CN102303891A - 掺钕钆钪铝石榴石纳米粉体的制备方法 - Google Patents
掺钕钆钪铝石榴石纳米粉体的制备方法 Download PDFInfo
- Publication number
- CN102303891A CN102303891A CN201110180575A CN201110180575A CN102303891A CN 102303891 A CN102303891 A CN 102303891A CN 201110180575 A CN201110180575 A CN 201110180575A CN 201110180575 A CN201110180575 A CN 201110180575A CN 102303891 A CN102303891 A CN 102303891A
- Authority
- CN
- China
- Prior art keywords
- mol
- powder
- gel
- preparing
- gadolinium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Luminescent Compositions (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
本发明涉及掺钕钆钪铝石榴石(Nd:GSAG)纳米粉体的制备方法。掺钕钆钪铝石榴石纳米粉体的制备方法,其特征在于如下步骤实现:配制Gd(NO3)3、Nd(NO3)3、Sc(NO3)3、Al(NO3)3的摩尔浓度分别为:0.12-0.12xmol/L、0.12xmol/L、0.08mol/L、0.12mol/L,其中x=0.01,0.015,0.02。称取柠檬酸加入上述混合硝酸盐溶液,使混合溶液中柠檬酸的摩尔浓度为0.48mol/L;控制混合液温度为70-80℃,调节pH为7-8时,得到浅黄色溶液;加热浓缩,形成凝胶;继续加热,凝胶开始燃烧,待凝胶燃烧完全后,在容器底部得到前驱物粉体;收集前驱物粉体,研磨后放入马弗炉进行煅烧,在900℃恒温3h后随炉冷却,获得目标粉体。将溶胶凝胶方法与燃烧法相结合,制备设备简易,合成过程时间减少,能制备分散性好,纳米级别的粉体原料。
Description
技术领域
本发明涉及掺钕钆钪铝石榴石(Nd:GSAG)纳米粉体的制备方法,是一种采用sol-gel与燃烧法相结合的湿化学合成方法,属纳米材料制备技术领域。
背景技术
在空间探测领域,虽然水蒸气在温室效应、大气对流、云雾雨雪等重要气象过程中起了关键作用,但是由于其在大气中的含量虽然很少,获取整个大气对流层的高精度、高垂直分辨率的水蒸气廓线非常困难,到目前仍不能准确模拟水循环,这被认为是大气科学中的主要挑战。随着激光技术和弱信号探测技术的发展, 激光雷达在大气探测中扮演着日益重要的角色。其中差分吸收激光雷达技术(DIAL)单元组态可以测量任意方向的气体浓度,具有测量范围广(达到几千米),空间分辨率高的优点,大大提高了大气中微量气体的探测精度和灵敏度,使得准确测量大气水蒸气组分成为可能。综合考虑测量的需要和技术上的可行性,水蒸气940nm附近的936nm、942nm和944nm三个波段的吸收谱线可用于高精度的差分激光雷达吸收测量。过去20多年中,主要依赖OPO激光技术、拉曼频移激光技术或Ti宝石激光技术来获得这些波段的激光。采用这些技术的设备系统不仅复杂、昂贵,而且体积庞大,效率较低,已经不能满足现代空间激光雷达如WALES对效率、体积、寿命等的要求。激光二极管泵浦固体激光器(DPSSL)具有高效、紧凑、可靠、寿命长的优点,用于空间激光雷达有明显的优势,因此新型激光材料成为基本的物质条件。国内外最新的研究表明,Nd:GSAG晶体
激光器可获得了936、942nm附近波长激光,有望用作探测大气水蒸气的运行于935nm,942nm或944nm中任一波长的差分吸收雷达激光光源。国内外的激光透明陶瓷及激光器的研究表明:激光透明陶瓷具有不亚于单晶的激光性能及制备技术上的独特优势,在高功率、高效率激光器方面展现出具有巨大的应用潜力。因此,Nd:GSAG透明陶瓷的制备具有重要的意义。目前尚未见关于Nd:GSAG陶瓷制备的相关工作。对于制备高光学质量的Nd:GSAG透明陶瓷而言,分散性,烧结性能良好的纳米粉体原料是理想的选择。我们的实验借鉴湿化学方法,制备Nd:GSAG纳米粉体原料。
发明内容
发明目的
本发明的目的是针对溶胶-凝胶方法用时较长,效率不高的缺点,特提出改进的制备纳米粉体的湿化学方法。
技术方案
掺钕钆钪铝石榴石纳米粉体的制备方法,其特征在于如下步骤实现:
A、配制Gd(NO3)3、 Nd(NO3)3、Sc(NO3)3、Al(NO3)3的摩尔浓度分别为:0.12-0.12xmol/L、 0.12x mol/L、0.08mol/L、0.12mol/L,其中x =0.01, 0.015, 0.02;
B. 称取柠檬酸加入上述混合硝酸盐溶液,使混合溶液中柠檬酸的摩尔浓度为0.48 mol/L;控制混合液温度为70-80℃,调节pH为7-8时,得到浅黄色溶液;
C.加热浓缩,形成凝胶;继续加热,凝胶开始燃烧,待凝胶燃烧完全后,在容器底部得到前驱物粉体;
D. 收集前驱物粉体,研磨后放入马弗炉进行煅烧,在900℃恒温3h后随炉冷却,获得目标粉体。
有益效果
① 将溶胶凝胶方法与燃烧法相结合,制备设备简易,合成过程时间减少,能制备分散性好,纳米级别的粉体原料。
② 制备过程没有原料的损耗,避免了合成粉体的组分偏差。
附图说明
图1为制备Nd:GSAG纳米粉体的工艺流程图;
图2为目标粉体的XRD图谱;
图3为目标粉体的TEM图谱;
图4为目标样品在808nm激发下的发射光谱。
具体实施方式
现结合实施例,将本发明进一步详细叙述如下:
其中实验所用试剂的纯度为:
氧化钕 99.5%
氧化钆 99.995%
九水硝酸铝 分析纯
水 二次蒸馏水
硝酸 分析纯
柠檬酸 分析纯
氨水 分析纯
实施例1:本发明实施例的具体工艺步骤如下:
1. 称取一定质量的氧化钆,氧化钕和氧化钪,分别用稀硝酸完全溶解并定容;称取一定质量的九水硝酸铝,用二次蒸馏水溶解;
2. 根据(Gd1-x Nd x )3Sc2Al3O12中Nd3+掺杂浓度,用移液管分别量取一定体积的硝酸钆,硝酸钕,硝酸钪及硝酸铝溶液,将这些硝酸盐溶液均匀混合为适量体积的溶液,溶液中Gd(NO3)3, Nd(NO3)3, Sc(NO3)3, Al(NO3)3的摩尔浓度分别为:(0.12-0.12x)mol/L, 0.12x mol/L, 0.08mol/L, 0.12mol/L(x =0.01, 0.015, 0.02)。
3. 称取一定质量的柠檬酸加入上述混合硝酸盐溶液并搅拌至完全溶解,使混合溶液中柠檬酸的摩尔浓度为0.48 mol/L。用酸度计测定溶液的pH值,此时溶液显酸性,用滴管逐滴加入氨水,并加热,控制混合液温度为70-80℃,实时检测溶液的pH值,当pH为7-8时,停止加氨水,得到浅黄色溶液;
4. 将浅黄色溶液盛入体积较大的耐热容器中,放在电炉上加热,电炉功率不超过500W。
5. 持续加热,浅黄色溶液不断浓缩,形成凝胶;继续加热,调小加热功率,凝胶开始燃烧,待凝胶燃烧完全后,在容器底部得到黑褐色Nd:GSAG前驱物粉体;
6. 收集黑褐色粉体,研磨后放入马弗炉进行煅烧。在900度恒温3h后随炉冷却,获得白色粉体,在玻璃研钵内手工研磨白色粉体,获得目标粉体。
采用X射线粉末衍射技术(XRD),透射电镜(TEM)及光致发光光谱对该样品的晶相,形貌及发光性能进行了表征。见图2为目标粉体的XRD图谱。 衍射峰与GSAG (JCPDS 43-0659)一致,并且没有检测到杂峰,说明样品为Nd:GSAG多晶粉体。取5个衍射峰,用谢乐公式估算样品的平均晶粒尺寸,约为20nm。图3为目标粉体的TEM图谱,粉体分散性好,粒度均匀,颗粒尺寸分约为30-80nm。图4为目标样品在808nm激发下的发射光谱,粉体发光性能良好。
以上结果说明采用sol-gel与燃烧法相结合的技术,可以合成Nd:GSAG前驱物,将前驱物在900℃煅烧3h,可成功获得不同Nd3+掺杂的、分散性、发光性能良好的Nd:GSAG纳米粉体。
Claims (1)
1.掺钕钆钪铝石榴石纳米粉体的制备方法,其特征在于如下步骤实现:
A、配制Gd(NO3)3、 Nd(NO3)3、Sc(NO3)3、Al(NO3)3的摩尔浓度分别为:0.12-0.12xmol/L、 0.12x mol/L、0.08mol/L、0.12mol/L,其中x =0.01, 0.015, 0.02;
B. 称取柠檬酸加入上述混合硝酸盐溶液,使混合溶液中柠檬酸的摩尔浓度为0.48 mol/L;控制混合液温度为70-80℃,调节pH为7-8时,得到浅黄色溶液;
C.加热浓缩,形成凝胶;继续加热,凝胶开始燃烧,待凝胶燃烧完全后,在容器底部得到前驱物粉体;
D. 收集前驱物粉体,研磨后放入马弗炉进行煅烧,在900℃恒温3h后随炉冷却,获得目标粉体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110180575 CN102303891B (zh) | 2011-06-30 | 2011-06-30 | 掺钕钆钪铝石榴石纳米粉体的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110180575 CN102303891B (zh) | 2011-06-30 | 2011-06-30 | 掺钕钆钪铝石榴石纳米粉体的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102303891A true CN102303891A (zh) | 2012-01-04 |
CN102303891B CN102303891B (zh) | 2013-02-27 |
Family
ID=45377835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110180575 Expired - Fee Related CN102303891B (zh) | 2011-06-30 | 2011-06-30 | 掺钕钆钪铝石榴石纳米粉体的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102303891B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111484848A (zh) * | 2020-04-27 | 2020-08-04 | 中国科学院长春应用化学研究所 | 一种近红外发光材料及其制备方法 |
CN114014646A (zh) * | 2021-12-09 | 2022-02-08 | 营口理工学院 | 一种柠檬酸螯合法制备纳米铝酸钆粉体材料的方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101249978A (zh) * | 2008-02-28 | 2008-08-27 | 上海应用技术学院 | 一种yag纳米粉体的制备方法 |
CN101597164A (zh) * | 2009-07-01 | 2009-12-09 | 南京工业大学 | 一种双掺杂的钇铝石榴石透明陶瓷粉体的制备方法 |
-
2011
- 2011-06-30 CN CN 201110180575 patent/CN102303891B/zh not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101249978A (zh) * | 2008-02-28 | 2008-08-27 | 上海应用技术学院 | 一种yag纳米粉体的制备方法 |
CN101597164A (zh) * | 2009-07-01 | 2009-12-09 | 南京工业大学 | 一种双掺杂的钇铝石榴石透明陶瓷粉体的制备方法 |
Non-Patent Citations (2)
Title |
---|
F. KALLMEYER ET AL.: "Nd:GSAG-pulsed laser operation at 943 nm and crystal growth", 《APPL. PHYS. B》 * |
李先学 等: "凝胶燃烧法合成Nd: YAG纳米陶瓷粉体", 《材料开发与应用》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111484848A (zh) * | 2020-04-27 | 2020-08-04 | 中国科学院长春应用化学研究所 | 一种近红外发光材料及其制备方法 |
CN111484848B (zh) * | 2020-04-27 | 2021-06-15 | 中国科学院长春应用化学研究所 | 一种近红外发光材料及其制备方法 |
CN114014646A (zh) * | 2021-12-09 | 2022-02-08 | 营口理工学院 | 一种柠檬酸螯合法制备纳米铝酸钆粉体材料的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102303891B (zh) | 2013-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kolesnikov et al. | Structural, luminescence and thermometric properties of nanocrystalline YVO4: Dy3+ temperature and concentration series | |
Stoll et al. | HF-free synthesis of Li2SiF6: Mn4+: a red-emitting phosphor | |
Chen et al. | Mn4+-activated double-perovskite-type Sr2LuNbO6 multifunctional phosphor for optical probing and lighting | |
Zhang et al. | Low-temperature vaterite-type LuBO3, a vacancy-stabilized phase synthesized at high temperature | |
Xu et al. | Solvothermal synthesis and luminescence properties of yttrium aluminum garnet monodispersed crystallites with well-developed faces | |
Taxak et al. | Synthesis and optical properties of red emitting Eu doped CaZrO3 phosphor | |
Morozov et al. | Incommensurately Modulated Structures and Luminescence Properties of the Ag x Sm (2–x)/3WO4 (x= 0.286, 0.2) Scheelites as Thermographic Phosphors | |
Lv et al. | Thermochromic upconversion emission in Tm3+/Yb3+-codoped La2Mo3O12 microparticles via negative thermal expansion engineering for ultrahigh sensitivity optical thermometry | |
Ding et al. | Preparation, structure and photoluminescence of nanoscaled-Nd: Lu3Al5O12 | |
CN102303891B (zh) | 掺钕钆钪铝石榴石纳米粉体的制备方法 | |
Lenczewska et al. | Synthesis, structure and NIR luminescence properties of Yb3+ and Bi3+-activated vanadate GdVO4 | |
Gomez Torres et al. | Pure and RE3+-doped La7O6 (VO4) 3 (RE= Eu, Sm): polymorphism stability and luminescence properties of a new oxyvanadate matrix | |
CN102275944A (zh) | 一种新的闪烁硅酸铋粉体的制备方法 | |
CN105219388A (zh) | 一种铒掺杂氧化镧钇发光材料及其制备方法 | |
Wang et al. | Impact of Sc3+-modified local site symmetries on Er3+ ion upconversion luminescence in Y2O3 nanoparticles | |
CN102766906B (zh) | 一类铒离子激活3微米波段镓酸盐激光晶体及其制备方法 | |
CN102766905B (zh) | 一类铒离子激活1.55微米波段镓酸盐激光晶体及其制备方法 | |
CN1887498A (zh) | 一种红外激光路径上转换为可见光的显示方法 | |
Sahu et al. | Characterization and thermo physical property investigations on Ba1− xSrxMoO4 (x= 0, 0.18, 0.38, 0.60, 0.81, 1) solid-solutions | |
Guckan et al. | Impact of Li concentration in KMgF3: Eu, Yb fluoroperovskite on structure and luminescence properties | |
Opravil et al. | Solid-state synthesis of SrY 2 O 4 and SrSm 2 O 4: mechanism and kinetics of synthesis, reactivity with water and thermal stability of products | |
Bhat et al. | Polymorphism in photoluminescent KNdW2O8: synthesis, neutron diffraction, and Raman study | |
CN109321244A (zh) | 一种铒和镱双掺杂铌酸锂上转换材料及其制备方法和在光学温度传感器中的应用 | |
Wang et al. | Na3TbSi3O9⊙ 3H2O: A New Luminescent Microporous Terbium (III) Silicate Containing Helical Sechser Silicate Chains and 9-Ring Channels | |
CN103451730B (zh) | Cd4RO(BO3)3化合物、Cd4RO(BO3)3光学晶体及制法和用途 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130227 Termination date: 20150630 |
|
EXPY | Termination of patent right or utility model |