CN111312847A - 一种CuI-Au-ZnO自供电紫外探测器及其制备方法 - Google Patents

一种CuI-Au-ZnO自供电紫外探测器及其制备方法 Download PDF

Info

Publication number
CN111312847A
CN111312847A CN202010133016.5A CN202010133016A CN111312847A CN 111312847 A CN111312847 A CN 111312847A CN 202010133016 A CN202010133016 A CN 202010133016A CN 111312847 A CN111312847 A CN 111312847A
Authority
CN
China
Prior art keywords
cui
layer
zno
ultraviolet detector
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010133016.5A
Other languages
English (en)
Other versions
CN111312847B (zh
Inventor
季小红
曹发
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202010133016.5A priority Critical patent/CN111312847B/zh
Publication of CN111312847A publication Critical patent/CN111312847A/zh
Application granted granted Critical
Publication of CN111312847B publication Critical patent/CN111312847B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种CuI‑Au‑ZnO自供电紫外探测器及其制备方法。该方法包括:用原子束沉积设备在二氧化硅衬底上制备一层氧化锌薄膜;在氧化锌薄膜表面等离子溅射金纳米颗粒;用直流磁控溅射方法在金纳米颗粒上溅射一层金属铜,在碘蒸气下碘化形成碘化亚铜。本发明通过在p型碘化亚铜和n型氧化锌中间加上一层金纳米颗粒形成了ZnO/Au/CuI异质结结构紫外光探测器,为制作高性能自供电紫外探测器提供了新的方法。本发明是基于ZnO/Au/CuI异质结的薄膜紫外光探测器,采用等离子金插入异质结中间使得异质结对紫外线利用效率增加,所制成的探测器具有较高的灵敏度。

Description

一种CuI-Au-ZnO自供电紫外探测器及其制备方法
技术领域
本发明属于无机材料器件制造工艺领域,具体涉及一种CuI-Au-ZnO自供电紫外探测器及其制备方法。
背景技术
在紫外探测领域,目前已经投入应用的是光电倍增管和硅基紫外光电管。光电倍增管需要在高电压下工作,而且体积笨重,易损坏,对于实际应用有一定的局限性。硅基紫外光电管需要附带滤波片,这增加了器件制备的复杂性,并降低了探测器的性能。基于第三代半导体的紫外探测器,由于其本身禁带宽度较大,在紫外探测过程中,可以避免可见光的干扰,避免了附带滤波片的使用。其中基于第三代半导体的自供电紫外探测器件更是有利于紫外探测器的小型化,集成化发展趋势。
氧化锌作为第三代宽禁带半导体的典型代表,在紫外探测领域展现出了很大的应用潜力,但是基于氧化锌半导体自供电紫外探测器的性能仍不能达到应用的水平,例如,Liu等人(Liu et al.Nanoscale Research Letters(2016)11:281DOI 10.1186/s11671-016-1499-1)在铜丝上制备了碘化亚铜-氧化锌的核壳异质结,器件在自供电探测领域性能很弱,作者并没有进行深入研究。其余关于自供电氧化锌-碘化亚铜异质结探测器的报道较少,因此,一种简单可行的增加氧化锌自供电紫外探测器的性能的方法是当前研究工作的重点内容。
纳米金颗粒和氧化锌半导体的复合,在光照情况下,可以使得金纳米颗粒中部分发生共振的电子跃迁到半导体的价带,可以为半导体提供大量的电子,有可能在紫外探测领域实现一定的应用价值。
发明内容
为了克服现有技术存在的上述不足,本发明的目的是提供一种CuI-Au-ZnO自供电紫外探测器及其制备方法。
本发明的目的在于通过纳米金颗粒插入CuI和ZnO纳米层中间,利用金纳米颗粒的表面等离子体共振效应增加自供电光电探测器的探测性能。
本发明提供的CuI-Au-ZnO自供电紫外探测器的制备方法是一种基于半导体异质结薄膜(ZnO/Au/CuI)紫外探测器的制造方法。
本发明的目的至少通过如下技术方案之一实现。
本发明提供一种CuI-Au-ZnO自供电紫外探测器,包括Si层、SiO2层、ZnO层、CuI层、Au颗粒及Ag电极;所述SiO2层层叠在Si层上;所述ZnO层层叠在SiO2层上;所述Au颗粒溅射在所述ZnO层上;所述CuI层与ZnO层连接;所述CuI层与Au颗粒连接;所述Ag电极有两个,这两个Ag电极分别与CuI层和ZnO层连接。
进一步地,所述Au颗粒的直径为6-20nm。
本发明提供的一种制备所述的CuI-Au-ZnO自供电紫外探测器的方法,包括如下步骤:
(1)将衬底进行表面预处理:采用二氧化硅作为衬底,洗涤,洗去表面杂质和有机物,氮气吹干,放入原子束沉积腔体中备用;
(2)氧化锌薄膜生长:在步骤(1)所述衬底上采用原子束沉积的方法制备氧化锌薄膜;
(3)等离子金溅射:在步骤(2)所述氧化锌薄膜的表面上用离子溅射的方法溅射一层金纳米颗粒;
(4)碘化亚铜的制备:在步骤(3)所述金纳米颗粒上采用直流磁控溅射的方法制备一层铜薄膜;然后在碘蒸气下将铜薄膜碘化为碘化亚铜薄膜;
(5)银电极制作:对步骤(3)所述氧化锌薄膜和步骤(4)所述碘化亚铜薄膜上分别进行掩膜,然后将低温银浆刷在掩膜版上,掩膜版上正方形孔的边长为0.2cm,然后将器件在空气氛围下进行退火处理,形成欧姆接触,得到所述CuI-Au-ZnO自供电紫外探测器(结构为Ag/CuI/Au/ZnO/Ag)。
进一步地,步骤(1)所述洗涤包括:用去离子水,酒精分别超声清洗10-15min。
进一步地,步骤(2)所述原子束沉积的条件为:温度为180-240℃,压强为0.15-0.2Torr;所述原子束沉积的原料为去离子水、氩气(99.99%)、氮气(99.99%)及二乙基锌(99.99%);所述原子束沉积包括:将二乙基锌脉冲0.02-0.03s,氩气吹扫40-60s,去离子水脉冲0.015-0.025s,氩气吹扫40-60s,循环此过程800-1200次,即可制得氧化锌薄膜。
进一步地,步骤(3)所述离子束溅射的条件:溅射电流为8-12mA,压强为0.08-0.12Pa,时间为15-45s。
进一步地,步骤(3)中,引入的金纳米颗粒的直径为6-20nm。
进一步地,步骤(4)所述直流磁控溅射的条件为:功率15-20w,氩气流量20-25sccm,压强0.4-0.5Pa,时间180-250s。
进一步地,步骤(4)所述碘化的温度为110-170℃。碘化用的碘单质纯度为99.99%,用量为0.5g。
进一步地,步骤(5)所述退火处理的温度为120-140℃,退火处理的时间为30-60min。
与现有技术相比,本发明具有如下优点和有益效果:
本发明提供的CuI-Au-ZnO自供电紫外探测器,通过金纳米颗粒修饰异质结的界面显著增强了异质结在自供电紫外光探测领域的探测性能。
附图说明
图1为本发明实施例中器件结构示意图;
其中,Si层1,SiO2层2,ZnO层3,Au颗粒4,CuI层5,Ag电极6;
图2(a)为实施例1制备的器件截面图,图2(b)为金纳米颗粒的原子力显微镜照片;
图3为ZnO、CuI和ZnO/Au/CuI异质结的x射线衍射图;
图4为实施例1制备的器件的EDS图谱;
图5为实施例1制备的ZnO,ZnO/Au,CuI,CuI/Au的吸收光谱;
图6(a)为实施例1制备的器件的IV曲线图(暗环境和紫外光照射下),图6(b)为所制备器件的IT图;
图7为实施例2制备的器件的IT图;
图8为实施例3制备的器件的IT图;
图9为实施例4制备的器件的IT图。
具体实施方式
以下结合实例对本发明的具体实施作进一步说明,但本发明的实施和保护不限于此。需指出的是,以下若有未特别详细说明之过程,均是本领域技术人员可参照现有技术实现或理解的。所用试剂或仪器未注明生产厂商者,视为可以通过市售购买得到的常规产品。
以下实施例中所制备的器件结构示意图如图1所示。
实施例提供的一种CuI-Au-ZnO自供电紫外探测器,包括Si层1、SiO2层2、ZnO层3、CuI层5、Au颗粒4及Ag电极6;所述SiO2层2层叠在Si层1上;所述ZnO层3层叠在SiO2层2上;所述Au颗粒4溅射在所述ZnO层3上;所述CuI层5与ZnO层3连接;所述CuI层5与Au颗粒4连接;所述Ag电极6有两个,这两个Ag电极6分别与CuI层5和ZnO层3连接。
实施例1
一种制备所述的CuI-Au-ZnO自供电紫外探测器的方法,包括如下步骤:
(1)衬底预处理:采用二氧化硅片作为衬底,用去离子水和乙醇分别超声清洗10min,洗去表面杂质与有机物,氮气吹干,放入原子束沉积腔体中;
(2)氧化锌薄膜生长过程:生长温度为200℃,压强0.2Torr;制备过程为二乙基锌(99.99%)脉冲时间0.02s,氩气(99.99%)吹扫40s,去离子水脉冲0.015s,氩气吹扫40s,循环此过程1000次,制得氧化锌薄膜,即所述ZnO层3;
(3)等离子金溅射:采用离子束溅射的方法,在氧化锌表面溅射一层Au纳米颗粒4;其中,溅射电流10mA,压强0.1Pa,时间为30s。
(4)碘化亚铜的制备:采用直流磁控溅射的方法制备一层铜薄膜,然后在碘蒸气下低温碘化为碘化亚铜,即所述CuI层5;其中,溅射条件为:功率20w,氩气20sccm,压强0.45Pa,时间200s;碘化条件为:碘单质(99.99%)0.5g,温度130℃;
(5)银电极制作:对氧化锌层和碘化亚铜层分别进行掩膜,将低温银浆刷在掩膜版上,掩膜版上正方形孔的边长为0.2cm,然后将器件在空气氛围下130℃退火30min处理以分别形成欧姆接触,得到Ag电极6;所述Ag电极6有两个,这两个Ag电极6分别与CuI层5和ZnO层3连接,最终制得可见光光探测器件结构为Ag/CuI/Au/ZnO/Ag。
本实施例制备的器件横截面SEM图如图2(a)所示。图2(a)中可以看出厚度约为180nm的氧化锌层生长在二氧化硅(~300nm)层上,氧化锌上部生长着碘化亚铜纳米颗粒,平均厚度为220nm,由于金纳米颗粒比较小,截面电镜并没有观测到,本发明用同样制备方法在二氧化硅衬底上制备了金纳米颗粒,通过原子力显微镜观测可知金纳米颗粒直径为15nm,如图2(b)所示。
本实施例制备的ZnO层、CuI层和Ag/CuI/Au/ZnO/Ag的X射线衍射图如图3所示。由图3可知ZnO和CuI分别对应于六方纤锌矿和立方结构,由于金纳米颗粒较小,含量较少,并没有相应的衍射峰。
本实施例制备的Ag/CuI/Au/ZnO/Ag的X射线能量色散谱如图4所示,除了Zn、O、Cu和I元素的信号外,可以明显看到Au元素的信号,证明的金纳米颗粒的存在。
本实施例制备的ZnO、ZnO/Au、CuI、CuI/Au的吸收光谱如图5所示,可以看到ZnO/Au和CuI/Au分别在560nm和530nm附近有明显增强的吸收峰,说明了金纳米颗粒在分别在ZnO和CuI半导体表面发生了局部表面等离子体共振效应。
图6(a)为利用本实施例制备的异质结器件的I-V曲线图。异质结在暗环境下表现出一定的整流特性,并且对紫外光有一定的响应性能。图6(b)是ZnO/CuI和ZnO/Au/CuI异质结在365nm紫外线照射下的IT曲线图,结果表明ZnO/Au/CuI异质结表现出明显优于ZnO/CuI的光探测性能,其开关比为~2816。(开关比=(光电流-暗电流)/暗电流)
实施例2
一种制备所述的CuI-Au-ZnO自供电紫外探测器的方法,包括如下步骤:
(1)衬底预处理:采用二氧化硅片作为衬底,用去离子水和乙醇分别超声清洗10-15min,洗去表面杂质与有机物,氮气氛围下吹干放入原子束沉积腔体中;
(2)氧化锌薄膜生长过程:生长温度为200℃,压强0.2Torr;制备过程为二乙基锌(99.99%)脉冲时间0.02s,氩气(99.99%)吹扫40s,去离子水脉冲0.015s,氩气吹扫40s,循环此过程1000次,即可制得氧化锌薄膜,即所述ZnO层3;
(3)等离子金溅射:采用离子束溅射的方法,在氧化锌表面溅射一层Au纳米颗粒4;其中,溅射电流10mA,压强0.1Pa,时间为30s;
(4)碘化亚铜的制备:采用直流磁控溅射的方法制备一层铜薄膜,然后在碘蒸气下低温碘化为碘化亚铜,即所述CuI层5;其中,溅射条件为:功率20W,氩气20sccm,压强0.45Pa,时间200s;碘化条件为:碘单质(99.99%)0.5g,温度110℃;
(5)银电极制作:对氧化锌层和碘化亚铜层分别进行掩膜,将低温银浆刷在掩膜版上,掩膜版上正方形孔的边长为0.2cm,然后将器件在空气氛围下130℃退火处理30min以分别形成欧姆接触,得到Ag电极6;所述Ag电极6有两个,这两个Ag电极6分别与CuI层5和ZnO层3连接,最终制得所述CuI-Au-ZnO自供电紫外探测器(其结构为Ag/CuI/Au/ZnO/Ag)。实施例2制得的CuI-Au-ZnO自供电紫外探测器,在365nm紫外线照射下的IT曲线图如图7所示,器件的开关比为~2040。
实施例3
一种制备所述的CuI-Au-ZnO自供电紫外探测器的方法,包括如下步骤:
