CN114242813A - 一种CuI/ZTO异质结紫外探测器及其制备方法 - Google Patents

一种CuI/ZTO异质结紫外探测器及其制备方法 Download PDF

Info

Publication number
CN114242813A
CN114242813A CN202111498278.2A CN202111498278A CN114242813A CN 114242813 A CN114242813 A CN 114242813A CN 202111498278 A CN202111498278 A CN 202111498278A CN 114242813 A CN114242813 A CN 114242813A
Authority
CN
China
Prior art keywords
zto
cui
layer
ultraviolet detector
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111498278.2A
Other languages
English (en)
Other versions
CN114242813B (zh
Inventor
潘新花
刘云泽
叶志镇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenzhou Research Institute Of Zhejiang University
Zhejiang University ZJU
Original Assignee
Wenzhou Research Institute Of Zhejiang University
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou Research Institute Of Zhejiang University, Zhejiang University ZJU filed Critical Wenzhou Research Institute Of Zhejiang University
Priority to CN202111498278.2A priority Critical patent/CN114242813B/zh
Publication of CN114242813A publication Critical patent/CN114242813A/zh
Application granted granted Critical
Publication of CN114242813B publication Critical patent/CN114242813B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02963Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种CuI/ZTO异质结紫外探测器及其制备方法,该紫外探测器自下而上依次有ITO导电玻璃、ZnSnO(ZTO)层、CuI层,其中ITO导电玻璃和CuI层上制备有Au电极。其制备方法如下:先采用脉冲激光沉积(PLD)方法在ITO导电玻璃上制备ZTO薄膜,然后将配置好的CuI前驱体溶液旋涂在ZTO薄膜上,旋涂数次并退火,再用电子束蒸发在CuI和ITO表面镀上Au作为电极,完成紫外探测器的制备。相比于传统的紫外探测器,此方法制备的紫外探测器能在零偏压下实现高开关比和高响应速度,且结构简单、制备成本低,在军事、民用以及一些特殊领域有重要的应用价值。

Description

一种CuI/ZTO异质结紫外探测器及其制备方法
技术领域
本发明涉及一种紫外探测器及其制备方法,尤其涉及一种基于CuI/ZTO异质结紫外波段探测器及其制备方法,属于半导体器件技术领域。
背景技术
紫外探测技术是一项继红外探测技术和激光技术之后发展起来的新型的军民两用技术,在环境和生物监测、光谱分析、光焰预警、空间通信等领域具有重要的应用价值。目前市场上主流的探测器结构是基于p-n结的光电二极管,它可以利用内建电场实现在零偏压下的自驱动性能,获得轻量、节能的光电器件,同时也能有效降低器件暗电流、提高器件响应速度。
传统的p型半导体材料往往具有较低的空穴迁移率,或需要在高温下制备,对衬底要求高,限制了其大规模应用。碘化亚铜是一种新型p型半导体材料,具有带隙宽(3.1eV)、空穴浓度高、空穴迁移率高等特性,能够在室温下结晶,已经成功在LED、光电探测器、薄膜晶体管等半导体器件中实现应用。对于n型半导体材料,氧化锌具有带隙宽、结合能大、成本低等特性,广泛应用在紫外光电探测结构中,但纯氧化锌材料中往往存在大量的缺陷态,对光响应性能造成不利影响。而在氧化锌中掺入锡元素,即时在非晶相中也能维持高电子迁移率,进一步降低薄膜电阻率,且非晶相可以显著改善薄膜表面粗糙度,提高薄膜在可见光波段的透过率。另外,锌锡氧可以代替传统的铟镓锌氧非晶氧化物应用在薄膜晶体管中,有望解决铟元素短缺和国外技术封锁问题,有效降低生产成本。
发明内容
本发明的目的是提供一种制备成本低、工艺简单易于生产,且开关比高、响应速度快、稳定性高的CuI/ZTO异质结紫外探测器及其制备方法,以用于透明柔性电子设备。
本发明提供的一种基于CuI/ZTO异质结紫外探测器,自下而上依次有ITO导电玻璃、ZnSnO(ZTO)层、CuI层,所述ITO导电玻璃和CuI层生长有Au电极。
本发明的CuI/ZTO异质结紫外探测器,其制备方法包括以下步骤:
1)清洗ITO导电玻璃,获得表面洁净无杂质且无氧吸附的ITO片:
将ITO导电玻璃分别使用丙酮、乙醇和去离子水超声清洗15min,清洗结束后用氮气吹干表面,并放入等离子体清洗机中清洗10~15min,以去除衬底表面杂质和氧吸附,获得洁净的表面。
2)采用脉冲激光沉积(PLD)方法在洁净的ITO衬底表面沉积200~400nm的ZTO层:
准备纯度为99.99%的ZTO靶材,将所述靶材固定于脉冲激光沉积设备腔室的靶托上;将清洗过的ITO衬底固定在沉积设备腔室中的样品台上;
依次打开机械泵和分子泵,使腔体真空度达到1×10-5Pa,打开氧气阀门,在真空腔室内通入氧气,调节压强为6Pa。
打开激光器,预热10min后调整激光能量为250mJ/cm2,激光频率为5Hz,使激光聚焦在ZTO靶材表面并烧蚀靶材。预沉积5min后,移开靶材和衬底之间的挡板,在ITO衬底表面沉积ZTO薄膜,沉积15min后关闭激光。取出衬底,在空气气氛中进行退火,退火温度为200~400℃,时间为1h,获得ZTO层。
3)在ZTO层表面旋涂50~100nm的CuI层:
将纯度为99.999%的CuI粉末溶解于乙腈溶剂,在室温下搅拌12h获得溶液A,然后用孔径为0.22μm的尼龙滤头对A溶液进行过滤,获得CuI前驱体溶液。
在步骤2)获得的ZTO层上旋涂上述CuI前驱体溶液,转速为2500r/min,旋涂时间为40s,然后在氮气气氛中进行退火,退火温度为100℃,退火时间为10min,旋涂并退火1~2次后获得CuI层。
4)在CuI层和ITO层表面蒸镀Au电极,完成CuI/ZTO异质结紫外探测器的制备:
将步骤3)处理后的样品放入电子束蒸发设备中,抽真空至6×10-4Pa,以纯度为99.999%的Au颗粒为蒸发源,在CuI层和ITO导电层上蒸镀厚度为50nm的Au电极,获得CuI/ZTO异质结紫外探测器。
本发明的CuI/ZTO异质结紫外探测器的工作原理是:在CuI和ZTO界面处,由于化学势不同形成内建电场,当紫外光照射时,处在价带中的电子吸收光子能量跃迁到导带,并在价带中形成空穴,两者在内建电场的作用下向相反方向漂移,被电极收集后进入外电路产生光电流,完成光信号和电信号之间的转换。由于p-n结本身存在的内建电场可以达到分离光生载流子的目的,因此该器件可以在不提供外界电压的条件下工作,适应光电器件轻量化、节能化的发展趋势。
本发明的有益效果在于:
1)本发明在传统的n型材料ZnO中掺入Sn元素,使ZnO转为非晶相,保持薄膜表面平整度,并且保持较高的电子迁移率,通过Sn元素调控ZnO中的氧缺陷,进一步降低薄膜电阻率,同时能够提高薄膜的可见光透过率;
2)本发明首次提出基于CuI/ZTO异质结光电探测器的制备思路,相较于单层ZTO薄膜探测器,利用简单的旋涂方法在其上方制备CuI层,并构建p-n结,可以实现零偏压下的光探测,大大提高器件响应速度,具有低功耗的特点,且稳定性和重复性好;
