CN114014646A - 一种柠檬酸螯合法制备纳米铝酸钆粉体材料的方法 - Google Patents

一种柠檬酸螯合法制备纳米铝酸钆粉体材料的方法 Download PDF

Info

Publication number
CN114014646A
CN114014646A CN202111497730.3A CN202111497730A CN114014646A CN 114014646 A CN114014646 A CN 114014646A CN 202111497730 A CN202111497730 A CN 202111497730A CN 114014646 A CN114014646 A CN 114014646A
Authority
CN
China
Prior art keywords
citric acid
preparing
powder material
solution
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111497730.3A
Other languages
English (en)
Inventor
齐鹏远
丛毓
朱鹏福
赫丽杰
马伟民
郝春来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yingkou Institute of Technology
Original Assignee
Yingkou Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yingkou Institute of Technology filed Critical Yingkou Institute of Technology
Priority to CN202111497730.3A priority Critical patent/CN114014646A/zh
Publication of CN114014646A publication Critical patent/CN114014646A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/10Preparation or treatment, e.g. separation or purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • C01F17/34Aluminates, e.g. YAlO3 or Y3-xGdxAl5O12
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Analytical Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明提供一种柠檬酸螯合法制备纳米铝酸钆粉体材料的方法,涉及一种制备纳米粉体的方法,将Gd2O3溶于硝酸溶液中,与Al(NO3)3溶液混合制成稀土溶液,用柠檬酸为螯合剂,以柠檬酸铵作为分散剂,无水乙醇作为溶剂在70℃下进行剧烈混合搅拌,直至形成浓稠的淡黄色透明液体,溶液自然冷却至室温形成凝胶,经加热干燥形成黄色蓬松状前驱体,前驱体经研磨后煅烧,得到铝酸钆(GdAlO3)纳米粉体材料。本发明提供了一种柠檬酸螯合法制备纳米铝酸钆粉体材料的方法,该方法工艺简单,制备出的粉体晶体呈近球形,具有纯度高、杂质少、大小均匀、粒径尺寸小等优点,在制备发光基体材料等实际应用中有广阔的前景。

Description

一种柠檬酸螯合法制备纳米铝酸钆粉体材料的方法
技术领域
本发明属于纳米粉体材料技术领域,具体涉及一种柠檬酸螯合法制备纳米铝酸钆粉体材料的方法。
背景技术
稀土钙钛矿的晶体结构相对简单,具有独特的电、磁、光、压电、催化和磁阻特性。铝酸钆(GdAlO3)是具有钙钛矿ABO3结构的重要稀土铝酸盐,因其优异的光学性能、机械性能及稳定的物化性能,而广泛应用于新型光学基体材料、闪烁体、测温材料和复合材料增强材料,且有文献报道铝酸钆可作为新一代中子吸收材料应用,目前已材料领域的研究热点。
改善和提高粉体的特性是获得性能优异的新型陶瓷材料的关键。目前,制备铝酸钆的技术有很多,工业上一般采用固相法,利用Gd2O3和Al2O3的固态粉末在高温下煅烧制得。这种方法虽然简单易行,但工艺中原料研磨和高温煅烧过程,将会对材料的微观结构以及产物性能产生负面影响。近年共沉淀法、溶胶-凝胶法、水热合成法等湿化学法制备铝酸钆受到广泛关注。溶胶-凝胶法具有效率高、反应条件温和,制备的粉体均匀性高、粒度小等特点,但目前该方法合成的粉体尺寸和形貌远没有达到理想状态,尚无文献系统研究柠檬酸螯合法制备铝酸钆技术。
发明内容
本发明的目的在于提供一种柠檬酸螯合法制备纳米铝酸钆粉体材料的方法,该方法采用柠檬酸为螯合剂,柠檬酸铵为分散剂下合成铝酸钆纳米粉体,合成工艺简单,制备出的粉体基本呈球形、分散性良好、粒径尺寸小、大小均匀。
本发明解决其技术问题所采用的技术方案是:一种柠檬酸螯合法制备纳米铝酸钆粉体材料的方法,包括如下步骤:
(1)将钆离子溶液与铝离子溶液混合制成稀土溶液;
(2)以柠檬酸作为螯合剂,螯合剂与溶液金属阳离子的摩尔比为0~2.0;以柠檬酸铵作为分散剂,分散剂与柠檬酸的摩尔比为0~2.0;无水乙醇作为溶剂,乙醇与水的摩尔比为0~∞;用浓氨水调节稀土溶液的pH值为9~11,在70 ℃下进行剧烈混合搅拌,直至形成浓稠的淡黄色透明液体,溶液自然冷却至室温形成凝胶,经加热干燥形成黄色蓬松状前驱体;
(3)在900~1300 ℃下高温煅烧所述前驱体,煅烧保温时间为2~4 h,得到GdAlO3粉体材料。
进一步地,步骤(1)的所述稀土溶中液钆离子和铝离子的摩尔比为1:1。
进一步地,步骤(1)的所述稀土溶中总阳离子浓度在0.2~0.5 mol/L范围之内。
进一步地,所述步骤(2)中前驱体的干燥温度为90~130 ℃。
进一步地,所述步骤(3)中将前驱体升温至煅烧温度的速率为10~20 ℃/min。
进一步地,所述步骤(3)煅烧前对前驱体进行球磨,过300目筛。
与现有技术相比,本发明的优点与效果是:
1. 本发明采用柠檬酸螯合法制备纳米GdAlO3粉体材料,所用原料简单易得损失少,工艺操作简便,制备周期短,在探索制备铝酸钆纳米粉体材料制备方面具有重要的指导意义;
2. 本发明通过控制柠檬酸螯合剂加入量,调节柠檬酸铵分散剂和无水乙醇溶剂的加入量,以及在不同温度下煅烧来控制产品粉体的形貌及尺寸。前驱体经煅烧获得GdAlO3纳米粉体材料,制备出的粉体基本呈球形、分散性良好、粒径尺寸小、大小均匀。
附图说明
图1为实施例1制备的样品粉体的 XRD 图谱。
图2为实施例1制备的样品粉体的 SEM形貌。
图3为实施例2制备的样品粉体的 XRD 图谱。
图4为实施例2制备的样品粉体的 SEM形貌。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
以下实施例中Gd2O3及Al2O3纯度均为99.99%,氨水、硝酸等为分析纯试剂,蒸馏水为二次水。以上试剂均没有经过纯化处理。
实施例1
一种柠檬酸螯合法制备纳米铝酸钆粉体材料的方法,包括如下步骤:
(1)取Gd2O3溶于稀硝酸中制成Gd (NO3)3溶液,经过充分搅拌使溶液彻底溶解后,加入无水乙醇,调节醇水摩尔比为1;
(2)将与所述Gd2O3等摩尔的Al2O3溶于稀硝酸中制成Al(NO3)3溶液;
(3)在不断搅拌下将Gd (NO3)3和Al (NO3)3溶液混合,制成总阳离子浓度为0.4mol/L的稀土溶液,其中钆离子和铝离子的摩尔比为1:1;
(4)加入螯合剂柠檬酸,控制柠檬酸的摩尔数与金属阳离子的总摩尔数之比为0.5;
(5)加入分散剂柠檬酸铵,控制柠檬酸铵与柠檬酸的摩尔数之比为0.5;
(6)用浓氨水调节混合溶液pH为9,然后置于70 ℃水浴中,持续搅拌直至形成湿凝胶;
(7)将所得湿凝胶放到真空干燥箱中,在110 ℃温度下干燥12 h,得到前驱体粉末;
(8)将干燥好的前驱体进行球磨,过300目筛,以10 ℃/min的速率升温至1000 ℃,煅烧3h后随炉冷却,得到GdAlO3纳米粉体样品。
采用日本理学(Rigaku)D/MAX-RB型X射线衍射仪和HITACHI S-3400N型扫描电镜对样品进行分析,结果表明,生成物的特征峰与标准卡片JCPDS-46-0395完全吻合,说明制备的样品为纯相GdAlO3,如附图1所示,样品粉体微观形貌基本呈球形、分散性良好、粒径尺寸小、大小均匀,直径约为100 nm,如图2所示。
实施例2
一种柠檬酸螯合法制备纳米铝酸钆粉体材料的方法,包括如下步骤:
(1)取Gd2O3溶于稀硝酸中制成Gd (NO3)3溶液,经过充分搅拌使溶液彻底溶解后,加入无水乙醇,调节醇水摩尔比为2;
(2)将与所述Gd2O3等摩尔的Al2O3溶于稀硝酸中制成Al(NO3)3溶液;
(3)在不断搅拌下将Gd (NO3)3和Al (NO3)3溶液混合,制成总阳离子浓度为0.2mol/L的稀土溶液,其中钆离子和铝离子的摩尔比为1:1;
(4)加入螯合剂柠檬酸,控制柠檬酸的摩尔数与金属阳离子的总摩尔数之比为1;
(5)加入分散剂柠檬酸铵,控制柠檬酸铵与柠檬酸的摩尔数之比为1;
(6)用浓氨水调节混合溶液pH为10,然后置于70 ℃水浴中,持续搅拌直至形成湿凝胶;
(7)将所得湿凝胶放到真空干燥箱中,在120 ℃温度下干燥12 h,得到前驱体粉末;
(8)将干燥好的前驱体进行球磨,过300目筛,以15 ℃/min的速率升温至1100 ℃,煅烧2h后随炉冷却,得到GdAlO3纳米粉体样品。
本实施例制备的GdAlO3粉体的XRD图谱如图3所示,GdAlO3粉体的微观形貌如图4所示。
以上技术方案阐述了本发明的技术思路,不能以此限定本发明的保护范围,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上技术方案所作的任何改动及修饰,均属于本发明技术方案的保护范围。

Claims (6)

1.一种柠檬酸螯合法制备纳米铝酸钆粉体材料的方法,其特征在于,包括如下步骤:
(1)将钆离子溶液与铝离子溶液混合制成稀土溶液;
(2)以柠檬酸作为螯合剂,螯合剂与溶液金属阳离子的摩尔比为0~2.0;以柠檬酸铵作为分散剂,分散剂与柠檬酸的摩尔比为0~2.0;无水乙醇作为溶剂,乙醇与水的摩尔比为0~∞;用浓氨水调节稀土溶液的pH值为9~11,在70 ℃下进行剧烈混合搅拌,直至形成浓稠的淡黄色透明液体,溶液自然冷却至室温形成凝胶,经加热干燥形成黄色蓬松状前驱体;
(3)高温煅烧所述前驱体,球磨后得到GdAlO3纳米粉体材料,其中前驱体的煅烧温度为900~1300 ℃,煅烧保温时间为2~4 h。
2.根据权利要求1所述的一种柠檬酸螯合法制备纳米铝酸钆粉体材料的方法,其特征在于,步骤(1)的所述稀土溶中液钆离子和铝离子的摩尔比为1:1。
3.根据权利要求1所述的一种柠檬酸螯合法制备纳米铝酸钆粉体材料的方法,其特征在于,步骤(1)的所述稀土溶中总阳离子浓度在0.2~0.5 mol/L范围之内。
4.根据权利要求1所述的一种柠檬酸螯合法制备纳米铝酸钆粉体材料的方法,其特征在于,所述步骤(2)中前驱体的干燥温度为90~130 ℃。
5.根据权利要求1所述的一种柠檬酸螯合法制备纳米铝酸钆粉体材料的方法,其特征在于,所述步骤(3)中将前驱体升温至煅烧温度的速率为10~20 ℃/min。
6.根据权利要求1所述的一种柠檬酸螯合法制备纳米铝酸钆粉体材料的方法,其特征在于,所述步骤(3)煅烧前对前驱体进行球磨细化粉体,过300目筛。
CN202111497730.3A 2021-12-09 2021-12-09 一种柠檬酸螯合法制备纳米铝酸钆粉体材料的方法 Pending CN114014646A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111497730.3A CN114014646A (zh) 2021-12-09 2021-12-09 一种柠檬酸螯合法制备纳米铝酸钆粉体材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111497730.3A CN114014646A (zh) 2021-12-09 2021-12-09 一种柠檬酸螯合法制备纳米铝酸钆粉体材料的方法

Publications (1)

Publication Number Publication Date
CN114014646A true CN114014646A (zh) 2022-02-08

Family

ID=80068118

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111497730.3A Pending CN114014646A (zh) 2021-12-09 2021-12-09 一种柠檬酸螯合法制备纳米铝酸钆粉体材料的方法

Country Status (1)

Country Link
CN (1) CN114014646A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6589305B1 (en) * 2000-07-19 2003-07-08 3M Innovative Properties Company Fused aluminum oxycarbide/nitride-Al2O3 • rare earth oxide eutectic abrasive particles, abrasive articles, and methods of making and using the same
CN1556037A (zh) * 2003-12-30 2004-12-22 北京有色金属研究总院 纳米稀土氧化物的制备方法
CN101870491A (zh) * 2010-05-26 2010-10-27 四川大学 在较窄pH范围内制备钇铝石榴石纳米粉体的共沉淀法
CN102303891A (zh) * 2011-06-30 2012-01-04 南京信息工程大学 掺钕钆钪铝石榴石纳米粉体的制备方法
CN102502817A (zh) * 2011-10-27 2012-06-20 沈阳化工大学 一种溶胶凝胶法制备Gd2Zr2O7纳米粉体的方法
CN103864132A (zh) * 2014-02-28 2014-06-18 四川大学 一种添加柠檬酸铵制备纳米级钇铝石榴石粉体的方法
CN104496434A (zh) * 2015-01-19 2015-04-08 哈尔滨工业大学 一种纳米氧化铝/铝酸钆复合粉体的制备方法
CN110629288A (zh) * 2019-10-24 2019-12-31 营口理工学院 一种水热技术制备晶须状铝酸钆粉体材料的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6589305B1 (en) * 2000-07-19 2003-07-08 3M Innovative Properties Company Fused aluminum oxycarbide/nitride-Al2O3 • rare earth oxide eutectic abrasive particles, abrasive articles, and methods of making and using the same
CN1556037A (zh) * 2003-12-30 2004-12-22 北京有色金属研究总院 纳米稀土氧化物的制备方法
CN101870491A (zh) * 2010-05-26 2010-10-27 四川大学 在较窄pH范围内制备钇铝石榴石纳米粉体的共沉淀法
CN102303891A (zh) * 2011-06-30 2012-01-04 南京信息工程大学 掺钕钆钪铝石榴石纳米粉体的制备方法
CN102502817A (zh) * 2011-10-27 2012-06-20 沈阳化工大学 一种溶胶凝胶法制备Gd2Zr2O7纳米粉体的方法
CN103864132A (zh) * 2014-02-28 2014-06-18 四川大学 一种添加柠檬酸铵制备纳米级钇铝石榴石粉体的方法
CN104496434A (zh) * 2015-01-19 2015-04-08 哈尔滨工业大学 一种纳米氧化铝/铝酸钆复合粉体的制备方法
CN110629288A (zh) * 2019-10-24 2019-12-31 营口理工学院 一种水热技术制备晶须状铝酸钆粉体材料的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张展等: "GdAlO_3粉体的溶胶凝胶法制备工艺及烧结行为研究", 《陶瓷学报》 *
罗岚等: "Gd_3Al_5O_(12)∶Eu~(3+)柠檬酸盐硝酸盐燃烧法合成及其发光性能研究", 《感光科学与光化学》 *

Similar Documents

Publication Publication Date Title
CN101302019B (zh) 部分液相沉淀法制备稀土掺杂的钇铝石榴石纳米粉体的方法
CN106159254B (zh) 纳米片状三元或富锂锰基固溶体正极材料前驱体制备方法
CN110629288B (zh) 一种水热技术制备晶须状铝酸钆粉体材料的方法
CN111908922A (zh) 一种低温合成稀土铪酸盐高熵陶瓷粉体及制备方法
CN101113010A (zh) 微波辅助制备氧化铈纳米粒子的方法
Wang et al. Low-temperature fabrication and electrical property of 10 mol% Sm2O3-doped CeO2 ceramics
CN102306751A (zh) 锂离子电池正极材料湿法包覆铝的制备方法
CN109678506B (zh) 一种氧化铒透明陶瓷的制备方法
CN103071807A (zh) 一种超细球形钴粉的制备方法
CN109052450B (zh) 一种高纯度氧化钆的制备方法
CN104528799A (zh) 一种镁基稀土六铝酸盐超细粉体的制备方法
CN101269964A (zh) 氧化钇透明陶瓷的制备方法
CN112723409B (zh) 一种SrTiO3多面体的制备方法
CN105481013A (zh) 一种制备片状钒酸盐的自牺牲模版合成方法
CN106268612B (zh) 一种多孔钛酸锶钡粉体的制备方法
Li et al. Monodispersed Sc2O3 precursor particles via homogeneous precipitation: Synthesis, thermal decomposition, and the effects of supporting anions on powder properties
CN103449511A (zh) 一种钛酸锶亚微米晶体及其制备方法
CN114014646A (zh) 一种柠檬酸螯合法制备纳米铝酸钆粉体材料的方法
CN109796045A (zh) 一种采用自牺牲模板制备复式钨酸盐的方法
CN114291844A (zh) 氧化铋包覆ysz粉体的制备方法
CN111253152B (zh) 一种快衰减高光效闪烁材料及其制备方法
CN115108585A (zh) 一种棒状Li2Mg2(MoO4)3材料及其制备方法
CN103508492A (zh) 一种快速制备NdWO4(OH)纳米粉体的方法
CN107573071B (zh) 一种单分散球形Y2O3和Al2O3粉制备(Y1-xYbx)AG透明陶瓷的方法
CN112159240A (zh) 一种熔盐法合成铪酸镧粉体的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220208