(1)衬底预处理:采用二氧化硅片作为衬底,用去离子水和乙醇分别超声清洗10-15min,洗去表面杂质与有机物,氮气氛围下吹干放入原子束沉积腔体中;
(2)氧化锌薄膜生长过程:生长温度为200℃,压强0.2Torr;制备过程为二乙基锌(99.99%)脉冲时间0.02s,氩气(99.99%)吹扫40s,去离子水脉冲0.015s,氩气吹扫40s,循环此过程1000次,即可制得氧化锌薄膜,即所述ZnO层3;
(3)等离子金溅射:采用离子束溅射的方法,在氧化锌表面溅射一层Au纳米颗粒4;其中,溅射电流10mA,压强0.1Pa,时间为30s;
(4)碘化亚铜的制备:采用直流磁控溅射的方法制备一层铜薄膜,然后在碘蒸气下低温碘化为碘化亚铜,即所述CuI层5;其中,溅射条件为:功率20w,氩气20sccm,压强0.45Pa,时间200s;碘化条件为:碘单质(99.99%)0.5g,温度150℃。
(5)银电极制作:对氧化锌层和碘化亚铜层分别进行掩膜,将低温银浆刷在掩膜版上,掩膜版上正方形孔的边长为0.2cm,然后将器件在空气氛围下130℃退火处理30min以分别形成欧姆接触,得到Ag电极6;所述Ag电极6有两个,这两个Ag电极6分别与CuI层5和ZnO层3连接,最终制得CuI-Au-ZnO自供电紫外探测器(结构为Ag/CuI/Au/ZnO/Ag)。实施例3制得的CuI-Au-ZnO自供电紫外探测器,在365nm紫外线照射下的IT曲线图如图8所示,器件的开关比为~2415。
实施例4
一种制备所述的CuI-Au-ZnO自供电紫外探测器的方法,包括如下步骤:
(1)衬底预处理:采用二氧化硅片作为衬底,用去离子水和乙醇分别超声清洗10-15min,洗去表面杂质与有机物,氮气氛围下吹干放入原子束沉积腔体中;
(2)氧化锌薄膜生长过程:生长温度为200℃,压强0.2Torr;制备过程为二乙基锌(99.99%)脉冲时间0.02s,氩气(99.99%)吹扫40s,去离子水脉冲0.015s,氩气吹扫40s,循环此过程1000次,即可制得氧化锌薄膜,即所述ZnO层3;
(3)等离子金溅射:采用离子束溅射的方法,在氧化锌表面溅射一层Au纳米颗粒4;其中,溅射电流10mA,压强0.1Pa,时间为30s;
(4)碘化亚铜的制备:采用直流磁控溅射的方法制备一层铜薄膜,然后在碘蒸气下低温碘化为碘化亚铜,即所述CuI层5;其中,溅射条件为:功率20w,氩气20sccm,压强0.45Pa,时间200s;碘化条件为:碘单质(99.99%)0.5g,温度170℃;
(5)银电极制作:对氧化锌层和碘化亚铜层分别进行掩膜,将低温银浆刷在掩膜版上,掩膜版上正方形孔的边长为0.2cm,然后将器件在空气氛围下130℃退火处理30min以分别形成欧姆接触,得到Ag电极6;所述Ag电极6有两个,这两个Ag电极6分别与CuI层5和ZnO层3连接,最终制得可见光光探测器件结构为Ag/CuI/Au/ZnO/Ag。实施例3制得的CuI-Au-ZnO自供电紫外探测器,在365nm紫外线照射下的IT曲线图如图9所示,器件的开关比为~2506。
本发明实施例提供的CuI-Au-ZnO自供电紫外探测器的制备方法,通过等离子金纳米颗粒的引入,得到一种高性能自供电紫外探测器,显著增强了其异质结的光探测性能,有望在紫外线探测领域实现应用。
以上实施例仅为本发明较优的实施方式,仅用于解释本发明,而非限制本发明,本领域技术人员在未脱离本发明精神实质下所作的改变、替换、修饰等均应属于本发明的保护范围。

Claims (10)

1.一种CuI-Au-ZnO自供电紫外探测器,其特征在于,包括Si层、SiO2层、ZnO层、CuI层、Au颗粒及Ag电极;所述SiO2层层叠在Si层上;所述ZnO层层叠在SiO2层上;所述Au颗粒溅射在所述ZnO层上;所述CuI层与ZnO层连接;所述CuI层与Au颗粒连接;所述Ag电极有两个,这两个Ag电极分别与CuI层和ZnO层连接。
2.根据权利要求1所述的CuI-Au-ZnO自供电紫外探测器,其特征在于,所述Au颗粒的直径为6-20nm。
3.一种制备权利要求1-2任一项所述的CuI-Au-ZnO自供电紫外探测器的方法,其特征在于,包括如下步骤:
(1)采用二氧化硅作为衬底,洗涤,吹干,备用;
(2)在步骤(1)所述衬底上采用原子束沉积的方法制备氧化锌薄膜;
(3)在步骤(2)所述氧化锌薄膜的表面上用离子溅射的方法溅射一层金纳米颗粒;
(4)在步骤(3)所述金纳米颗粒上采用直流磁控溅射的方法制备一层铜薄膜;然后在碘蒸气下将铜薄膜碘化为碘化亚铜薄膜;
(5)对步骤(3)所述氧化锌薄膜和步骤(4)所述碘化亚铜薄膜上分别进行掩膜,然后将银浆刷在掩膜版上,退火处理,形成欧姆接触,得到所述CuI-Au-ZnO自供电紫外探测器。
4.根据权利要求3所述的CuI-Au-ZnO自供电紫外探测器的制备方法,其特征在于,步骤(1)所述洗涤包括:用去离子水,酒精分别超声清洗10-15min。
5.根据权利要求1所述的CuI-Au-ZnO自供电紫外探测器的制备方法,其特征在于,步骤(2)所述原子束沉积的条件为:温度为180-240℃,压强为0.15-0.2Torr;所述原子束沉积的原料为去离子水、氩气、氮气及二乙基锌;所述原子束沉积包括:将二乙基锌脉冲0.02-0.03s,氩气吹扫40-60s,去离子水脉冲0.015-0.025s,氩气吹扫40-60s,循环此过程800-1200次,即可制得氧化锌薄膜。
6.根据权利要求1所述的CuI-Au-ZnO自供电紫外探测器的制备方法,其特征在于,步骤(3)所述离子束溅射的条件:溅射电流为8-12mA,压强为0.08-0.12Pa,时间为15-45s。
7.根据权利要求1所述的CuI-Au-ZnO自供电紫外探测器的制备方法,其特征在于,步骤(3)中,引入的金纳米颗粒的直径为6-20nm。
8.根据权利要求1所述的CuI-Au-ZnO自供电紫外探测器的制备方法,其特征在于,步骤(4)所述直流磁控溅射的条件为:功率15-20w,氩气20-25sccm,压强0.4-0.5Pa,时间180-250s。
9.根据权利要求1所述的CuI-Au-ZnO自供电紫外探测器的制备方法,其特征在于,步骤(4)所述碘化的温度为110-170℃。
10.根据权利要求1所述的CuI-Au-ZnO自供电紫外探测器的制备方法,其特征在于,步骤(5)所述退火处理的温度为120-140℃,退火处理的时间为30-60min。
CN202010133016.5A 2020-02-29 2020-02-29 一种CuI-Au-ZnO自供电紫外探测器及其制备方法 Active CN111312847B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010133016.5A CN111312847B (zh) 2020-02-29 2020-02-29 一种CuI-Au-ZnO自供电紫外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010133016.5A CN111312847B (zh) 2020-02-29 2020-02-29 一种CuI-Au-ZnO自供电紫外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN111312847A true CN111312847A (zh) 2020-06-19
CN111312847B CN111312847B (zh) 2022-08-12

Family

ID=71148405

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010133016.5A Active CN111312847B (zh) 2020-02-29 2020-02-29 一种CuI-Au-ZnO自供电紫外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN111312847B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114242813A (zh) * 2021-12-09 2022-03-25 浙江大学 一种CuI/ZTO异质结紫外探测器及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825271B1 (zh) * 1967-10-16 1973-07-27
CN102394264A (zh) * 2011-11-22 2012-03-28 中国科学院半导体研究所 增强ZnO基发光二极管紫光电致发光性能的方法
US20130020663A1 (en) * 2011-07-19 2013-01-24 Sony Corporation Solid-state imaging device and production method therefor, and electronic apparatus
CN103390661A (zh) * 2013-07-29 2013-11-13 汪贤才 一种p-CuI/n-ZnO透明异质结及其制备方法
CN105489695A (zh) * 2016-01-14 2016-04-13 中国石油大学(华东) 一种基于二氧化钛多孔膜/硅n-n异质结的紫外光探测器及其制备方法
CN106449367A (zh) * 2016-11-21 2017-02-22 许昌学院 一种合成碘化铜锌三元宽带隙化合物半导体薄膜材料的化学方法
CN107359217A (zh) * 2017-07-13 2017-11-17 吉林大学 一种快速响应紫外光探测器及制备方法
CN108447939A (zh) * 2018-03-06 2018-08-24 深圳大学 一种柔性透明紫外异质结光电传感器及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825271B1 (zh) * 1967-10-16 1973-07-27
US20130020663A1 (en) * 2011-07-19 2013-01-24 Sony Corporation Solid-state imaging device and production method therefor, and electronic apparatus
CN102394264A (zh) * 2011-11-22 2012-03-28 中国科学院半导体研究所 增强ZnO基发光二极管紫光电致发光性能的方法
CN103390661A (zh) * 2013-07-29 2013-11-13 汪贤才 一种p-CuI/n-ZnO透明异质结及其制备方法
CN105489695A (zh) * 2016-01-14 2016-04-13 中国石油大学(华东) 一种基于二氧化钛多孔膜/硅n-n异质结的紫外光探测器及其制备方法
CN106449367A (zh) * 2016-11-21 2017-02-22 许昌学院 一种合成碘化铜锌三元宽带隙化合物半导体薄膜材料的化学方法
CN107359217A (zh) * 2017-07-13 2017-11-17 吉林大学 一种快速响应紫外光探测器及制备方法
CN108447939A (zh) * 2018-03-06 2018-08-24 深圳大学 一种柔性透明紫外异质结光电传感器及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SONGREN NIU等: "Enhanced p-CuI/n-ZnO photodetector based on thermal evaporated CuI and pulsed laser deposited ZnO nanowires", 《OPTICS LETTERS》 *
安跃华: "Ga2O3异质结及Au纳米颗粒复合增强的日盲紫外探测器研究", 《中国优秀博硕士学位论文全文数据库(博士) 信息科技辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114242813A (zh) * 2021-12-09 2022-03-25 浙江大学 一种CuI/ZTO异质结紫外探测器及其制备方法
CN114242813B (zh) * 2021-12-09 2023-08-29 浙江大学 一种CuI/ZTO异质结紫外探测器及其制备方法

Also Published As

Publication number Publication date
CN111312847B (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
Parida et al. Nanostructured-NiO/Si heterojunction photodetector
Liu et al. A high-performance UV/visible photodetector of Cu 2 O/ZnO hybrid nanofilms on SWNT-based flexible conducting substrates
Huang et al. A simple, repeatable and highly stable self-powered solar-blind photoelectrochemical-type photodetector using amorphous Ga 2 O 3 films grown on 3D carbon fiber paper
CN111613691B (zh) 基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器及其制备方法
Upadhyay et al. BiFeO 3/CH 3 NH 3 PbI 3 perovskite heterojunction based near-infrared photodetector
Li et al. Ag nanorods assembled with ZnO nanowalls for near-linear high-response UV photodetectors
Chiu et al. Opto-electrical properties and chemisorption reactivity of Ga-doped ZnO nanopagodas
Saikia et al. Synthesis, characterization and photovoltaic application of silver doped CdS/PVA nanocomposite thin films
Kaawash et al. Highly stable and sensitive photon detection performance of ZnO thin film for ultraviolet light
CN103077963A (zh) 一种欧姆接触电极、其制备方法及包含该欧姆接触电极的半导体元件
Kajli et al. Efficient UV–visible photodetector based on single CuO/Cu2O core-shell nanowire
Lin et al. High-performance self-powered ultraviolet photodetector based on PEDOT: PSS/CuO/ZnO nanorod array sandwich structure
CN111312847B (zh) 一种CuI-Au-ZnO自供电紫外探测器及其制备方法
CN109841703A (zh) 一种高稳定、低暗电流全无机钙钛矿光电探测器及其制备方法
CN110190150B (zh) 基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器及其制作方法
Hussain et al. Length dependent performance of Cu2O/ZnO nanorods solar cells
Lin et al. Fast-response and self-powered Cu2O/ZnO nanorods heterojunction UV-visible (570 nm) photodetectors
CN112382686B (zh) 一种ZnO/Ti3C2Tx线形紫外探测器及其制备方法
CN110112233B (zh) 基于银纳米线-石墨烯/氧化镓纳米柱的光电探测结构、器件及制备方法
CN108878575B (zh) 一种基于硅/氟化石墨烯的双工作模式宽波段光电探测器及其制备方法
Han et al. Cu2O quantum dots modified α-Ga2O3 nanorod arrays as a heterojunction for improved sensitivity of self-powered photoelectrochemical detectors
Costa et al. Unusual effects of nanowire-nanowire junctions on the persistent photoconductivity in SnO2 nanowire network devices
CN112164732B (zh) 一种紫外光电二极管及其制备方法
Cai et al. Enhancement of photoelectrochemical performance of Ag@ ZnO nanowires: experiment and mechanism
Liu et al. A GaN nanowire-based photodetector with Ag nanowires as transparent electrodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant