CN104952967A - 一种ZnO基薄膜晶体管型紫外探测器及其制备方法 - Google Patents

一种ZnO基薄膜晶体管型紫外探测器及其制备方法 Download PDF

Info

Publication number
CN104952967A
CN104952967A CN201510225980.XA CN201510225980A CN104952967A CN 104952967 A CN104952967 A CN 104952967A CN 201510225980 A CN201510225980 A CN 201510225980A CN 104952967 A CN104952967 A CN 104952967A
Authority
CN
China
Prior art keywords
layer
zno
film transistor
ultraviolet detector
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510225980.XA
Other languages
English (en)
Inventor
潘新花
王伟豪
戴文
叶志镇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201510225980.XA priority Critical patent/CN104952967A/zh
Publication of CN104952967A publication Critical patent/CN104952967A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种ZnO基薄膜晶体管型紫外探测器及其制备方法,该紫外探测器自下而上依次有低阻Si层、SiO2绝缘层、ZTO沟道层、纳米Al颗粒层和Al电极。其制备方法如下:先采用燃烧法制备ZTO前驱体,然后将前驱体溶液旋涂在Si/SiO2的SiO2面上,旋涂数次并退火,再用热蒸发在ZTO表面蒸镀上一层纳米Al颗粒,最后镀上Al电极完成紫外探测器的制作。相比于传统的紫外探测器,此方法制备的紫外探测器暗电流低、响应灵敏度极高,且结构简单、制备成本低,在军事、民用以及一些特殊领域有重要的应用价值。

Description

一种ZnO基薄膜晶体管型紫外探测器及其制备方法
技术领域
本发明涉及一种紫外探测器及其制备方法,尤其涉及一种ZnO基薄膜晶体管型紫外波段探测器及其制备方法,属于半导体器件技术领域。
背景技术
紫外探测技术是一项继红外探测技术和激光技术之后发展起来的新型的军民两用技术,广泛应用于空间通讯、导弹预警、污染检测以及生物医学等领域。目前市场上还是以技术较成熟的传统商用光电倍增管和硅基紫外探测器为主。未见薄膜晶体管结构的紫外探测器报道。
ZnO是一种重要的新型宽禁带半导体材料,具有直接带隙能带结构,室温禁带宽度3.37 eV,激子束缚能高达60 meV,可见光透过率高,物理化学性质稳定,原料丰富等优点。相对于传统的光电倍增管和硅基紫外探测器,基于第三代宽禁带半导体ZnO基材料的紫外探测器可避免使用复杂昂贵的滤光片,并且其具有工作电压较低、能耗较小、体积小、重量轻等优点。
发明内容
本发明的目的是提供一种制备成本低、工艺简单易于生产,且灵敏度极高的ZnO基薄膜晶体管型紫外探测器及其制备方法。
本发明的ZnO基薄膜晶体管型紫外探测器,自下而上依次有低阻Si层、SiO2绝缘层、ZTO(ZnSnO)沟道层、纳米Al颗粒层和Al电极。制备方法包括以下步骤:
1)将Zn(NO32·6H2O溶解于2-甲氧基乙醇,并添加乙酰丙酮和NH3·H2O, Zn(NO32·6H2O、乙酰丙酮与NH3·H2O的摩尔比为1:1:3,室温下搅拌至少12 h,获得A溶液;
将SnCl2·2H2O和NH4NO3溶解于2-甲氧基乙醇,并添加乙酰丙酮和NH3·H2O, SnCl2·2H2O、NH4NO3、乙酰丙酮与NH3·H2O的摩尔比为1:1: 1:1.5,室温下搅拌至少12 h,获得B溶液;
用孔径为0.21 μm的尼龙滤头分别对A溶液和B溶液进行过滤,再将过滤后的两滤液按Zn:Sn摩尔比为x:1-x混合,x=0.3~0.5,将混合溶液超声至少5次,每次20~30 min,陈化12~24 h后得到ZnxSn(1-x)O前驱体,x=0.3~0.5;
2)在洁净的电阻率为0.001~0.005 Ω·cm的低阻Si片(1)上制备厚度为150~300 nm的SiO2绝缘层(2),再在SiO2绝缘层(2)上旋涂步骤1)的ZnxSn(1-x)O前驱体,转速为3500~4500 r/min,旋涂35 s,旋涂后在200~400 ℃退火30 min,旋涂并退火若干次后在SiO2绝缘层(2)上获得厚度为20~80 nm的ZTO沟道层(3);
3)将步骤2)处理后的样品放入热蒸发设备中,抽真空至2×10-4 Pa,以纯度为99.999%的Al颗粒为蒸发源,在ZTO沟道层(3)上蒸镀厚度为1~10 nm的纳米Al颗粒层(4);
4)在上述的纳米Al颗粒层(4)上蒸镀厚度为70~100 nm的Al电极(5),获得ZnO基薄膜晶体管型紫外探测器。
本发明的ZnO基薄膜晶体管型紫外探测器的工作原理是:在一定的源漏电压下,通过控制栅极偏压使紫外探测器工作在耗尽区,此时由于采用薄膜晶体管型的特殊结构,使得紫外探测器的暗电流很小;当有紫外光照射时,沟道层的ZTO吸收紫外光产生光生载流子,形成较大的源漏电流,即形成紫外探测器的光电流,进行紫外探测。
本发明的有益效果在于:
1)通过燃烧法配制ZTO前驱体,反应内能大,后续可在低温下退火;
2)本发明的紫外探测器采用薄膜晶体管型的特殊结构,具有极小的暗电流,可以获得高于其他类型紫外探测器数百倍的灵敏度;
3)本发明的紫外探测器结构简单,其制备方法简便且成本低,在军事、民用以及一些特殊领域有重要的应用价值。
附图说明
图1是ZnO基薄膜晶体管型紫外探测器的结构示意图。
图中:1为低阻Si层、2为SiO2绝缘层、3为ZTO沟道层、4为纳米Al颗粒层、5为Al电极。
具体实施方式
以下结合附图及具体实施例对本发明做进一步说明。
参照图1,本发明的ZnO基薄膜晶体管型紫外探测器,自下而上依次有低阻Si层1、SiO2绝缘层2、ZTO沟道层3、纳米Al颗粒层4和Al电极5。
实施例1
1)称取0.1275 g的Zn(NO32·6H2O溶解于2.14 mL的2-甲氧基乙醇,再加入0.09 mL的乙酰丙酮和49 μL的NH3·H2O,室温下搅拌12 h,获得A溶液;
称取0.2257 g的SnCl2·2H2O和0.0800g的NH4NO3溶解于5 mL的2-甲氧基乙醇,再加入0.2 mL的乙酰丙酮和57 μL的NH3·H2O,室温下搅拌12 h,获得B溶液;
用孔径为0.21 μm的尼龙滤头分别对A溶液和B溶液进行过滤,再将过滤后的两滤液按Zn:Sn摩尔比为0.3:0.7混合,将混合溶液超声5次,每次30 min,陈化12 h后得到Zn0.3Sn0.7O前驱体;
2)在洁净的电阻率为0.001~0.005 Ω·cm的低阻Si片(1)上制备厚度为300 nm的SiO2绝缘层(2),再在SiO2绝缘层(2)上旋涂步骤1)的Zn0.3Sn0.7O前驱体,转速为4000 r/min,旋涂35 s,旋涂后在300 ℃退火30 min,旋涂并退火5次后在SiO2绝缘层(2)上获得厚度为50 nm的ZTO沟道层(3);
3)将步骤2)处理后的样品放入热蒸发设备中,抽真空至2×10-4 Pa,以纯度为99.999%的Al颗粒为蒸发源,在ZTO沟道层(3)上蒸镀厚度为4 nm的纳米Al颗粒层(4);
4)在上述的纳米Al颗粒层(4)上蒸镀厚度为100 nm的Al电极(5),获得ZnO基薄膜晶体管型紫外探测器。
本例制得的ZnO基薄膜晶体管型紫外探测器灵敏度为:S=(Iphoto-Idark)/ Idark=(1365.5 μA-0.03229 μA)/0.03229 μA=42288。
实施例2
1)称取0.1785 g的Zn(NO32·6H2O溶解于3 mL的2-甲氧基乙醇,再加入0.12 mL的乙酰丙酮和68 μL的NH3·H2O,室温下搅拌12 h,获得A溶液;
称取0.2369 g的SnCl2·2H2O和0.0841 g的NH4NO3溶解于5.25 mL的2-甲氧基乙醇,再加入0.21 mL的乙酰丙酮和60 μL的NH3·H2O,室温下搅拌12 h获得B溶液;
用孔径为0.21 μm的尼龙滤头分别对A溶液和B溶液进行过滤,再将过滤后的两滤液按Zn:Sn摩尔比为0.36:0.64混合,将混合溶液超声6次,每次20 min,陈化24 h后得到Zn0.36Sn0.64O前驱体;
2)在洁净的电阻率为0.001~0.005 Ω·cm的低阻Si片(1)上制备厚度为150 nm的SiO2绝缘层(2),再在SiO2绝缘层(2)上旋涂步骤1)的Zn0.36Sn0.64O前驱体,转速为4500 r/min,旋涂35 s,旋涂后在200 ℃退火30 min,旋涂并退火3次后在SiO2绝缘层(2)上获得厚度为20 nm的ZTO沟道层(3);
3)将步骤2)处理后的样品放入热蒸发设备中,抽真空至2×10-4 Pa,以纯度为99.999%的Al颗粒为蒸发源,在ZTO沟道层(3)上蒸镀厚度为2 nm的纳米Al颗粒层(4);
4)在上述的纳米Al颗粒层(4)上蒸镀厚度为100 nm的Al电极(5),获得ZnO基薄膜晶体管型紫外探测器。
本例制得的ZnO基薄膜晶体管型紫外探测器灵敏度为:S=(Iphoto-Idark)/ Idark=(465.2 μA-0.01248 μA)/0.01248 μA=37275。
实施例3
1)称取0.2975 g的Zn(NO32·6H2O溶解于5 mL的2-甲氧基乙醇,再加入0.2 mL的乙酰丙酮和114 μL的NH3·H2O,室温下搅拌12 h,获得A溶液;
称取0.2257 g的SnCl2·2H2O和0.0800 g的NH4NO3溶解于5 mL的2-甲氧基乙醇,再加入0.2 mL的乙酰丙酮和57 μL的NH3·H2O,室温下搅拌12 h,获得B溶液;
用孔径为0.21 μm的尼龙滤头分别对A溶液和B溶液进行过滤,再将过滤后的两滤液按Zn:Sn摩尔比为0.5:0.5混合,将混合溶液超声5次,每次30 min,陈化18 h后得到Zn0.5Sn0.5O前驱体;
2)在洁净的电阻率为0.001~0.005 Ω·cm的低阻Si片(1)上制备厚度为300 nm的SiO2绝缘层(2),再在SiO2绝缘层(2)上旋涂步骤1)的Zn0.5Sn0.5O前驱体,转速为3500 r/min,旋涂35 s,旋涂后在300 ℃退火30 min,旋涂并退火5次后在SiO2绝缘层(2)上获得厚度为80 nm的ZTO沟道层(3);
3)将步骤2)处理后的样品放入热蒸发设备中,抽真空至2×10-4 Pa,以纯度为99.999%的Al颗粒为蒸发源,在ZTO沟道层(3)上蒸镀厚度为10 nm的纳米Al颗粒层(4);
4)在上述的纳米Al颗粒层(4)上蒸镀厚度为70 nm的Al电极(5),获得ZnO基薄膜晶体管型紫外探测器。
本例制得的ZnO基薄膜晶体管型紫外探测器灵敏度为:S=(Iphoto-Idark)/ Idark=(183.95 μA-0.01251 μA)/0.01251 μA=14703。

Claims (2)

1.ZnO基薄膜晶体管型紫外探测器,其特征在于,该探测器自下而上依次有低阻Si层(1)、SiO2绝缘层(2)、ZTO沟道层(3)、纳米Al颗粒层(4)和Al电极(5)。
2.制备权利要求1所述的ZnO基薄膜晶体管型紫外探测器的方法,其特征在于包括以下步骤:
1)将Zn(NO32·6H2O溶解于2-甲氧基乙醇,并添加乙酰丙酮和NH3·H2O, Zn(NO32·6H2O、乙酰丙酮与NH3·H2O的摩尔比为1:1:3,室温下搅拌至少12 h,获得A溶液;
将SnCl2·2H2O和NH4NO3溶解于2-甲氧基乙醇,并添加乙酰丙酮和NH3·H2O, SnCl2·2H2O、NH4NO3、乙酰丙酮与NH3·H2O的摩尔比为1:1: 1:1.5,室温下搅拌至少12 h,获得B溶液;
用孔径为0.21 μm的尼龙滤头分别对A溶液和B溶液进行过滤,再将过滤后的两滤液按Zn:Sn摩尔比为x:1-x混合,x=0.3~0.5,将混合溶液超声至少5次,每次20~30 min,陈化12~24 h后得到ZnxSn(1-x)O前驱体,x=0.3~0.5;
2)在洁净的电阻率为0.001~0.005 Ω·cm的低阻Si片(1)上制备厚度为150~300 nm的SiO2绝缘层(2),再在SiO2绝缘层(2)上旋涂步骤1)的ZnxSn(1-x)O前驱体,转速为3500~4500 r/min,旋涂35 s,旋涂后在200~400 ℃退火30 min,旋涂并退火若干次后在SiO2绝缘层(2)上获得厚度为20~80 nm的ZTO沟道层(3);
3)将步骤2)处理后的样品放入热蒸发设备中,抽真空至2×10-4 Pa,以纯度为99.999%的Al颗粒为蒸发源,在ZTO沟道层(3)上蒸镀厚度为1~10 nm的纳米Al颗粒层(4);
4)在上述的纳米Al颗粒层(4)上蒸镀厚度为70~100 nm的Al电极(5),获得ZnO基薄膜晶体管型紫外探测器。
CN201510225980.XA 2015-05-06 2015-05-06 一种ZnO基薄膜晶体管型紫外探测器及其制备方法 Pending CN104952967A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510225980.XA CN104952967A (zh) 2015-05-06 2015-05-06 一种ZnO基薄膜晶体管型紫外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510225980.XA CN104952967A (zh) 2015-05-06 2015-05-06 一种ZnO基薄膜晶体管型紫外探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN104952967A true CN104952967A (zh) 2015-09-30

Family

ID=54167496

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510225980.XA Pending CN104952967A (zh) 2015-05-06 2015-05-06 一种ZnO基薄膜晶体管型紫外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN104952967A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105655442A (zh) * 2016-01-12 2016-06-08 浙江大学 一种ZnO纳米晶薄膜晶体管型紫外探测器的制备方法
CN106057908A (zh) * 2016-07-15 2016-10-26 浙江大学 一种Ag纳米线和ZnO纳米晶复合沟道的多功能光电薄膜晶体管及其制备方法
CN106784061A (zh) * 2016-12-28 2017-05-31 中国科学院长春光学精密机械与物理研究所 一种紫外探测器及其制备方法
CN109037389A (zh) * 2018-08-22 2018-12-18 东莞理工学院 一种氧化物基薄膜晶体管型紫外探测器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101960571A (zh) * 2008-03-06 2011-01-26 佳能株式会社 半导体元件的处理方法
CN102694053A (zh) * 2011-03-22 2012-09-26 中国科学院微电子研究所 半导体器件及其制造方法
CN203165903U (zh) * 2012-12-12 2013-08-28 华灿光电股份有限公司 一种半导体探测器
CN103346171A (zh) * 2013-05-31 2013-10-09 西安交通大学 一种响应增强型ZnO基光电导探测器及其制备方法
CN104022159A (zh) * 2014-06-17 2014-09-03 浙江大学 用作薄膜晶体管沟道层的非晶氧化物薄膜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101960571A (zh) * 2008-03-06 2011-01-26 佳能株式会社 半导体元件的处理方法
CN102694053A (zh) * 2011-03-22 2012-09-26 中国科学院微电子研究所 半导体器件及其制造方法
CN203165903U (zh) * 2012-12-12 2013-08-28 华灿光电股份有限公司 一种半导体探测器
CN103346171A (zh) * 2013-05-31 2013-10-09 西安交通大学 一种响应增强型ZnO基光电导探测器及其制备方法
CN104022159A (zh) * 2014-06-17 2014-09-03 浙江大学 用作薄膜晶体管沟道层的非晶氧化物薄膜及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
T.H.CHANG ET AL: ""High responsivity of amorphous indium gallium zinc oxide phototransistor with Ta2O5 gate dielectric"", 《APPL.PHYS.LETT.》 *
吴萍等: ""室温生长ZnO薄膜晶体管的紫外相应特性"", 《物理学报》 *
孙惠娜: ""溶胶-凝胶法制备ZnO:Sn(TZO)透明导电薄膜及其性能研究"", 《工程科技Ⅰ辑》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105655442A (zh) * 2016-01-12 2016-06-08 浙江大学 一种ZnO纳米晶薄膜晶体管型紫外探测器的制备方法
CN105655442B (zh) * 2016-01-12 2017-05-31 浙江大学 一种ZnO纳米晶薄膜晶体管型紫外探测器的制备方法
CN106057908A (zh) * 2016-07-15 2016-10-26 浙江大学 一种Ag纳米线和ZnO纳米晶复合沟道的多功能光电薄膜晶体管及其制备方法
CN106057908B (zh) * 2016-07-15 2019-06-14 浙江大学 一种Ag纳米线和ZnO纳米晶复合沟道的多功能光电薄膜晶体管及其制备方法
CN106784061A (zh) * 2016-12-28 2017-05-31 中国科学院长春光学精密机械与物理研究所 一种紫外探测器及其制备方法
CN109037389A (zh) * 2018-08-22 2018-12-18 东莞理工学院 一种氧化物基薄膜晶体管型紫外探测器及其制备方法
CN109037389B (zh) * 2018-08-22 2024-04-30 东莞理工学院 一种氧化物基薄膜晶体管型紫外探测器及其制备方法

Similar Documents

Publication Publication Date Title
Sun et al. All-inorganic perovskite nanowires–ingazno heterojunction for high-performance ultraviolet–visible photodetectors
US10431704B2 (en) Method for producing a UV photodetector
Chen et al. Zinc gallium oxide—a review from synthesis to applications
CN107369763A (zh) 基于Ga2O3/钙钛矿异质结的光电探测器及其制备方法
Huang et al. Realization of a self-powered InGaZnO MSM UV photodetector using localized surface fluorine plasma treatment
CN105655442B (zh) 一种ZnO纳米晶薄膜晶体管型紫外探测器的制备方法
CN104952967A (zh) 一种ZnO基薄膜晶体管型紫外探测器及其制备方法
CN103531660B (zh) 一种In掺杂硫化锌薄膜及其制备方法和应用
Wang et al. A review of earth abundant ZnO-based materials for thermoelectric and photovoltaic applications
US20160181451A1 (en) Bismuth ferrite thin-film solar cell and method of manufacturing the same
CN104916733A (zh) 一种非晶ZnSnO薄膜晶体管型紫外探测器及其制备方法
CN103258869A (zh) 基于氧化锌材料的紫外红外双色探测器及其制作方法
CN101866983A (zh) 一种n型掺杂ZnO薄膜的快速响应紫外探测器的制作方法
CN103400903A (zh) 一种提高铜锌锡硫薄膜晶粒尺寸和致密度的制备方法
CN108346712B (zh) 一种硅掺杂氮化硼/石墨烯的pn结型紫外探测器制备方法
CN103219422A (zh) 一种欧姆结构CdZnTe薄膜紫外光探测器的制备方法
CN109957759A (zh) Cu掺杂β-Ga2O3薄膜的制备方法及相应的结构
US20160181452A1 (en) Compound solar cell and method for forming thin film having sulfide single-crystal nanoparticles
Chen et al. Amorphous MgInO ultraviolet solar-blind photodetectors
Pei et al. Low-temperature-crystallized Ga2O3 thin films and their TFT-type solar-blind photodetectors
CN105474371B (zh) 用于具有钠铟硫化物缓冲层的薄层太阳能电池的层系统
KR20180005835A (ko) 반투명막 제조방법, 가시광영역의 흡수성 특성을 갖는 산화물반도체 및 그 제조방법
Saleem et al. All-solution-processed, high-performance self-powered UVA photodetectors with non-opaque silver nanowires electrode
Khun et al. Supramolecules-assisted ZnO nanostructures growth and their UV photodetector application
Cheng et al. High-efficiency Sb2Se3 thin-film solar cells based on Cd (S, O) buffer layers prepared via spin-coating

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150930

RJ01 Rejection of invention patent application after publication