3)本发明的紫外探测器结构简单,其制备方法简便且成本低,适应大规模制备,并有望应用在透明柔性器件中,在军事、民用以及一些特殊领域有重要的应用价值。
附图说明
图1是基于CuI/ZTO异质结紫外探测器的结构示意图,图中:1为ITO衬底、2为ZTO层、3为CuI层、4为Au电极。
图2是实施例1在黑暗和光照条件下的伏安特性曲线,光照时使用波长为365nm、功率为1000μW/cm2的紫外光。
图3是实施例1在黑暗和光照条件下的响应曲线,光照时使用波长为365nm、功率为1000μW/cm2的紫外光。
图4是实施例2在黑暗和光照条件下的伏安特性曲线,光照时使用波长为365nm、功率为1000μW/cm2的紫外光。
图5是实施例2在黑暗和光照条件下的响应曲线,光照时使用波长为365nm、功率为1000μW/cm2的紫外光。
图6是实施例3在黑暗和光照条件下的伏安特性曲线,光照时使用波长为365nm、功率为1000μW/cm2的紫外光。
图7是实施例3在黑暗和光照条件下的响应曲线,光照时使用波长为365nm、功率为1000μW/cm2的紫外光。
图8是对比例1在黑暗和光照条件下的响应曲线,光照时使用波长为365nm、功率为1000μW/cm2的紫外光。
图9是对比例2在黑暗和光照条件下的响应曲线,光照时使用波长为365nm、功率为1000μW/cm2的紫外光。
具体实施方式
以下结合附图及具体实施例对本发明做进一步阐述。
参照图1,本发明的CuI/ZTO异质结紫外探测器,自下而上依次有ITO导电玻璃1、ZTO层2、CuI层3和Au电极4。
实施例1
1)将ITO导电玻璃分别使用丙酮、乙醇和去离子水超声清洗15min,清洗结束后用氮气吹干残留在衬底表面的水分,将清洗后的ITO导电玻璃放入等离子体清洗机中清洗15min,以去除衬底表面杂质和氧吸附,完成对衬底的预处理。
2)将纯度为99.99%的ZTO靶材固定在腔室内的靶台上,将清洗好的ITO衬底固定在样品台上,用挡板将靶材和衬底隔开,调整靶材到衬底的距离为6.0cm。依次关好腔室门和漏气阀,依次打开机械泵和分子泵,约2h后达到实验所需的10-5Pa真空度。在真空腔室内通入O2,调节流量计,使腔室内气压保持在6Pa。打开激光器,预热10min后将激光能量调整为250mJ/cm2,激光频率调整为5Hz,使激光束聚焦在ZTO靶面并烧蚀靶材,形成羽辉。预沉积5min后打开靶材与衬底之间的挡板,在ITO衬底表面沉积ZTO非晶薄膜15min。沉积结束后关闭激光器和真空系统,获得厚度为300nm的ZTO非晶薄膜,最后在大气氛围下250℃退火60min。
3)称取0.095g的CuI粉末溶解于5mL的乙腈溶剂,室温下搅拌12h,然后用孔径为0.22μm的尼龙滤头对溶液进行过滤,将过滤后的溶液陈化12h后得到CuI前驱体溶液;
4)在ZTO层上旋涂步骤3)的CuI前驱体溶液,转速为2500r/min,旋涂40s,旋涂后在100℃退火10min,获得厚度为50nm的CuI层;
5)将步骤4)处理后的样品放入电子束蒸发设备中,抽真空至6×10-4Pa,以纯度为99.999%的Au颗粒为蒸发源,在ITO导电层和CuI层上蒸镀厚度为50nm的Au电极,获得CuI/ZTO异质结紫外探测器。
本例制得的CuI/ZTO异质结紫外探测器的响应度为69mA/W,开关比为319,上升时间和下降时间分别为221ms和222ms。
实施例2
1)将ITO导电玻璃分别使用丙酮、乙醇和去离子水超声清洗15min,清洗结束后用氮气吹干残留在衬底表面的水分,将清洗后的ITO导电玻璃放入等离子体清洗机中清洗10min,以去除衬底表面杂质和氧吸附,完成对衬底的预处理。
2)将纯度为99.99%的ZTO靶材固定在腔室内的靶台上,将清洗好的ITO衬底固定在样品台上,用挡板将靶材和衬底隔开,调整靶材到衬底的距离为6.0cm。依次关好腔室门和漏气阀,依次打开机械泵和分子泵,约2h后达到实验所需的10-5Pa真空度。在真空腔室内通入O2,调节流量计,使腔室内气压保持在6Pa。打开激光器,预热10min后将激光能量调整为250mJ/cm2,激光频率调整为5Hz,使激光束聚焦在ZTO靶面并烧蚀靶材,形成羽辉。预沉积5min后打开靶材与衬底之间的挡板,在ITO衬底表面沉积ZTO非晶薄膜15min。沉积结束后关闭激光器和真空系统,获得厚度为300nm的ZTO非晶薄膜,最后在大气氛围下250℃退火60min。
3)称取0.095g的CuI粉末溶解于5mL的乙腈溶剂,室温下搅拌12h,然后用孔径为0.22μm的尼龙滤头对溶液进行过滤,将过滤后的溶液陈化12h后得到CuI前驱体溶液;
4)在ZTO层上旋涂步骤3)的CuI前驱体溶液,转速为2500r/min,旋涂40s,旋涂后在100℃退火10min,旋涂并退火2次后获得厚度为70nm的CuI层;
5)将步骤4)处理后的样品放入电子束蒸发设备中,抽真空至6×10-4Pa,以纯度为99.999%的Au颗粒为蒸发源,在ITO导电层和CuI层上蒸镀厚度为50nm的Au电极,获得CuI/ZTO异质结紫外探测器。
本例制得的CuI/ZTO异质结紫外探测器的响应度为59mA/W,开关比为194,上升时间和下降时间分别为213ms和226ms。
实施例3
1)将ITO导电玻璃分别使用丙酮、乙醇和去离子水超声清洗15min,清洗结束后用氮气吹干残留在衬底表面的水分,将清洗后的ITO导电玻璃放入等离子体清洗机中清洗15min,以去除衬底表面杂质和氧吸附,完成对衬底的预处理。
2)将纯度为99.99%的ZTO靶材固定在腔室内的靶台上,将清洗好的ITO衬底固定在样品台上,用挡板将靶材和衬底隔开,调整靶材到衬底的距离为6.0cm。依次关好腔室门和漏气阀,依次打开机械泵和分子泵,约2h后达到实验所需的10-5Pa真空度。在真空腔室内通入O2,调节流量计,使腔室内气压保持在6Pa。打开激光器,预热10min后将激光能量调整为250mJ/cm2,激光频率调整为5Hz,使激光束聚焦在ZTO靶面并烧蚀靶材,形成羽辉。预沉积5min后打开靶材与衬底之间的挡板,在ITO衬底表面沉积ZTO非晶薄膜15min。沉积结束后关闭激光器和真空系统,获得厚度为300nm的ZTO非晶薄膜,最后在大气氛围下200℃退火60min。
3)称取0.095g的CuI粉末溶解于5mL的乙腈溶剂,室温下搅拌12h,然后用孔径为0.22μm的尼龙滤头对溶液进行过滤,将过滤后的溶液陈化12h后得到CuI前驱体溶液;
4)在ZTO层上旋涂步骤3)的CuI前驱体溶液,转速为2500r/min,旋涂40s,旋涂后在100℃退火10min,获得厚度为50nm的CuI层;
5)将步骤4)处理后的样品放入电子束蒸发设备中,抽真空至6×10-4Pa,以纯度为99.999%的Au颗粒为蒸发源,在ITO导电层和CuI层上蒸镀厚度为50nm的Au电极,获得CuI/ZTO异质结紫外探测器。
本例制得的CuI/ZTO异质结紫外探测器的响应度为45mA/W,开关比为212,上升时间和下降时间分别为209ms和475ms。
对比例1
1)将石英玻璃分别使用丙酮、乙醇和去离子水超声清洗15min,清洗结束后用氮气吹干残留在衬底表面的水分,将清洗后的石英衬底放入等离子体清洗机中清洗15min,以去除衬底表面杂质和氧吸附,完成对衬底的预处理。
2)将纯度为99.99%的ZnO靶材固定在腔室内的靶台上,将清洗好的石英衬底固定在样品台上,用挡板将靶材和衬底隔开,调整靶材到衬底的距离为6.0cm。依次关好腔室门和漏气阀,依次打开机械泵和分子泵,约2h后达到实验所需的10-5Pa真空度。在真空腔室内通入O2,调节流量计,使腔室内气压保持在6Pa。打开激光器,预热10min后将激光能量调整为250mJ/cm2,激光频率调整为5Hz,使激光束聚焦在ZnO靶面并烧蚀靶材,形成羽辉。预沉积5min后打开靶材与衬底之间的挡板,在石英衬底表面沉积ZnO薄膜15min。沉积结束后关闭激光器和真空系统,获得厚度为300nm的ZnO薄膜,最后在大气氛围下250℃退火60min。
3)将步骤2)处理后的样品放入电子束蒸发设备中,抽真空至6×10-4Pa,以纯度为99.999%的Ti、Au颗粒为蒸发源,在ZnO上依次蒸镀厚度为20nm的Ti电极和50nm的Au电极,获得MSM结构紫外探测器。
从I-T曲线中可以看出,单层氧化锌在紫外光照射下具有很长的响应时间。
对比例2
1)将石英玻璃分别使用丙酮、乙醇和去离子水超声清洗15min,清洗结束后用氮气吹干残留在衬底表面的水分,将清洗后的石英衬底放入等离子体清洗机中清洗15min,以去除衬底表面杂质和氧吸附,完成对衬底的预处理。
2)将纯度为99.99%的ZTO靶材固定在腔室内的靶台上,将清洗好的石英衬底固定在样品台上,用挡板将靶材和衬底隔开,调整靶材到衬底的距离为6.0cm。依次关好腔室门和漏气阀,依次打开机械泵和分子泵,约2h后达到实验所需的10-5Pa真空度。在真空腔室内通入O2,调节流量计,使腔室内气压保持在6Pa。打开激光器,预热10min后将激光能量调整为250mJ/cm2,激光频率调整为5Hz,使激光束聚焦在ZTO靶面并烧蚀靶材,形成羽辉。预沉积5min后打开靶材与衬底之间的挡板,在石英衬底表面沉积ZTO薄膜15min。沉积结束后关闭激光器和真空系统,获得厚度为300nm的ZTO薄膜,最后在大气氛围下250℃退火60min。
3)将步骤2)处理后的样品放入电子束蒸发设备中,抽真空至6×10-4Pa,以纯度为99.999%的Ti、Au颗粒为蒸发源,在ZTO上依次蒸镀厚度为20nm的Ti电极和50nm的Au电极,获得MSM结构紫外探测器。
从I-T曲线中可以看出,锌锡氧在紫外光照射下响应时间明显降低,器件性能得到改善。

Claims (6)

1.一种CuI/ZTO异质结紫外探测器,其特征在于:包括依次叠置的ITO衬底(1)、ZTO层(2)、CuI层(3),所述ITO衬底和CuI层上制备有电极(4)。
2.一种CuI/ZTO异质结紫外探测器的制备方法,其特征在于,该制备方法包括以下步骤:
1)清洗ITO衬底,获得表面洁净无杂质且无氧吸附的ITO衬底;
2)采用PLD方法在洁净的ITO衬底表面沉积ZTO层;
3)在ZTO层表面旋涂CuI层;
4)在CuI层和ITO层表面蒸镀Au电极,得到CuI/ZTO异质结紫外探测器。
3.根据权利要求2所述的CuI/ZTO异质结紫外探测器的制备方法,其特征在于,所述ZTO层的厚度为200~400nm,所述CuI层的厚度为50~100nm。
4.根据权利要求2所述的CuI/ZTO异质结紫外探测器的制备方法,其特征在于,所述步骤1)具体为:将ITO导电玻璃分别使用丙酮、乙醇和去离子水超声清洗,清洗结束后吹干表面,并放入等离子体清洗机中清洗,去除衬底表面杂质和氧吸附。
5.根据权利要求2所述的CuI/ZTO异质结紫外探测器的制备方法,其特征在于,所述步骤2)具体为:准备ZTO靶材,将ZTO靶材和ITO衬底固定于脉冲激光沉积设备腔室相应位置,采用PLD方法在ITO衬底表面沉积ZTO薄膜;沉积完成后,取出衬底,在空气气氛中进行退火,退火温度为200~400℃,时间为1h,在ITO衬底上得到ZTO层。
6.根据权利要求2所述的CuI/ZTO异质结紫外探测器的制备方法,其特征在于,所述步骤3)具体为:将CuI粉末溶解于乙腈溶剂,在室温下搅拌12h获得溶液A,然后对溶液A进行过滤,获得CuI前驱体溶液;
在步骤2)获得的ZTO层上旋涂所述CuI前驱体溶液,并进行退火;所述旋涂并退火进行1~2次,在ZTO层上得到CuI层。
CN202111498278.2A 2021-12-09 2021-12-09 一种CuI/ZTO异质结紫外探测器及其制备方法 Active CN114242813B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111498278.2A CN114242813B (zh) 2021-12-09 2021-12-09 一种CuI/ZTO异质结紫外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111498278.2A CN114242813B (zh) 2021-12-09 2021-12-09 一种CuI/ZTO异质结紫外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN114242813A true CN114242813A (zh) 2022-03-25
CN114242813B CN114242813B (zh) 2023-08-29

Family

ID=80754219

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111498278.2A Active CN114242813B (zh) 2021-12-09 2021-12-09 一种CuI/ZTO异质结紫外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN114242813B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694052A (zh) * 2011-03-22 2012-09-26 中国科学院微电子研究所 半导体器件及其制造方法
CN103390661A (zh) * 2013-07-29 2013-11-13 汪贤才 一种p-CuI/n-ZnO透明异质结及其制备方法
CN106601864A (zh) * 2016-05-25 2017-04-26 北京纳米能源与系统研究所 紫外光探测器及其制备方法和应力调制灵敏度的方法
CN108649094A (zh) * 2018-05-14 2018-10-12 南京邮电大学 Cu/CuI/ZnO结构的紫外光探测器及其制备方法
CN111312847A (zh) * 2020-02-29 2020-06-19 华南理工大学 一种CuI-Au-ZnO自供电紫外探测器及其制备方法
CN111564509A (zh) * 2020-06-16 2020-08-21 山东大学 一种全氧化物柔性光电探测器及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694052A (zh) * 2011-03-22 2012-09-26 中国科学院微电子研究所 半导体器件及其制造方法
CN103390661A (zh) * 2013-07-29 2013-11-13 汪贤才 一种p-CuI/n-ZnO透明异质结及其制备方法
CN106601864A (zh) * 2016-05-25 2017-04-26 北京纳米能源与系统研究所 紫外光探测器及其制备方法和应力调制灵敏度的方法
CN108649094A (zh) * 2018-05-14 2018-10-12 南京邮电大学 Cu/CuI/ZnO结构的紫外光探测器及其制备方法
CN111312847A (zh) * 2020-02-29 2020-06-19 华南理工大学 一种CuI-Au-ZnO自供电紫外探测器及其制备方法
CN111564509A (zh) * 2020-06-16 2020-08-21 山东大学 一种全氧化物柔性光电探测器及其制备方法与应用

Also Published As

Publication number Publication date
CN114242813B (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
Cao et al. High-performance UV–vis photodetectors based on electrospun ZnO nanofiber-solution processed perovskite hybrid structures
CN101807619B (zh) 一种透明柔性紫外探测器及其制备方法
CN110165000B (zh) 一种基于宽禁带无铅钙钛矿铯铜碘微晶薄膜的深紫外光电探测器及其制备方法
CN105870334B (zh) 一种高效钙钛矿单晶光探测器及其制备方法
CN107369763A (zh) 基于Ga2O3/钙钛矿异质结的光电探测器及其制备方法
CN107331775B (zh) 一种高质量电子传输层的钙钛矿太阳电池及其制备方法
CN109841703B (zh) 一种全无机钙钛矿光电探测器及其制备方法
CN103500776A (zh) 一种硅基CdZnTe薄膜紫外光探测器的制备方法
Chen et al. Photoelectrical and low-frequency noise characteristics of ZnO nanorod photodetectors prepared on flexible substrate
CN110729376A (zh) 基于氧化镍/β-三氧化二镓异质结的紫外探测器及其制备方法
CN111564509B (zh) 一种全氧化物柔性光电探测器及其制备方法与应用
CN108735826B (zh) 一种玻璃纤维基柔性氧化镓纳米阵列日盲紫外探测器及其制备方法
Fareed et al. Influence of Cr doping on Schottky barrier height and visible light detection of ZnO thin films deposited by magnetron sputtering
CN112038443B (zh) 一种氧化镓多晶薄膜晶体管型紫外探测器的制备方法
CN114242813B (zh) 一种CuI/ZTO异质结紫外探测器及其制备方法
CN113206168A (zh) 可见光探测器及制备方法
CN104952967A (zh) 一种ZnO基薄膜晶体管型紫外探测器及其制备方法
CN110491966B (zh) 碲化铂/甲基氨铅溴钙钛矿单晶异质结光电探测器及其制作方法
Guo et al. Durable and stable UV–Vis perovskite photodetectors based on CH 3 NH 3 PbI 3 crystals synthesized via a solvothermal method
CN107293602B (zh) 基于氧化锌/石墨烯/氧化锌三明治结构的光电探测器
CN113113499A (zh) 一种pn结型氧化镓基自供电紫外探测器及其制备方法
CN113990969B (zh) 一种基于硫化亚锡/氧化镓异质pn结紫外探测器及制备方法
TWI532199B (zh) 具有氧化鋅奈米片構造層之紫外光檢測器及其製造方法
CN117577728A (zh) 一种高缺陷n型非晶硅锗层的可调波段硫硒化锑光电探测器及其制备方法
CN113140641B (zh) 一种柔性二维材料光探测器阵列及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant