CN114369240A - 卟啉基多孔有机聚合物、制备方法及其负载钯催化剂的制备方法与用途 - Google Patents

卟啉基多孔有机聚合物、制备方法及其负载钯催化剂的制备方法与用途 Download PDF

Info

Publication number
CN114369240A
CN114369240A CN202111338167.5A CN202111338167A CN114369240A CN 114369240 A CN114369240 A CN 114369240A CN 202111338167 A CN202111338167 A CN 202111338167A CN 114369240 A CN114369240 A CN 114369240A
Authority
CN
China
Prior art keywords
porphyrin
catalyst
based porous
palladium
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111338167.5A
Other languages
English (en)
Other versions
CN114369240B (zh
Inventor
何建云
蒋云波
李鸿鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Precious Metal New Materials Holding Group Co ltd
Original Assignee
Sino Platinum Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sino Platinum Metals Co Ltd filed Critical Sino Platinum Metals Co Ltd
Priority to CN202111338167.5A priority Critical patent/CN114369240B/zh
Publication of CN114369240A publication Critical patent/CN114369240A/zh
Application granted granted Critical
Publication of CN114369240B publication Critical patent/CN114369240B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • B01J31/30Halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0633Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • C08G73/065Preparatory processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4211Suzuki-type, i.e. RY + R'B(OR)2, in which R, R' are optionally substituted alkyl, alkenyl, aryl, acyl and Y is the leaving group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24
    • C07C2531/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24 of the platinum group metals, iron group metals or copper
    • C07C2531/30Halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了卟啉基多孔有机聚合物、制备方法及其负载钯催化剂的制备方法与用途,该聚合物含有丰富的微孔或者介孔且具有较大的比表面积,同时还具有较高的物理、化学稳定性。本发明还提供一种以所述的卟啉基多孔有机聚合物作为载体负载钯离子或钯纳米颗粒,制得催化剂。本发明还提供上述催化剂的用途,包括用于催化硼酸衍生物与芳香卤化物发生交叉偶联生成偶联产物和用于催化芳香硝基化合物的硝基还原。该催化剂具有高催化活性、易回收和可重复多次使用等优点。本发明的卟啉基多孔有机聚合物的具有式1或式2的重复结构单元:
Figure DDA0003347688720000011

Description

卟啉基多孔有机聚合物、制备方法及其负载钯催化剂的制备 方法与用途
技术领域
本发明涉及一系列的卟啉基多孔有机聚合物、制备方法及其负载钯催化剂的制备方法,以及该催化剂在Suzuki-Miyaura交叉偶联反应和对硝基苯酚加氢还原反应中的用途。
背景技术
多孔有机聚合物(Porous organic polymers,POPs)的结构上存在丰富的微孔(<2nm) 或介孔(介于2nm与50nm之间),有较大的比表面积,同时有着较高的物理、化学稳定性;另外,还具有结构可设计性和可功能化修饰等特点,使其可以用于多种应用场景。其中,因结构上的开放孔道、较大的比表面积和在合成过程中可引入杂原子,使其能锚定金属离子和分散纳米颗粒,故常常用来作为载体合成催化剂。然而,大部分POPs材料本身是不含有活性催化位点、与金属离子和纳米颗粒相互作用较弱,导致以POPs为载体的多相负载型催化剂存在活性位点分布不均、纳米粒子脱落、催化效率低等问题。
卟啉是一种两性化合物,卟啉环中的N原子既可以接受质子,又可以给出质子。同时,卟啉环中的N上的H原子可以被金属离子取代而形成金属卟啉,几乎所有的金属离子都能与卟啉形成配合物。此外,卟啉的大π电子共轭有利于电子的传导,同时与金属纳米粒子之间存在较强的π-轨道偶合作用力,因此不会出现金属颗粒流失的情况。故将卟啉引入传统的多孔有机聚合物中,可以很好解决以POPs为载体的多相负载型催化剂的问题。
均相钯催化剂体系具有分散性好、催化活性高、化学选择性好等优点,但也存在催化剂价格昂贵、反应条件苛刻,又因均相催化剂与反应体系在同一相中反应存在分离操作复杂、催化剂难以回收重复利用且残留的钯会对产物造成一定的污染,催化剂在高温下稳定性差等缺点,制约了其大规模使用。虽非均相催化剂避免了均相催化剂的一些缺点,具有易分离、耐高温、寿命长等优点,但以多孔材料(微孔沸石、介孔碳、活性炭等)为载体的非均相催化剂,同样存在金属纳米颗粒易团聚或脱落、制备过程较复杂或需额外的还原剂等问题。而含有催化活性金属中心的卟啉基多孔有机聚合物(Porphyrin-based porousorganic polymers,PPOPs)正好可以弥合均相催化和多相催化之间的差距;它即类似于均相有机金属催化剂,可以直接控制活性部位;又如同经典的多相催化剂一样,很容易从反应混合物中分离出来后重复使用。
发明内容
为解决上述问题,本发明提供一系列的具有高催化活性、易回收可重复利用的卟啉基多孔有机聚合物、制备方法及其负载钯催化剂的制备方法;同时也提供其在Suzuki-Miyaura 交叉偶联反应(也称为铃木反应)和芳香硝基化合物的硝基还原反应中的催化应用。
具体的,本发明的第一目的在于提供一系列的卟啉基多孔有机聚合物,该聚合物含有丰富的微孔或者介孔且具有较大的比表面积,同时还具有较高的物理、化学稳定性。
本发明的第二目的在于提供一种以所述的卟啉基多孔有机聚合物作为载体负载钯离子或钯纳米颗粒,制得催化剂的方法。该制备方法工艺简单、制备条件温和且对环境友好。
本发明的第三目的在于提供上述催化剂的用途,该催化剂具有高催化活性、易回收和可重复多次使用等优点,具体包括:
(1)用于催化硼酸衍生物与芳香卤化物发生交叉偶联生成偶联产物。
(2)用于催化芳香硝基化合物的硝基还原。
本发明实现上述目的所采用的技术方案为:
卟啉基多孔有机聚合物,具有式1或式2所述的重复结构单元:
Figure BDA0003347688700000031
式1中,R基团为
Figure BDA0003347688700000032
所对应的聚合物分别简称为PAPOP、PAPOP、PUPOP、PDPOP;式2中,R基团为
Figure BDA0003347688700000033
所对应的聚合物分别简称为PMPOP、PRPOP。
一种卟啉基多孔有机聚合物的制备方法,由式3所述单体与式4或式5所述单体混合反应,随后经过滤、洗涤、纯化所得。
Figure BDA0003347688700000034
本发明的代表卟啉基多孔有机聚合物合成路线见方程式1和方程式2:
Figure BDA0003347688700000041
进一步地,所述的卟啉基多孔有机聚合物的制备方法,包括:
先将5,10,15,20-四(四硝基苯基)-21H,23H卟啉(简称TNPPH2)、二氨基化合物或三氨基化合物和氢氧化钾投入溶剂中,加热反应一段时间后,冷却至室温再倒入水中搅拌,然后过滤、洗涤,再经过索氏提取器纯化,最后干燥、研细,收得固体粉末。
更进一步地,所述的卟啉基多孔有机聚合物的制备方法,具体的步骤包括:
(1)若是用式3所述单体与式4所述单体反应,则对应摩尔量之比为1:2;若是用式3所述单体与式5所述单体反应,则对应摩尔量之比为3:4。氢氧化钾的用量为式3所述单体的10倍摩尔量。
(2)反应溶剂为无水N,N'-二甲基甲酰胺(DMF),用量为100mL。
(3)加热的温度100~180℃。
(4)反应过程中,反应体系需要用惰性气体(如氮气或氩气)保护。
(5)反应时间为12~48小时。
(6)冷却至室温后,倒入去离子水中,去离子水用量约为DMF用量的5~20倍。
(7)过滤的方式为抽滤或离心,清洗的溶剂是甲醇、丙酮和去离子水。
(8)干燥方式优选冷冻干燥。
一种以氯钯酸为钯源(前驱体)的卟啉基多孔有机聚合物负载钯催化剂的制备方法,包括:
称取上述所获得的卟啉基多孔聚合物粉末分散在溶剂中,然后加入氯钯酸溶液,再搅拌浸渍一段时间,最后经处理后得到卟啉基多孔聚合物负载钯催化剂。
进一步地,所述的以氯钯酸为钯源的卟啉基多孔有机聚合物负载钯催化剂制备方法,具体包括如下步骤:
(1)钯源为氯钯酸溶液,浓度为1~10mmol/L,其用量为m(卟啉基多孔聚合物):m(氯钯酸中的钯)=1:0.01至1:0.1,m代表质量。
(2)分散的方式为超声,超声时间为0.5~2小时;分散溶剂为水或乙醇,载体浓度为 1~5mg/mL。
(3)搅拌浸渍的时间为24~96小时。
(4)所述处理为过滤或离心,用乙醇、去离子水洗涤,最后真空干燥。
一种以二氯化钯或醋酸钯为钯源(前驱体)的卟啉基多孔有机聚合物负载钯催化剂的制备方法,包括:
称取上述所获得的卟啉基多孔聚合物粉末和二氯化钯或醋酸钯,并分散在溶剂中;超声后,经处理得到卟啉基多孔聚合物负载钯催化剂。
进一步地,所述以二氯化钯或醋酸钯为钯源(前驱体)的卟啉基多孔有机聚合物负载钯催化剂的制备方法,具体包括如下步骤:
(1)钯源为二氯化钯或醋酸钯,其用量为m(卟啉基多孔聚合物):m(前驱体中所含的钯)=1:0.01至1:0.1,m为质量。
(2)分散方式为超声,超声时间为1~5小时,分散溶剂为水或乙醇或甲醇或DMF,载体质量浓度为5~10mg/mL。
(3)所述处理为过滤或离心,用50%乙醇和水洗涤,最后真空干燥。
一种卟啉基多孔有机聚合物负载钯催化剂在Suzuki-Miyaura交叉偶联反应中的用途,包括:
将芳香卤化物和硼酸衍生物与上述制备的催化剂混合,加入溶剂,加热反应,经离心后分离回收产物和催化剂,得出产率;无需无水无氧的苛刻条件即可实现Suzuki偶联反应。
进一步地,所述混合为n(芳香卤代物):n(硼酸衍生物):n(碱):n(催化剂)=(1.2~ 1.5):1:(2~3):(0.001~0.01),其中n代表物质的量。溶剂优选为乙醇:水=1:1。加热温度为溶剂的回流温度。产率通过萃取、过柱的方式测定。
一种卟啉基多孔有机聚合物负载钯催化剂在芳香硝基化合物硝基还原反应中的用途,包括:
取等体积的一定浓度的对硝基苯酚溶液和硼氢化钠溶液混合后,加入催化剂,室温下搅拌,用紫外可见分光光度计测定一段时间间隔内反应溶液的吸光度变化。具体步骤如下:对硝基苯酚溶液的浓度为0.02~0.2mM。硼氢化钠的浓度为对硝基苯酚的100~500倍(确保还原过程符合动力学第一方程)。加入催化剂的量为对硝基苯酚的1~5mol%。检测时间间隔为30~120s。吸光度的测定范围为250~500nm。取400nm处的吸光度,计算出催化剂的反应速率常数k和活性因子κa(κ定义为单位质量催化剂中所含钯的反应动力学常数)。
本发明的有益效果:
1.本发明提供了一种能制备所述的卟啉基多孔有机聚合物的方法,该方法工艺简单、产率较高。
2.本发明提供了一种制备卟啉基多孔有机聚合物负载钯催化剂的制备方法;催化剂的制备方法简单、反应条件温和、对环境友好、无需添加任何其他的还原剂。
3.本发明提供了一种所述的卟啉基多孔聚合物负载钯催化剂的用途,发现其可有效的催化芳香卤代物与硼酸衍生物发生交叉偶联反应;催化剂使用量在0.5mol%时,以氯钯酸为钯源时,1小时的转化率为99%。
4.本发明所述的卟啉基多孔聚合物负载钯催化剂,应用于催化对硝基苯酚加氢还原,具有高效催化活性和选择性,其转化率可高达99%,还原反应动力学速率可达5.9×10- 3s-1,活性因子可达1845s-1mg-1Pd。
5.本发明通过催化剂结构设计,使钯与卟啉基多孔有机聚合物存在强的相互作用,用于 Suzuki-Miyaura交叉偶联反应和对硝基苯酚加氢还原反应均具有很好的催化效果,且催化剂可以回收、多次重复利用。
附图说明
图1:TNPPH2、PMPOP、PUPOP、PAPOP、PPPOP的红外图谱。
图2:TNPPH2、PMPOP、PUPOP、PAPOP、PPPOP的N2吸附-脱附曲线(a)和孔径分布(b)。
图3:PMPOP、PUPOP、PAPOP、PPPOP的TG曲线(N2气氛)。
图4:八种催化剂催化对硝基苯酚还原加氢的转化率。
具体实施方式
下面结合具体实施例和应用实施例,进一步阐述本发明。应理解这些实施例和应用实施例仅用于说明本发明,而不用于限制本发明的范围。
实施例1
Pd-PMPOP(H2PdCl4)(以氯钯酸为钯源,钯的理论负载量为10wt%):称取卟啉基多孔聚合物PMPOP(48mg)加入去离子水20ml,超声分散1h;然后缓慢滴加5mM的氯钯酸溶液;持续搅拌72小时后过滤,并使用去离子水和乙醇对进行清洗3次,烘干后得到催化剂。经检测,催化剂中钯的实际含量为9.414wt%。
Pd-PMPOP(PdCl2)(以二氯化钯为钯源,钯的理论负载量为10wt%):称取PMPOP(54mg) 和二氯化钯(10mg)加入乙醇10mL,即m(载体):m(钯)=9:1,超声3h,然后离心分离,分别使用去离子水、50%乙醇交替清洗3次,烘干后得到催化剂。经检测,催化剂中钯的实际含量为9.365wt%。
其中,卟啉基多孔有机聚合物PMPOP制备方法如下:分别称取0.2g的5,10,15,20-四(四硝基苯基)-21H,23H卟啉(简称TNPPH2)、38.8mg的三聚氰胺(M)(纯度≥99%)和142mg的氢氧化钾于反应瓶中,然后加入无水DMF约40ml,通入氮气,在150℃加热条件下搅拌反应24h;然后冷却至室温,将反应瓶中的混合物倒入装有约200ml的去离子水的烧杯中持续搅拌1h;最后通过过滤收集,依次使用丙酮和甲醇清洗滤饼,然后再在索氏提取器中用水和丙酮进行纯化,150℃真空干燥1天,研细后得到PMPOP。使用红外、BET测试法对载体进行表征,红外结果见图1、氮气吸附曲线和孔径分布见图2、BET比表面积和BJH吸附平均孔径见表1。
实施例2
Pd-PUPOP(H2PdCl4)(以氯钯酸为钯源,钯的理论负载量为10wt%):称取多孔聚合物PUPOP (48mg)加入去离子水20ml,超声分散1h;然后缓慢滴加5mM的氯钯酸溶液;持续搅拌72 小时后过滤,并使用去离子水和乙醇对进行清洗3次,烘干后得到催化剂。经检测,催化剂中钯的实际含量为9.342wt%。
Pd-PUPOP(PdCl2)(以二氯化钯为钯源,钯的理论负载量为10wt%):称取PUPOP(54mg) 和二氯化钯(10mg)加入乙醇10mL,即m(载体):m(钯)=9:1,超声3h,然后离心分离,分别使用去离子水、50%乙醇交替清洗3次,烘干后得到催化剂。经检测,催化剂中钯的实际含量为9.935wt%。
其中,卟啉基多孔化合物PUPOP制备方法如下:分别称取0.2g的5,10,15,20-四(四硝基苯基)-21H,23H卟啉(简称TNPPH2)、33.6mg的尿素(U)(纯度≥99%)和142mg 的氢氧化钾于反应瓶中,然后加入无水DMF约40ml,通入氮气,在150℃加热条件下搅拌反应24h;然后冷却至室温,将反应瓶中的混合物倒入装有约200ml的去离子水的烧杯中持续搅拌1h;最后通过过滤收集,依次使用丙酮和甲醇清洗滤饼,然后再在索氏提取器中用水和丙酮进行纯化,150℃真空干燥1天,研细后得到PUPOP。使用红外、BET测试法对载体进行表征,红外结果见图1、氮气吸附曲线和孔径分布见图2、BET比表面积和BJH吸附平均孔径见表1。
实施例3
Pd-PAPOP(H2PdCl4)(以氯钯酸为钯源,钯的理论负载量为10wt%):称取多孔聚合物PAPOP (48mg)加入去离子水20ml,超声分散1h;然后缓慢滴加5mM的氯钯酸溶液;持续搅拌72 小时后过滤,并使用去离子水和乙醇对进行清洗3次,烘干后得到催化剂。经检测,催化剂中钯的实际含量为7.995wt%。
Pd-PAPOP(PdCl2)(以二氯化钯为钯源,钯的理论负载量为10wt%):称取PAPOP(54mg) 和二氯化钯(10mg)加入乙醇10mL,即m(载体):m(钯)=9:1,超声3h,然后离心分离,分别使用去离子水、50%乙醇交替清洗3次,烘干后得到催化剂。经检测,催化剂中钯的实际含量为9.666wt%。
其中,卟啉基多孔化合物PAPOP制备方法如下:分别称取0.2g的5,10,15,20-四(四硝基苯基)-21H,23H卟啉(简称TNPPH2)、120mg的2,6-二氨基蒽醌(A)(纯度≥96%)和142mg的氢氧化钾于反应瓶中,然后加入无水DMF约40ml,通入氮气,在150℃加热条件下搅拌反应24h;然后冷却至室温,将反应瓶中的混合物倒入装有约200ml的去离子水的烧杯中持续搅拌1h;最后通过过滤收集,依次使用丙酮和甲醇清洗滤饼,然后再在索氏提取器中用水和丙酮进行纯化,150℃真空干燥1天,研细后得到PAPOP。使用红外、BET测试法对载体进行表征,红外结果见图1、氮气吸附曲线和孔径分布见图2、BET比表面积和BJH吸附平均孔径见表1。
实施例4
Pd-PPPOP(H2PdCl4)(以氯钯酸为钯源,钯的理论负载量为10wt%):称取多孔聚合物PPPOP (48mg)加入去离子水20ml,超声分散1h;然后缓慢滴加5mM的氯钯酸溶液;持续搅拌72 小时后过滤,并使用去离子水和乙醇对进行清洗3次,烘干后得到催化剂。经检测催化剂中钯的实际含量为7.471wt%。
Pd-PPPOP(PdCl2)(以二氯化钯为钯源,钯的理论负载量为10wt%):称取PPPOP(54mg) 和二氯化钯(10mg)加入乙醇10mL,即m(载体):m(钯)=9:1,超声3h,然后离心分离,分别使用去离子水、50%乙醇交替清洗3次,烘干后得到催化剂。经检测,催化剂中钯的实际含量为9.042wt%。
其中,卟啉基多孔化合物PPPOP制备方法如下:分别称取0.2g的5,10,15,20-四(四硝基苯基)-21H,23H卟啉(简称TNPPH2)、55mg的对苯二胺(P)和142mg的氢氧化钾于反应瓶中,然后加入无水DMF约40ml,通入氮气,在150℃加热条件下搅拌反应24h;然后冷却至室温,将反应瓶中的混合物倒入装有约200ml的去离子水的烧杯中持续搅拌1h;最后通过过滤收集,并在索氏提取器中用水和丙酮进行纯化,150℃真空干燥1天。使用红外、BET 测试法对载体进行表征,红外结果见图1、氮气吸附曲线和孔径分布见图2、比表面积BET 和BJH吸附平均孔径见表1。
表1 TNPPH2、PMPOP、PUPOP、PAPOP、PPPOP的BET和BJH吸附平均孔径
比表面积BET和BJH吸附平均孔径 TNPPH<sub>2</sub> PMPOP PUPOP PAPOP PPPOP
BET/m<sup>2</sup>/g 366 554 450 382 641
BJH吸附平均孔径/nm 2.97 4.42 3.95 4.54 3.60
以Suzuki-Miyaura交叉偶联反应为测试模型,分别测试以下八种催化剂的催化活性: Pd-PMPOP(H2PdCl4)、Pd-PMPOP(PdCl2)、Pd-PUPOP(H2PdCl4)、Pd-PUPOP(PdCl2)、Pd-PAPOP (H2PdCl4)、Pd-PAPOP(PdCl2)、Pd-PPPOP(H2PdCl4)、Pd-PPPOP(PdCl2),对比数据见表2。
应用实施例1
取碘苯1mmol、苯硼酸1.5mmol、碳酸钾2.0mmol、催化剂Pd-PMPOP(0.5mmol%)于反应瓶中,加入16ml乙醇-水=1:1的混合溶液,回流搅拌反应;反应过程通过TLC跟踪。反应结束后,利用离心将产物和催化剂进行分离,离心所得催化剂用无水乙醇与去离子水交叉洗涤3次,最后进行真空干燥以便于其进行循环利用测试。将再上述过程中的所有液体进行收集,先用二氯甲烷萃取3次,经旋转蒸发后得到粗产品,粗产品再经过硅胶柱(200~300目)、以石油醚与乙酸乙酯为淋洗剂的方式进行纯化。
应用实施例2
取碘苯1mmol、苯硼酸1.5mmol、碳酸钾2.0mmol、催化剂Pd-PUPOP(0.5mmol%)于反应瓶中,加入16ml乙醇-水=1:1的混合溶液,回流搅拌反应;反应过程通过TLC跟踪。反应结束后,利用离心将产物和催化剂进行分离,离心所得催化剂用无水乙醇与去离子水交叉洗涤3次,最后进行真空干燥以便于其进行循环利用测试。将再上述过程中的所有液体进行收集,先用二氯甲烷萃取3次,经旋转蒸发后得到粗产品,粗产品再经过硅胶柱(200~300目)、以石油醚与乙酸乙酯为淋洗剂的方式进行纯化。
应用实施例3
取碘苯1mmol、苯硼酸1.5mmol、碳酸钾2.0mmol、催化剂Pd-PAPOP(0.5mmol%)于反应瓶中,加入16ml乙醇-水=1:1的混合溶液,回流搅拌反应;反应过程通过TLC跟踪。反应结束后,利用离心将产物和催化剂进行分离,离心所得催化剂用无水乙醇与去离子水交叉洗涤3次,最后进行真空干燥以便于其进行循环利用测试。将再上述过程中的所有液体进行收集,先用二氯甲烷萃取3次,经旋转蒸发后得到粗产品,粗产品再经过硅胶柱(200~300目)、以石油醚与乙酸乙酯为淋洗剂的方式进行纯化。
应用实施例4
取碘苯1mmol、苯硼酸1.5mmol、碳酸钾2.0mmol、催化剂Pd-PPPOP(0.5mmol%)于反应瓶中,加入16ml乙醇:水=1:1的混合溶液,回流搅拌反应;反应过程通过TLC跟踪。反应结束后,利用离心将产物和催化剂进行分离,离心所得催化剂用无水乙醇与去离子水交叉洗涤3次,最后进行真空干燥以便于其进行循环利用测试。将再上述过程中的所有液体进行收集,先用二氯甲烷萃取3次,经旋转蒸发后得到粗产品,粗产品再经过硅胶柱(200~300目)、以石油醚与乙酸乙酯为淋洗剂的方式进行纯化。
表2八种催化剂催化铃木反应的转化频率(TOF,h-1)
Figure BDA0003347688700000121
以对硝基苯酚加氢还原反应(4-NP反应)为测试模型,分别测试了以下八种催化剂在催化加氢方面的活性:Pd-PMPOP(H2PdCl4)、Pd-PMPOP(PdCl2)、Pd-PUPOP(H2PdCl4)、Pd-PUPOP (PdCl2)、Pd-PAPOP(H2PdCl4)、Pd-PAPOP(PdCl2)、Pd-PPPOP(H2PdCl4)、Pd-PPPOP(PdCl2),对比数据见表3。
应用实施例5
称取一定量的对硝基苯酚先将其配制2mM水溶液,再移取一定体积将其稀释成0.1mM的对硝基苯酚水溶液,备用;然后称取一定量的硼氢化钠配制成10mM的水溶液;再分别从两种溶液中取15mL进行混合,混合溶液颜色呈明亮的黄色;最后取30μL的催化剂水溶液(溶液中钯含量1mM)加入搅拌状态下混合溶液中,开始计时,同时快速移取3ml该溶液至比色皿中,每隔30s使用紫外可见分光光度计测定一次溶液在250~500nm波长范围内吸光度变化。
应用实施例6
称取一定量的对硝基苯酚先将其配制2mM水溶液,再移取一定体积将其稀释成0.1mM的对硝基苯酚水溶液,备用;然后称取一定量的硼氢化钠配制成10mM的水溶液;再分别从两种溶液中取15mL进行混合,混合溶液颜色呈明亮的黄色;最后取30μL的催化剂水溶液(溶液中钯含量1mM)加入搅拌状态下混合溶液中,开始计时,同时快速移取3ml该溶液至比色皿中,每隔30s使用紫外可见分光光度计测定一次溶液在250~500nm波长范围内吸光度变化。
应用实施例7
称取一定量的对硝基苯酚先将其配制2mM水溶液,再移取一定体积将其稀释成0.1mM的对硝基苯酚水溶液,备用;然后称取一定量的硼氢化钠配制成10mM的水溶液;再分别从两种溶液中取15mL进行混合,混合溶液颜色呈明亮的黄色;最后取30μL的催化剂水溶液(溶液中钯含量1mM)加入搅拌状态下混合溶液中,开始计时,同时快速移取3ml该溶液至比色皿中,每隔30s使用紫外可见分光光度计测定一次溶液在250~500nm波长范围内吸光度变化。
应用实施例8
称取一定量的对硝基苯酚先将其配制2mM水溶液,再移取一定体积将其稀释成0.1mM的对硝基苯酚水溶液,备用;然后称取一定量的硼氢化钠配制成10mM的水溶液;再分别从两种溶液中取15mL进行混合,混合溶液颜色呈明亮的黄色;最后取30μL的催化剂水溶液(溶液中钯含量1mM)加入搅拌状态下混合溶液中,开始计时,同时快速移取3ml该溶液至比色皿中,每隔30s使用紫外可见分光光度计测定一次溶液在250~500nm波长范围内吸光度变化。
表3八种催化剂催化对4-硝基苯酚加氢还原反应的催化活性
Figure BDA0003347688700000131
Figure BDA0003347688700000141

Claims (13)

1.卟啉基多孔有机聚合物,其特征在于,具有式1或式2所述的重复结构单元:
Figure FDA0003347688690000011
式1中,R基团为
Figure FDA0003347688690000012
式2中,R基团为
Figure FDA0003347688690000013
Figure FDA0003347688690000014
2.一种卟啉基多孔有机聚合物的制备方法,其特征在于,制备如权利要求1所述卟啉基多孔有机聚合物是由式3所述单体与式4或式5所述单体混合反应,随后经过滤、洗涤、纯化所得;
Figure FDA0003347688690000015
3.根据权利要求2所述的制备方法,其特征在于,制备所述卟啉基多孔有机聚合物的合成路线如方程式1和方程式2所示:
Figure FDA0003347688690000021
4.根据权利要求3所述的制备方法,其特征在于,包括:
先将5,10,15,20-四(四硝基苯基)-21H,23H卟啉(TNPPH2)、二氨基化合物或三氨基化合物和氢氧化钾投入溶剂中,加热反应一段时间后,冷却至室温再倒入水中搅拌,然后过滤、洗涤,再经过索氏提取器纯化,最后干燥、研细,收得固体粉末。
5.根据权利要求4所述的制备方法,其特征在于,具体的步骤包括:
(1)若是用式3所述单体与式4所述单体反应,则对应摩尔量之比为1:2;若是用式3所述单体与式5所述单体反应,则对应摩尔量之比为3:4;氢氧化钾的用量为式3所述单体的10倍摩尔量;
(2)反应溶剂为无水N,N'-二甲基甲酰胺(DMF),用量为100mL;
(3)加热的温度100~180℃;
(4)反应过程中,反应体系需要用惰性气体(如氮气或氩气)保护;
(5)反应时间为12~48小时;
(6)冷却至室温后,倒入去离子水中,去离子水用量约为DMF用量的5~20倍;
(7)过滤的方式为抽滤或离心,清洗的溶剂是甲醇、丙酮和去离子水;
(8)干燥方式优选冷冻干燥。
6.一种卟啉基多孔有机聚合物负载钯催化剂的制备方法,其特征在于,包括:
称取如权利要求1所述的卟啉基多孔聚合物分散在溶剂中,然后加入氯钯酸溶液,再搅拌浸渍一段时间,最后经处理后得到卟啉基多孔聚合物负载钯催化剂。
7.根据权利要求6所述的制备方法,其特征在于,具体包括如下步骤:
(1)所述氯钯酸溶液的浓度为1~10mmol/L,其用量为:卟啉基多孔聚合物的质量:氯钯酸中的钯的质量=1:0.01~0.1;
(2)分散的方式为超声,超声时间为0.5~2小时;分散溶剂为水或乙醇,载体浓度为1~5mg/mL;
(3)搅拌浸渍的时间为24~96小时;
(4)所述处理为过滤或离心,固体用乙醇、去离子水洗涤,最后真空干燥。
8.一种卟啉基多孔有机聚合物负载钯催化剂的制备方法,其特征在于,包括:
称取如权利要求1所述的卟啉基多孔聚合物和二氯化钯或醋酸钯,然后分散在溶剂中;超声后,经处理得到卟啉基多孔聚合物负载钯催化剂。
9.根据权利要求8所述的制备方法,其特征在于,具体包括如下步骤:
(1)所述二氯化钯或醋酸钯的用量为:卟啉基多孔聚合物的质量:二氯化钯或醋酸钯中所含的钯的质量=1:0.01~0.1;
(2)分散方式为超声,超声时间为1~5小时,分散溶剂为水或乙醇或甲醇或DMF,载体质量浓度为5~10mg/mL;
(3)所述处理为过滤或离心,固体用50%乙醇和水洗涤,最后真空干燥。
10.一种卟啉基多孔有机聚合物负载钯催化剂的用途,该催化剂用于Suzuki-Miyaura交叉偶联反应,其特征在于,包括:
将反应物与如权利要求8或9所制备得到的催化剂混合,在溶剂中加热反应,生成产物。
11.根据权利要求10所述的用途,其特征在于:
所述反应物是将芳香卤代物、硼酸衍生物、碱,用量为:芳香卤代物:硼酸衍生物:碱:催化剂(摩尔比)为1.2~1.5:1:0.001~0.01;所述溶剂为含水乙醇,所述乙醇:水(体积比)为1:1;所述加热的温度为溶剂的回流温度。
12.一种卟啉基多孔有机聚合物负载钯催化剂的用途,该催化剂用于芳香硝基化合物硝基还原反应,其特征在于,包括:
取等体积的一定浓度的对硝基苯酚溶液和硼氢化钠溶液混合后,加入所述催化剂,室温下搅拌反应,生成对氨基苯酚。
13.根据权利要求12所述的用途,其特征在于:
所述对硝基苯酚溶液的浓度为0.02~0.2mM;所述硼氢化钠的浓度为对硝基苯酚的100~500倍;加入所述催化剂的量为对硝基苯酚的1~5mol%。
CN202111338167.5A 2021-11-10 2021-11-10 卟啉基多孔有机聚合物、制备方法及其负载钯催化剂的制备方法与用途 Active CN114369240B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111338167.5A CN114369240B (zh) 2021-11-10 2021-11-10 卟啉基多孔有机聚合物、制备方法及其负载钯催化剂的制备方法与用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111338167.5A CN114369240B (zh) 2021-11-10 2021-11-10 卟啉基多孔有机聚合物、制备方法及其负载钯催化剂的制备方法与用途

Publications (2)

Publication Number Publication Date
CN114369240A true CN114369240A (zh) 2022-04-19
CN114369240B CN114369240B (zh) 2023-07-14

Family

ID=81138462

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111338167.5A Active CN114369240B (zh) 2021-11-10 2021-11-10 卟啉基多孔有机聚合物、制备方法及其负载钯催化剂的制备方法与用途

Country Status (1)

Country Link
CN (1) CN114369240B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032291A (en) * 1990-06-22 1991-07-16 Abb Environmental Services Inc. Catalytic reduction of nitro- and nitroso- substituted compounds
US6054617A (en) * 1995-08-14 2000-04-25 Clariant Gmbh Nitro compound-reducing process
CN105921178A (zh) * 2016-04-27 2016-09-07 吉林大学 一种多孔芳香骨架化合物固载金属钯催化剂PAF11-Pd及其制备方法和应用
CN107746452A (zh) * 2017-10-24 2018-03-02 大连理工大学 基于微‑介孔酚醛树脂的钯负载异相催化剂及其制备方法
CN109867770A (zh) * 2019-03-11 2019-06-11 吉林大学 基于卟啉官能团的共轭微孔聚合物及其制备方法与应用
CN109926088A (zh) * 2019-03-22 2019-06-25 三峡大学 卟啉稳定的钯纳米催化剂的制备方法及应用
CN111683987A (zh) * 2017-12-12 2020-09-18 韩国科学技术院 多孔卟啉聚合物以及使用其回收贵金属元素的方法
CN112756012A (zh) * 2019-11-05 2021-05-07 六盘水师范学院 一种亲水性有机多孔聚合物负载钯催化剂及其制备方法和应用
CN113333021A (zh) * 2021-04-07 2021-09-03 贵研铂业股份有限公司 具有高催化活性的多孔聚合物负载钯催化剂及其在催化Suzuki-Miyaura反应中的应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032291A (en) * 1990-06-22 1991-07-16 Abb Environmental Services Inc. Catalytic reduction of nitro- and nitroso- substituted compounds
US6054617A (en) * 1995-08-14 2000-04-25 Clariant Gmbh Nitro compound-reducing process
CN105921178A (zh) * 2016-04-27 2016-09-07 吉林大学 一种多孔芳香骨架化合物固载金属钯催化剂PAF11-Pd及其制备方法和应用
CN107746452A (zh) * 2017-10-24 2018-03-02 大连理工大学 基于微‑介孔酚醛树脂的钯负载异相催化剂及其制备方法
CN111683987A (zh) * 2017-12-12 2020-09-18 韩国科学技术院 多孔卟啉聚合物以及使用其回收贵金属元素的方法
CN109867770A (zh) * 2019-03-11 2019-06-11 吉林大学 基于卟啉官能团的共轭微孔聚合物及其制备方法与应用
CN109926088A (zh) * 2019-03-22 2019-06-25 三峡大学 卟啉稳定的钯纳米催化剂的制备方法及应用
CN112756012A (zh) * 2019-11-05 2021-05-07 六盘水师范学院 一种亲水性有机多孔聚合物负载钯催化剂及其制备方法和应用
CN113333021A (zh) * 2021-04-07 2021-09-03 贵研铂业股份有限公司 具有高催化活性的多孔聚合物负载钯催化剂及其在催化Suzuki-Miyaura反应中的应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
LIMING TAO等: "《Azo-bridged covalent porphyrinic polymers (Azo-CPPs): synthesis and CO2 capture properties》", 《RSC ADVANCES》 *
YEONGRAN HONG等: "《Precious metal recovery from electronic waste by a porous porphyrin polymer》", 《PNAS》 *
张伟杰等: "《卟啉非均相催化剂的设计、合成及其催化性能研究》", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *
王倩: "《共价有机聚合物的制备及其在有机催化和荧光传感方面的应用》", 《万方数据》 *
许燕飞等: "《基于偶氮桥连卟啉的共轭微孔聚合物的制备及其表征》", 《功能材料》 *

Also Published As

Publication number Publication date
CN114369240B (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
CN110016126B (zh) 一种共轭微孔聚合物及其制备方法与应用
CN101940948B (zh) 交联聚苯乙烯微球固载金属卟啉的方法
CN111995635B (zh) 壳聚糖负载铜膜材料催化制备有机硅化合物的方法
WO2022105250A1 (zh) 邻苯二酚衍生的多孔聚合物的制备及其负载高自旋单原子铁的光催化应用
CN113617388B (zh) 基于多孔吡啶基共价有机框架的银纳米催化剂及其制备方法和应用
CN105665017B (zh) 一种用于Suzuki‑Miyaura偶联反应的负载型Pd催化剂及其制备方法
CN111589443B (zh) 一种石墨烯负载钯纳米颗粒复合材料催化剂的制备方法
CN113751076A (zh) 双咪唑鎓盐钯负载多孔有机聚合物催化剂及其制法与应用
Zhang et al. β-Cyclodextrin polymer networks stabilized gold nanoparticle with superior catalytic activities
Wu et al. A robust heterogeneous Co-MOF catalyst in azide–alkyne cycloaddition and Friedel–Crafts reactions as well as hydrosilylation of alkynes
CN101721977A (zh) 载钯螯合树脂及其制备方法
Parmar et al. Harnessing bimetallic oxide nanoparticles on ionic liquid functionalized silica for enhanced catalytic performance
CN114369240B (zh) 卟啉基多孔有机聚合物、制备方法及其负载钯催化剂的制备方法与用途
CN102500418B (zh) 磁性双齿亚胺钯配体催化剂的制备方法
CN109762142B (zh) 一种基于光热效应调控二氧化碳吸附的共轭高分子材料
CN109701574B (zh) 氮修饰炭载贵金属加氢催化剂的制备和在吡啶环类化合物加氢反应中的应用
CN110152739B (zh) 原位负载钯纳米颗粒的多孔有机复合物、合成方法及应用
CN101786016B (zh) 一种固载化Lewis酸催化剂的制备及其应用方法
CN113731454B (zh) 一种负载杂多酸的氮掺杂碳复合材料的制备与催化应用
CN113578380B (zh) 一种基于丙基咪唑官能团化的柱[5]芳烃离子液体催化剂及其制备方法
Huang et al. Highly efficient azide-alkyne cycloaddition over CuI-modified covalent triazine frameworks in water
KR101263918B1 (ko) 담지촉매 및 이 촉매의 존재하에 진행되는 셀룰로오스의 소르비톨로의 선택적 촉매 전환 방법
CN110201717B (zh) 一种铜基金属有机多面体复合材料的制备方法与应用
CN107827693B (zh) 石墨烯负载钯/铂催化sp3C-H键偶联合成1,2-二苯乙烷衍生物的方法
CN112827510A (zh) 一种用于催化合成碳酸丙烯酯的多孔复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: No. 988, Keji Road, high tech Development Zone, Kunming, Yunnan 650000 (Kunming Precious Metals Research Institute)

Patentee after: Yunnan Precious Metal New Materials Holding Group Co.,Ltd.

Country or region after: China

Address before: No. 988, Keji Road, high tech Development Zone, Kunming, Yunnan 650000 (Kunming Precious Metals Research Institute)

Patentee before: Sino-Platinum Metals Co.,Ltd.

Country or region before: China

CP03 Change of name, title or address