅速升至高温进行反应,反应完成后迅速降温,能够生成晶粒发育完好的固溶充分的陶瓷相。
附图说明
在下文中将基于实施例并参考附图来对本发明进行更详细的描述。其中:
图1是电场辅助燃烧合成装置示意图。
图2显示了实施例1中,Zr-Ti-C体系不同组分预制块产物的XRD图谱。
图3显示了实施例1中,Zr-Ti-C体系不同组分预制块产物的SEM图。
图4显示了实施例2中,1#,8#,16#的TiC产物的XRD图谱。
图5显示了实施例2中,位于中心8#和边缘1#的TiC产物的SEM图。
图6显示了实施例3中,Zr-Ti-C体系不同组分预制块产物的XRD图谱。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所述的实施例只是本发明的部分具有代表性的实施例,而不是全部实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的其他所有实施例都属于本发明的保护范围。
以下实施例是在电场辅助燃烧高通量合成装置中进行的,如图1所示,使用负压反应釜作为反应容器,反应釜壁上设置有用于施加电场的接线柱,接线柱上连接电源控制装置6,用于观察反应状态的观察窗口4和用于气氛控制的排气口5,反应釜中包括两块高电导的石墨块1和两块低电导的碳毡2作为电极,其中阵列预制块3的两端依次连接所述碳毡2和所述石墨块1形成连通电路,阵列预制块3和所述碳毡2设置在石英管内部。
实施例1
一种Zr-Ti-C体系超高温陶瓷的高通量合成方法,包括以下步骤,
分别按1:0:1、0.9375:0.0625:1、0.875:0.125:1、0.8125:0.1875:1、0.75:0.25:1、0.6875:0.3125:1、0.625:0.375:1、0.5625:0.4375:1、0.5:0.5:1、0.4375:0.5625:1、0.375:0.625:1、0.3125:0.6875:1、0.25:0.75:1、0.1875:0.8125:1、0.125:0.875:1、0.0625:0.9375:1的摩尔比例称取Zr、Ti、C原料粉末混合均匀并压坯,制得致密度约为55%的16个不同组分的样品预制块;将16个样品预制块以4×4单层阵列的形式摆放在电场中,预制块的两端依次采用低电导和高电导的碳毡和石墨块作为电极,起到连通电路的作用,手动控制以4A/s的速率增大电流,电流增加至187A时发生闪燃,此时的电压为17V;发生闪燃后电流电压下降,关闭电源,得到16个不同产物。
分别对16个产物进行XRD分析结果如图2所示,XRD图谱显示所有组分的原料反应完全,均为单相固溶体,无其它杂相生成;且产物的峰位随组分的变化均匀移动,与原料配比的变化梯度相一致。16个产物的SEM图如图3所示,SEM图(a)为样品在低倍数下的宏观图,可以看到在样品内部形成了微米级别的大孔,其余区域致密化程度较高,如图(b)所示,仅含有少量的微孔;图(c-h)显示的是不同x值时晶粒尺寸的变化情况,可以观察到随x值的增加,晶粒尺寸先减小后增大。
实施例2
分别将Ti、C原料粉末按照摩尔比1:1的混合均匀,压制成16个组分相同的致密度约为55%的圆柱形预制块,进行#1,#2,#3,…,#16编号,按照(#1,#2),(#3,#4),(#5,#6),…,(#15,#16)分为8组预制块,上层为#1,#3,#5,…,#15,下层为#2,#4,#6,…,#16双层排布摆放在电场中,上下层预制块用碳纸隔开,其中上层和下层预制块的远离碳纸一端依次采用低电导和高电导的碳毡和石墨块作为电极,起到连通电路的作用,其中,中间摆放(#7,#8)两个预制块,其他7组预制块环形排列在周围,其中相邻两组预制块的间距不小于其底面直径的一半。手动控制以3A/s的速率增大电流,电流增加至60A时发生闪燃,此时的电压为14.1V;发生闪燃后电流电压下降,关闭电源,得到16个产物,选取其中#1,#8,#16产物的XRD图谱如图4所示,显示均为单一相组成的TiC。边缘#1和中心#8产物的SEM图如图5所示,位于中心部分的晶粒尺寸较大,整体误差小,中心至边缘的均匀性良好。
实施例3
分别按0:1:1,0.2:0.8:1,0.4:0.6:1,0.6:0.4:1,0.8:0.2:1,1:0:1的摩尔比例称取Zr、Ti、C原料粉末混合均匀并压坯,得到致密度约为55%的6个不同组分的样品预制块,将6个预制块以2×3单层排布在电场中,预制块的两端依次采用低电导和高电导的碳毡和石墨块作为电极,起到连通电路的作用,手动控制以2A/s的速率增大电流,电流增加至40A时发生闪燃;发生闪燃后电流电压下降,关闭电源。产物的XRD图谱如图所示。
产物的XRD图谱如图6所示,所有组分的原料反应完全,产物均为单相固溶体,无其它杂相生成以及原料剩余;产物的峰位随组分的变化均匀移动,与原料配比的变化梯度相一致。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (9)

1.一种Zr-Ti-C体系超高温陶瓷的高通量合成方法,其特征在于,包括如下步骤:根据Zr1-xTixC中x的取值,称取锆粉、钛粉和碳粉作为原料混匀,制成N个致密度45—60%的预制块;将所述N个预制块以n×m×p的阵列的形式摆放于电场中对所述预制块进行直接通电,在电场的作用下,诱发所述预制块发生燃烧合成反应形成Zr1-xTixC块体陶瓷,其中电场强度在电压0-20V,电流0-200A的范围内进行设置;其中x的取值范围为0≤x≤1,N的取值范围内为N≥3,n为阵列横向数量,n的取值范围为1,2,3,…,m为阵列纵向数量,m的取值范围为1,2,3,…,p为阵列摆放的层数,p的取值范围为1或2。
2.一种Zr-Ti-C体系超高温陶瓷的高通量合成方法,其特征在于,包括如下步骤:根据Zr1-xTixC中x的取值,称取锆粉、钛粉和碳粉作为原料混匀,制成N个致密度45—60%的预制块;将N个所述预制块以环形阵列的形式摆放于电场中对所述预制块进行直接通电,在电场的作用下,诱发所述预制块发生燃烧合成反应形成Zr1-xTixC块体陶瓷,其中电场强度在电压0-20V,电流0-200A的范围内进行设置;其中x的取值范围为0≤x≤1,N=M×p,N的取值范围内为N≥3,M为单层阵列数量,p为阵列摆放的层数,p的取值范围为1或2。
3.根据权利要求1或2所述的高通量合成方法,其特征在于,当p=2的时候,上层和下层预制块之间用碳纸隔开。
4.根据权利要求1-3任一项所述的高通量合成方法,其特征在于,所述预制块为圆柱体或长方体,相邻两组之间的间距不小于其底面的直径或长边的一半。
5.根据权利要求1-4任一项所述的高通量合成方法,其特征在于,所述步骤中,所述N个预制块的组分可不一致。
6.根据权利要求1-5任一项所述的高通量合成方法,其特征在于,所述步骤中,所述预制块的燃烧合成反应在在真空气氛下进行。
7.根据权利要求1-6任一项所述的高通量合成方法,其特征在于,所述步骤中,所述电流是以2—10A/s的速率增大,直至发生反应。
8.一种实现权利要求1-7任一项所述的高通合成方法的电场辅助燃烧合成装置,其使用负压反应釜作为反应容器,其特征在于,所述反应容器中包括两块高电导的石墨块和两块低电导的碳毡作为电极,其中所述预制块的两端依次连接所述碳毡和所述石墨块形成连通电路。
9.根据权利要求8所述的电场辅助燃烧合成装置,其特征在于,还包括石英管、观察窗口、电源控制装置和排气口,所述预制块和所述碳毡设置在石英管内部,所述排气口用于抽真空。
CN202011137470.4A 2020-10-22 2020-10-22 一种高通量制备陶瓷材料的合成方法 Active CN114380600B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011137470.4A CN114380600B (zh) 2020-10-22 2020-10-22 一种高通量制备陶瓷材料的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011137470.4A CN114380600B (zh) 2020-10-22 2020-10-22 一种高通量制备陶瓷材料的合成方法

Publications (2)

Publication Number Publication Date
CN114380600A true CN114380600A (zh) 2022-04-22
CN114380600B CN114380600B (zh) 2023-06-20

Family

ID=81193310

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011137470.4A Active CN114380600B (zh) 2020-10-22 2020-10-22 一种高通量制备陶瓷材料的合成方法

Country Status (1)

Country Link
CN (1) CN114380600B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101786166A (zh) * 2010-02-01 2010-07-28 四川大学 一种基于粉末冶金的电场原位制备Fe-Cu基复合材料方法
CN106431416A (zh) * 2016-09-22 2017-02-22 铜仁学院 热爆合成碳化锆、二硼化锆复相陶瓷粉末及其制备方法
CN107827464A (zh) * 2017-12-15 2018-03-23 中国科学院理化技术研究所 一种燃烧合成制备ZrTiCB四元陶瓷粉体的方法
CN108693000A (zh) * 2017-04-12 2018-10-23 中国科学院上海硅酸盐研究所 块体陶瓷材料样品库高通量制备方法
US20190111481A1 (en) * 2017-10-12 2019-04-18 Central Iron And Steel Research Institute High throughput micro-synthesis method of multi-component materials
CN110094974A (zh) * 2018-01-31 2019-08-06 中国科学院金属研究所 一种模块化组合材料高通量热压烧结装置及其使用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101786166A (zh) * 2010-02-01 2010-07-28 四川大学 一种基于粉末冶金的电场原位制备Fe-Cu基复合材料方法
CN106431416A (zh) * 2016-09-22 2017-02-22 铜仁学院 热爆合成碳化锆、二硼化锆复相陶瓷粉末及其制备方法
CN108693000A (zh) * 2017-04-12 2018-10-23 中国科学院上海硅酸盐研究所 块体陶瓷材料样品库高通量制备方法
US20190111481A1 (en) * 2017-10-12 2019-04-18 Central Iron And Steel Research Institute High throughput micro-synthesis method of multi-component materials
CN107827464A (zh) * 2017-12-15 2018-03-23 中国科学院理化技术研究所 一种燃烧合成制备ZrTiCB四元陶瓷粉体的方法
CN110094974A (zh) * 2018-01-31 2019-08-06 中国科学院金属研究所 一种模块化组合材料高通量热压烧结装置及其使用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHUANG SHUANG ET AL.: "High-throughput automatic batching equipment for solid state ceramic powders", 《REVIEW OF SCIENTIFIC INSTRUMENTS》 *

Also Published As

Publication number Publication date
CN114380600B (zh) 2023-06-20

Similar Documents

Publication Publication Date Title
Biesuz et al. What’s new in ceramics sintering? A short report on the latest trends and future prospects
Kermani et al. Ultrafast high-temperature sintering (UHS) of fine grained α-Al2O3
CN110577399B (zh) 基于感应加热的多场耦合闪速烧结系统
CN106116559B (zh) 一种电场辅助陶瓷低温快烧装置
CN108947542A (zh) 陶瓷粉末原料直接闪烧成型制备方法
McKinnon et al. Flash spark plasma sintering of cold-Pressed TiB2-hBN
CN106498205A (zh) 一种大尺寸高致密度高均匀性的CuCr合金的制造方法
CN110128115A (zh) 一种闪烧制备氧化物共晶陶瓷的方法
CN112919908A (zh) 一种新型钙钛矿结构高熵陶瓷及其制备方法
CN107512912A (zh) 高纯度MoAlB陶瓷粉体及致密块体的制备方法
KR20100025232A (ko) 세라믹 재료의 고주파 유도 가열 장치 및 이를 이용한 비가압 소결 방법
CN112723891B (zh) 一种镧钙复合六硼化物多晶阴极材料及其制备方法
Demirskyi et al. Hot-spots generation, exaggerated grain growth and mechanical performance of silicon carbide bulks consolidated by flash spark plasma sintering
CN111056846B (zh) 一种采用冷冻干燥和燃烧合成法快速制备的定向多孔氮化铝蜂窝陶瓷及其方法
CN104829235A (zh) 一种高强度高气孔率YbB6超高温多孔陶瓷及其制备方法
CN206089473U (zh) 一种电场辅助陶瓷低温快烧装置
CN114380600A (zh) 一种高通量制备陶瓷材料的合成方法
CN109761622A (zh) 一种基于外场辅助技术的氮化硅基梯度复合材料及其制备方法
CN110078496A (zh) 陶瓷材料的制备方法以及制备装置
Salamon et al. Pressure-less spark plasma sintering of alumina
CN102531553B (zh) 一种制备氧化铝基共晶陶瓷的方法
CN108178632B (zh) 具有定向层片组织的ZrB2-SiC共晶陶瓷制备方法
CN116411212A (zh) 一种通过有序无序相变显著提高纳米晶VCoNi中熵合金屈服强度的方法
CN106119583B (zh) 一种无压烧结钛/氧化铝梯度复合材料的制备方法
CN113953510A (zh) 一种制备大尺寸钨纤维增韧钨Wf/W复合材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant