CN114225696B - 一种酶催化型正渗透膜及其制备方法与应用 - Google Patents

一种酶催化型正渗透膜及其制备方法与应用 Download PDF

Info

Publication number
CN114225696B
CN114225696B CN202111486943.6A CN202111486943A CN114225696B CN 114225696 B CN114225696 B CN 114225696B CN 202111486943 A CN202111486943 A CN 202111486943A CN 114225696 B CN114225696 B CN 114225696B
Authority
CN
China
Prior art keywords
membrane
forward osmosis
phase monomer
enzyme
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111486943.6A
Other languages
English (en)
Other versions
CN114225696A (zh
Inventor
潘淑芳
纪雄辉
谢运河
柳赛花
田发祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Institute Of Agro-Environment And Ecology
Original Assignee
Hunan Institute Of Agro-Environment And Ecology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Institute Of Agro-Environment And Ecology filed Critical Hunan Institute Of Agro-Environment And Ecology
Priority to CN202111486943.6A priority Critical patent/CN114225696B/zh
Publication of CN114225696A publication Critical patent/CN114225696A/zh
Application granted granted Critical
Publication of CN114225696B publication Critical patent/CN114225696B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/42Polymers of nitriles, e.g. polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/78Graft polymers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/445Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/342Biological treatment of water, waste water, or sewage characterised by the microorganisms used characterised by the enzymes used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/02Hydrophilization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/39Electrospinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/10Catalysts being present on the surface of the membrane or in the pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Inorganic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

本发明公开了一种酶催化型正渗透膜及其制备方法与应用,该膜是以静电纺丝纳米纤维膜为支撑层,将活性酶固定在正渗透膜表面形成的集催化和分离为一体正渗透复合膜,具有膜传质系数高、膜载酶量高以及特异性降解等优点,能高效降解去除抗生素,提升出水水质。

Description

一种酶催化型正渗透膜及其制备方法与应用
技术领域
本发明属于膜分离技术领域,具体涉及一种酶催化型正渗透膜及其制备方法与应用。
背景技术
环境中的抗生素绝大部分最终都会进入水环境,抗生素在水环境中难以降解,已成为一类新型难降解有机微污染物;水体中长期残留的微量抗生素可诱导产生抗生素抗性细菌和抗性基因,抗性基因可通过水平基因转移等方式进入病原菌并赋予宿主对抗生素的耐药性,从而威胁着人类健康与生态安全。因此,针对水中难以降解的微量抗生素,研发高效的新材料与新技术,对于提升水质和确保水环境安全具有十分重要的意义。
正渗透(FO)是一种新型的浓度驱动型膜分离过程,水分子在渗透压差的作用下自发地从低浓度溶液(原料液)通过半渗透膜进入高浓溶液(驱动液),其他离子被截留;继而原料液被浓缩,驱动液被稀释。与传统的压力驱动膜分离技术相比,正渗透操作过程不需外界施压,具有能耗低、膜污染较轻、操作条件温和及盐截率高等优点。近些年,正渗透膜已被用于水中抗生素的去除,然而单独的FO膜过程实质上只是将抗生素进行了浓缩,并未实现其降解,需要联合其他技术(如电催化、光催化、酶催化)进一步处理去除。
发明内容
本发明的目的在于提供一种高效催化降解抗生素的酶催化型正渗透膜及其制备方法,该膜是以静电纺丝纳米纤维膜为支撑层,将活性酶固定在正渗透膜表面形成集催化和分离为一体的正渗透复合膜具有膜传质系数高、膜载酶量高以及特异性降解等优点,能高效降解去除抗生素,提升出水水质。
为了实现上述目的,本发明采用以下技术方案:
一种酶催化型正渗透膜的制备方法,包括以下步骤:
(1)将高分子聚合物溶解于溶剂中,搅拌得到均匀纺丝液,其中高分子聚合物浓度为6~15wt%;
(2)通过静电纺丝设备将步骤(1)中的纺丝液制备纳米纤维膜,热处理后得到纳米纤维膜;
(3)将纳米纤维膜作为支撑层,先浸泡在水相单体中,然后置于有机相单体溶液中聚合形成致密皮层,获得正渗透膜;
(4)采用表面担载法(比如采用水解、表面接枝、表层涂覆以及化学交联等方法在膜表面进一步引入活性基团,通过化学键力固定化所选酶,提高载酶量和固定化酶的稳定性)将活性酶固定在正渗透膜表面上,获得集催化和分离为一体正渗透复合膜;
步骤(1)所述的高分子聚合物为聚丙烯腈、聚酰胺或者聚酰亚胺,所述的溶剂为N-N二甲基甲酰胺,N-N二甲基乙酰胺,丙酮,环己烷中的一种或者几种;
步骤(3)中所述的水相单体为双酚、哌嗪、间苯二胺、邻苯二胺及其衍生物中的一种或几种,其浓度为1~5wt%;有机相单体为对苯二甲酰氯、间苯二甲酰氯、均苯三甲酰氯中的一种或几种,其浓度为0.01~5wt%。
优选地,步骤(1)所述的高分子聚合物为聚丙烯腈、聚酰胺,所述的溶剂为N-N二甲基甲酰胺,N-N二甲基乙酰胺,丙酮中的一种或者几种;步骤(3)中所述的水相单体为间苯二胺或邻苯二胺,其浓度为1~3wt%;有机相单体为对苯二甲酰氯、均苯三甲酰氯中的一种或两种,其浓度为0.01~0.3wt%,有机相单体溶于正己烷中形成有机相单体溶液。
优选地,步骤(2)中纺丝电压为5~30kV,溶液的给料流速为0.3~2mL/h,纺丝喷射电极与接收装置的距离为5~30cm。
优选地,步骤(4)中所述的活性酶包括β-内酰胺酶、谷胱甘肽S-转移酶、漆酶和过氧化物酶中的一种或几种;优选地,活性酶的添加量为高分子聚合物的0.01~0.1wt%。
与现有技术相比,本发明的优点具有以下优点及有益效果:
(1)通过构建酶催化与渗透过滤为一体的催化型正渗透复合膜去除水中难生物降解、低浓度的典型抗生素污染物,建立一种以抗生素浓缩–催化–分离为一体的正渗透体系,为水中抗生素的去除提供新方法。
(2)本发明所述的正渗透膜支撑层采用静电纺丝技术制备,采用亲水性高分子材料制备复合纳米纤维膜,制备工艺更为简便,不但使支撑层的亲水性得到改善,相互交错的网状结构以及相互贯通的开孔,显著提高了正渗透膜的水通量和盐截率,由于支撑层使用了亲水材料,使浓差化现象大大降低。
具体实施方式
下面通过具体实例对本发明进行详细的描述,但本发明并不仅限于此。
实施例1
将1g聚丙烯腈(PAN)溶于10g N-N二甲基甲酰胺(DMF)与N-N二甲基乙酰胺(DMAc)的混合溶剂中(DMF:DMAc=1:1),搅拌均匀,制得浓度为10%的纺丝液。将上述溶液加入注射器内,调整注射器的流速为1.2mL/h,注射器距接收装置15cm,在15kV的高压静电下进行纺丝制备纳米纤维。将所得的复合纤维膜置于烘箱中60℃干燥12h,将干燥后的复合纤维膜经过塑封机进行层压,制得压实的复合纤维膜。
将上述压实的复合纤维膜作为支撑层,浸泡于浓度为3%的间苯二胺(MPD)水溶液中2min,取出,去除表面多余溶液,然后置于0.3%的均苯三甲酰氯(TMC)的正己烷溶液中,反应60s,取出后进行80℃水浴,处理10min后储存于4℃去离子水中。
将漆酶固定在上述正渗透膜的聚丙烯腈纳米纤维支撑层上:聚丙烯腈纳米纤维膜表面只有-CN,没有能结合酶的活性基团,先采用0.6mol/L盐酸羟胺处理2h后取出,在纤维表面形成-NH2,再将活化的正渗透膜用0.4%戊二醛接枝,再将处理后的正渗透膜浸泡在0.05%(比高分子聚合物)的活性β-内酰胺酶PBS缓冲液洗涤中,摇床转速180r/min,恒温20℃反应2h,酶固定的正渗透膜用PBS缓冲液洗涤3次后放置4℃冰箱储存备用。
水接触角测试采用光学接触角测定仪,先将样品干燥,在video模式下用5μL超纯水进行测试,经测试,本实施例制备的酶催化型的水接触角为30.8°;其支架状的支撑层能有效的降低水的传质阻力,很大程度的降低内部浓差极化,提高水通量。以2mol/L的氯化钠溶液为驱动液,纯水通量为36L/m2·h;酶催化与渗透过滤为一体的催化型正渗透复合膜能高效特异性降解,分离水中的β-内酰胺类抗生素,实验表明对浓度为50μg/L的青霉素G的截留率高达99.9%,对青霉素G的催化降解率为99.99%。
实施例2
将2g聚酰胺(PA6)溶于10g丙酮溶液中,搅拌均匀,制得浓度为20%的纺丝液。将上述溶液加入注射器内,调整注射器的流速为0.6mL/h,注射器距接收装置15cm,在10kV的高压静电下进行纺丝制备纳米纤维。将所得的复合纤维膜置于烘箱中60℃干燥12h,将干燥后的复合纤维膜经过塑封机进行层压,制得压实的复合纤维膜。
将上述压实的复合纤维膜作为支撑层,浸泡于浓度为1%的邻苯二胺水溶液中1.5min,取出,去除表面多余溶液,然后置于0.01%的对苯二甲酰氯的正己烷溶液中,反应30s,取出后进行80℃水浴,处理15min后储存于4℃去离子水中。
将过氧化物酶固定在上述正渗透膜的聚酰胺纳米纤维支撑层上:聚酰胺纳米纤维膜表面只有-CN,没有能结合酶的活性基团,先采用0.6mol/L盐酸羟胺处理2h后取出,在纤维表面形成-NH2,再将活化的正渗透膜用0.4%戊二醛接枝,再将处理后的正渗透膜浸泡在0.05%(比高分子聚合物)的活性氧化物酶PBS缓冲液洗涤中,摇床转速180r/min,恒温20℃反应2h,酶固定的正渗透膜用PBS缓冲液洗涤3次后放置4℃冰箱储存备用。
水接触角测试采用光学接触角测定仪,先将样品干燥,在video模式下用5μL超纯水进行测试,经测试,本实施例制备的酶催化型的水接触角为40.8°;其支架状的支撑层能有效的降低水的传质阻力,很大程度的降低内部浓差极化,提高水通量。以2mol/L的氯化钠溶液为驱动液,纯水通量为30L/m2·h;酶催化与渗透过滤为一体的催化型正渗透复合膜能高效特性降解,分离水中的β-内酰胺类抗生素,实验表明对浓度为50μg/L的青霉素G的截留率高达99.9%,对青霉素G的催化降解率为80.6%。
实施例3
将1g聚丙烯腈(PAN)溶于10g N-N二甲基甲酰胺(DMF)与N-N二甲基乙酰胺(DMAc)的混合溶剂中(DMF:DMAc=1:1),搅拌均匀,制得浓度为10%的纺丝液。将上述溶液加入注射器内,调整注射器的流速为1.2mL/h,注射器距接收装置15cm,在15kV的高压静电下进行纺丝制备纳米纤维。将所得的复合纤维膜置于烘箱中60℃干燥12h,将干燥后的复合纤维膜经过塑封机进行层压,制得压实的复合纤维膜。
将上述压实的复合纤维膜作为支撑层,浸泡于浓度为3%的间苯二胺(MPD)水溶液中2min,取出,去除表面多余溶液,然后置于0.3%的均苯三甲酰氯(TMC)的正己烷溶液中,反应60s,取出后进行80℃水浴,处理10min后储存于4℃去离子水中。
将谷胱甘肽S-转移酶固定在上述正渗透膜的聚丙烯腈纳米纤维支撑层上:聚丙烯腈纳米纤维膜表面只有-CN,没有能结合酶的活性基团,先采用0.6mol/L盐酸羟胺处理2h后取出,在纤维表面形成-NH2,再将活化的正渗透膜用0.4%戊二醛接枝,再将处理后的正渗透膜浸泡在0.05%(比高分子聚合物)的活性谷胱甘肽S-转移酶PBS缓冲液洗涤中,摇床转速180r/min,恒温20℃反应2h,酶固定的正渗透膜用PBS缓冲液洗涤3次后放置4℃冰箱储存备用。
水接触角测试采用光学接触角测定仪,先将样品干燥,在video模式下用5μL超纯水进行测试,经测试,本实施例制备的酶催化型的水接触角为33.5°;其支架状的支撑层能有效的降低水的传质阻力,很大程度的降低内部浓差极化,提高水通量。以2mol/L的氯化钠溶液为驱动液,纯水通量为32L/m2·h;酶催化与渗透过滤为一体的催化型正渗透复合膜能高效特性降解,分离水中的β-内酰胺类抗生素,实验表明对浓度为50μg/L的青霉素G的截留率高达90.3%,对青霉素G的催化降解率为90.1%。

Claims (3)

1.一种酶催化型正渗透膜的制备方法,其特征在于,包括以下步骤:
(1)将高分子聚合物溶解于溶剂中,搅拌得到均匀纺丝液,其中高分子聚合物浓度为6~15 wt%;
(2)通过静电纺丝设备将步骤(1)中的纺丝液制备纳米纤维膜,热处理后得到纳米纤维膜;
(3)将纳米纤维膜作为支撑层,先浸泡在水相单体中,然后置于有机相单体溶液中聚合形成致密皮层,获得正渗透膜;
(4)采用表面担载法将活性酶浸泡固定在正渗透膜表面上,所述的表面担载法包括先在纳米纤维膜表面形成-NH2,再用戊二醛接枝,然后将处理后的纳米纤维膜浸泡在活性酶的缓冲液中,获得集催化和分离为一体正渗透复合膜;
步骤(1)所述的高分子聚合物为聚丙烯腈、聚酰胺或者聚酰亚胺,所述的溶剂为N-N二甲基甲酰胺,N-N二甲基乙酰胺,丙酮,环己烷中的一种或者几种;
步骤(3)中所述的水相单体为双酚、哌嗪、间苯二胺、邻苯二胺及其衍生物中的一种或几种,其浓度为1~5wt%;有机相单体为对苯二甲酰氯、间苯二甲酰氯、均苯三甲酰氯中的一种或几种,其浓度为0.01~5wt%;
步骤(4)中所述的活性酶包括β-内酰胺酶、谷胱甘肽S-转移酶、漆酶和过氧化物酶中的一种或几种。
2.根据权利要求1所述的酶催化型正渗透膜的制备方法,其特征在于,步骤(1)所述的高分子聚合物为聚丙烯腈、聚酰胺,所述的溶剂为N-N二甲基甲酰胺,N-N二甲基乙酰胺,丙酮中的一种或者几种;步骤(3)中所述的水相单体为间苯二胺或邻苯二胺,其浓度为1~3wt%;有机相单体为对苯二甲酰氯、均苯三甲酰氯中的一种或两种,其浓度为0.01~0.3wt%,有机相单体溶于正己烷中形成有机相单体溶液。
3.根据权利要求1所述的酶催化型正渗透膜的制备方法,其特征在于,步骤(2)中纺丝电压为5~30kV,溶液的给料流速为0.3~2mL/h,纺丝喷射电极与接收装置的距离为5~30cm。
CN202111486943.6A 2021-12-07 2021-12-07 一种酶催化型正渗透膜及其制备方法与应用 Active CN114225696B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111486943.6A CN114225696B (zh) 2021-12-07 2021-12-07 一种酶催化型正渗透膜及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111486943.6A CN114225696B (zh) 2021-12-07 2021-12-07 一种酶催化型正渗透膜及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN114225696A CN114225696A (zh) 2022-03-25
CN114225696B true CN114225696B (zh) 2024-02-09

Family

ID=80753788

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111486943.6A Active CN114225696B (zh) 2021-12-07 2021-12-07 一种酶催化型正渗透膜及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN114225696B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4963494A (en) * 1985-10-08 1990-10-16 Nitto Electric Industrial Co., Ltd. Enzyme immobilization in an anisotropic ultrafiltration membrane
KR20050066059A (ko) * 2003-12-26 2005-06-30 한국전자통신연구원 바이오 센서의 제조 방법
CN103255124A (zh) * 2013-05-17 2013-08-21 同济大学 一种聚丙烯腈固定化酶的制备方法
CN105727759A (zh) * 2016-04-20 2016-07-06 中国科学院城市环境研究所 一种高性能正渗透膜及其静电纺丝制备方法
CN107469650A (zh) * 2017-07-26 2017-12-15 华东理工大学 一种疏水大孔聚酰亚胺纳米纤维正渗透膜的制备方法
CN108339418A (zh) * 2018-03-09 2018-07-31 成都新柯力化工科技有限公司 一种用于高效水处理的抗菌复合反渗透膜及制备方法
CN108754871A (zh) * 2018-05-17 2018-11-06 安徽工程大学 一种复合纳米纤维膜的制备方法、复合纳米纤维膜及其在酶固定化上的应用及固定化酶
CN113648853A (zh) * 2021-07-05 2021-11-16 暨南大学 一种以电纺丝纳米纤维膜为支撑层的复合正渗透膜及其制备方法与应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4963494A (en) * 1985-10-08 1990-10-16 Nitto Electric Industrial Co., Ltd. Enzyme immobilization in an anisotropic ultrafiltration membrane
KR20050066059A (ko) * 2003-12-26 2005-06-30 한국전자통신연구원 바이오 센서의 제조 방법
CN103255124A (zh) * 2013-05-17 2013-08-21 同济大学 一种聚丙烯腈固定化酶的制备方法
CN105727759A (zh) * 2016-04-20 2016-07-06 中国科学院城市环境研究所 一种高性能正渗透膜及其静电纺丝制备方法
CN107469650A (zh) * 2017-07-26 2017-12-15 华东理工大学 一种疏水大孔聚酰亚胺纳米纤维正渗透膜的制备方法
CN108339418A (zh) * 2018-03-09 2018-07-31 成都新柯力化工科技有限公司 一种用于高效水处理的抗菌复合反渗透膜及制备方法
CN108754871A (zh) * 2018-05-17 2018-11-06 安徽工程大学 一种复合纳米纤维膜的制备方法、复合纳米纤维膜及其在酶固定化上的应用及固定化酶
CN113648853A (zh) * 2021-07-05 2021-11-16 暨南大学 一种以电纺丝纳米纤维膜为支撑层的复合正渗透膜及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Development of antibacterial polyamide reverse osmosis membrane modified with a covalently immobilized enzyme;Daisuke Saeki et al.;《Journal of Membrane Science;第428卷;第403-409页 *
聚丙烯腈纳米纤维正渗透支撑层的表面改性研究;孙晚莹;伍海明;徐志伟;;化工新型材料(第05期);第110-114页 *

Also Published As

Publication number Publication date
CN114225696A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
CN109789377B (zh) 具有高生产量和水消毒性能的手提式重力驱动的水过滤器的制备
EP2661317B1 (en) Functionalization of nanofibrous microfiltration membranes for water purification
CN108452684B (zh) 一种金属有机框架反渗透膜及其制备方法
WO2018120476A1 (zh) 一种超分子复合纳滤膜及其制备方法和应用
Wang et al. Fabrication of non-woven composite membrane by chitosan coating for resisting the adsorption of proteins and the adhesion of bacteria
Zhao et al. The PEGylation of plant polyphenols/polypeptide-mediated loose nanofiltration membrane for textile wastewater treatment and antibacterial application
CN112275140B (zh) 具有图案表面的聚酰胺纳滤膜及制备方法
CN110787652B (zh) 一种增强氧化石墨烯复合膜水稳定性的方法
CN110975644B (zh) 一种抗污染和抗氧化聚酰胺复合反渗透膜及其制备方法
CN111085119B (zh) 一种用于膜蒸馏的改性分离膜及其制备方法和应用
CN105561814A (zh) 一种抗菌反渗透复合膜及其制备方法
CN104548952A (zh) 一种抗菌复合纳滤膜的制备方法
CN110559877A (zh) 一种亲水、抗菌双重改性超滤膜的制备方法及其应用
CN114471157A (zh) 一种荷正电耐酸纳滤膜的制备方法及荷正电耐酸纳滤膜
CN111346526B (zh) 一种中空纤维纳滤膜及其制备方法
CN114225696B (zh) 一种酶催化型正渗透膜及其制备方法与应用
CN102814126A (zh) 一种高通量抗氧化纳滤膜的制备方法
Jia et al. Facile plasma grafting of zwitterions onto nanofibrous membrane surface for improved antifouling properties and filtration performance
CN112007513A (zh) 一种间位芳纶基聚酰胺复合纳滤膜的制备方法
CN104548951A (zh) 一种高截盐率抗菌复合纳滤膜及其制备方法
CN115624869A (zh) 一种石墨烯量子点抗菌吸附静电纺纳滤膜及其制备方法
CN114405291B (zh) 一种纳米纤维正渗透复合膜的制备方法
CN110743383A (zh) 一种提高聚酰胺复合膜渗透通量的改性方法
Bakhsh et al. Development and application of electrospun modified polyvinylidene fluoride (PVDF) nanofibers membrane for biofouling control in membrane bioreactor
CN114259891B (zh) 一种氧化石墨烯纳滤膜及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant