CN111253152B - 一种快衰减高光效闪烁材料及其制备方法 - Google Patents

一种快衰减高光效闪烁材料及其制备方法 Download PDF

Info

Publication number
CN111253152B
CN111253152B CN202010070111.5A CN202010070111A CN111253152B CN 111253152 B CN111253152 B CN 111253152B CN 202010070111 A CN202010070111 A CN 202010070111A CN 111253152 B CN111253152 B CN 111253152B
Authority
CN
China
Prior art keywords
solution
fast
preparing
efficiency
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010070111.5A
Other languages
English (en)
Other versions
CN111253152A (zh
Inventor
张乐
甄方正
康健
邵岑
杨顺顺
黄国灿
李明
陈浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xuzhou Attapulgite Photoelectric Technology Co ltd
Original Assignee
Xuzhou Attapulgite Photoelectric Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xuzhou Attapulgite Photoelectric Technology Co ltd filed Critical Xuzhou Attapulgite Photoelectric Technology Co ltd
Priority to CN202010070111.5A priority Critical patent/CN111253152B/zh
Publication of CN111253152A publication Critical patent/CN111253152A/zh
Application granted granted Critical
Publication of CN111253152B publication Critical patent/CN111253152B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种快衰减高光效闪烁材料及其制备方法,该闪烁材料的化学式为(TbxCeyLu1‑x‑y)3Ga3Al2O12,式中,0<x≤0.1,0<y≤0.1;采用化学共沉淀法制备,首先,配制稀土离子的硝酸盐混合溶液以及氨水、碳酸氢铵、草酸铵的混合沉淀剂溶液;然后将混合盐溶液滴入沉淀剂中并充分搅拌,经过滤、洗涤后静置陈化;陈化后过滤得沉淀物,经洗涤、干燥、煅烧,得到闪烁材料粉体。本发明制备的闪烁材料,相比其他闪烁材料,其衰减时间可降低至30~35ns,发光效率提高了25%~35%,性能优异。

Description

一种快衰减高光效闪烁材料及其制备方法
技术领域
本发明涉及无机闪烁材料领域,具体涉及一种快衰减高光效闪烁材料及其制备方法。
背景技术
自1896年世界上第一种闪烁材料诞生以来,很快就在医学影像、医疗探测、高能物理、军事科研等众多领域获得了重要应用。其中钆镓铝石榴石(Gd3Ga2Al3O12)和镥铝石榴石(Lu3Al5O12)是优良的闪烁基底材料。而掺入少量稀土离子如Ce3+、Pr3+、Nd3+等,可以明显改善陶瓷的发光性能。中科院宁波材料所制备的Ce:GAGG陶瓷具有较高的密度,且表现出优异的光学性能,光输出达到48000photons/MeV,衰减时间为56.72ns,其光学性能远远高于BGO,有望成为新一代闪烁功能材料。在GAGG中掺入Ce3+并作为快衰减发射中心,其中的5d→4f辐射跃迁具备快衰减特性。而石榴石晶体的光致发光、闪烁特性受到其组分的不同种类配比影响。找到合适的稀土离子掺杂种类以及配比则是现在提高闪烁材料性能十分重要的途径。
众所周知,纳米粉体的制备是闪烁材料制备过程中的关键。众所周知,粉体的分散性越好,粒度分布越均匀,没有明显的团聚,形状主要为球形或者近球形,本身致密,其烧结而成的陶瓷质量越好。制备粉体的方法主要有固相法和湿化学法。其中固相法需要经过多次球磨,而在球磨过程中容易引入杂质和晶格缺陷,且固相法也难以达到成分的高度均匀。而采用共沉淀法制备的粉体具有较低的烧结温度,较高的均匀性,有利于制备高性能的陶瓷。
CN108249910A公开了及一种掺杂Ce和/或Pr的稀土(Y,Lu,Gd,Tb)石榴石透明闪烁材料的制备方法,将掺杂Ce和/或Pr的靶材磁控溅射沉积在透明Al2O3表面,将得到的含有沉积层的Al2O3高温煅烧反应生成透明稀土(Y,Lu,Gd,Tb)石榴石闪烁材料。但溅射和沉积过程对设备和实验过程要求高,不利于工业化生产。
发明内容
本发明的目的是提供一种快衰减高光效闪烁材料,
本发明的另一目的是提供上述快衰减高光效闪烁材料的制备方法。
为实现上述目的,本发明采用的技术方案如下:一种快衰减高光效闪烁材料,化学式为:
(TbxCeyLu1-x-y)3Ga3Al2O12
式中,x为Tb3+掺杂Lu3+位的摩尔百分数,y为Ce3+掺杂Lu3+位的摩尔百分数,0<x≤0.1,0<y≤0.1。
本发明还提供上述快衰减高光效闪烁材料的制备方法,采用化学共沉淀法制备,具体步骤如下:
(1)按(TbxCeyLu1-x-y)3Ga3Al2O12,0<x≤0.1,0<y≤0.1中各金属元素的化学计量比分别称取金属氧化物原料,使用浓硝酸使原料分解后,加入去离子水,配制包含Tb3+、Ce3+、Lu3+、Ga3+和Al3+离子的混合盐溶液;分别配制浓度为0.1~5mol/L的氨水、浓度为0.1~5mol/L的碳酸氢铵NH4HCO3溶液、浓度为0.1~5mol/L草酸铵(NH4)2C2O4溶液,并按摩尔比2~25:1~5:1将氨水、碳酸氢铵溶液、草酸铵溶液混合,得到混合沉淀剂溶液;
(2)在搅拌条件下,将混合盐溶液按1~5ml/s滴入混合沉淀剂溶液中,并加入0.5~10mol的叔丁醇C4H10O作为分散剂,用氨水调节pH值至7~11,静置陈化0.5~36h;过滤得沉淀物,洗涤,干燥,研磨,得到前驱体粉体;
(3)将所得前驱体粉体置于坩埚中,在900~1000℃下煅烧2~4h,即得到闪烁材料粉体。
优选的,步骤(2)中所述搅拌的转速为20~500r/min。
优选的,步骤(2)中所述干燥的温度为50~80℃。
与现有技术相比,本发明具有如下有益效果:
1.本发明制备的闪烁材料,相比其他闪烁材料,其衰减时间可降低至30~35ns,发光效率提高了25%~35%,性能优异。非常适合闪烁材料的应用。
2.本发明制备的闪烁材料的粉体具有颗粒小、颗粒分布均匀、团聚弱、粒径小,粉体成型优异,其粒度在200~600nm之间,非常适合该类型闪烁材料粉体制备。
3.本发明提供的方法在制备闪烁材料的粉体的过程中,选用高纯的原料粉体,并严格控制陈化过程、抽滤过程、煅烧过程中杂质的引入,制备出的粉体颗粒化学纯度高、多组分均匀性好、烧结活性高。Tb,Ce:GAGG闪烁材料粉体发射光谱积分强度可达到400-900a.u,非常适合用于高光学质量闪烁材料的制备。
4.本发明提供的闪烁材料产量和产率高,陈化时间可在很大的范围内变动且对最终材料没有明显的影响,可缩短实验周期,对实验时间安排要求不苛刻,可有效提高产量和降低生产成本,非常适合该种闪烁材料的工业化生产。
附图说明
图1为本发明实施例1制得的闪烁材料的SEM图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明。
以下实施例中所使用的原料粉体均为高纯原料粉体。
实施例1:(Tb0.001Ce0.1Lu0.899)3Ga3Al2O12粉体
按(Tb0.001Ce0.1Lu0.899)3Ga3Al2O12中各金属元素的化学计量比分别称取Tb2O3、CeO2、Lu2O3、Ga2O3、Al2O3原料粉体,使用浓硝酸使原料分解后,加入去离子水,配制包含Tb3+、Ce3+、Lu3+、Ga3+和Al3+离子的混合盐溶液;分别配制浓度为0.1mol/L的氨水、浓度为0.1mol/L的NH4HCO3溶液、浓度为5mol/L的(NH4)2C2O4溶液,并按摩尔比1:1:0.5将氨水、NH4HCO3、(NH4)2C2O4混合,得到混合沉淀剂溶液;
将混合盐溶液以1ml/s滴入混合沉淀剂溶液中,并加入0.5mol的叔丁醇C4H10O作为分散剂,搅拌,搅拌速率为300r/min;加入氨水调节pH值至9,静置陈化36h;过滤得沉淀物,并依次用去离子水和无水乙醇洗涤,再放入60℃烘箱中干燥,取出后放入研钵中研磨0.5h,得到前驱体粉体。
将所得前驱体粉体置于坩埚中,在900℃下煅烧2h,即得到高光效的闪烁材料粉体。
本实施例制得的粉体粒度在400~600nm之间,如图1所示,其粒径较小,团聚弱。衰减时间降低至35ns,发光效率提高了25%。
实施例2:(Tb0.1Ce0.005Lu0.895)3Ga3Al2O12粉体
按(Tb0.1Ce0.005Lu0.895)3Ga3Al2O12中各金属元素的化学计量比分别称取Tb2O3、CeO2、Lu2O3、Ga2O3、Al2O3原料粉体,使用浓硝酸使原料分解后,加入去离子水,配制包含Tb3+、Ce3+、Lu3+、Ga3+和Al3+离子的混合盐溶液;分别配制浓度为5mol/L的氨水、浓度为3mol/L的NH4HCO3溶液、浓度为0.1mol/L的(NH4)2C2O4溶液,并按摩尔比2:1:1将氨水、NH4HCO3、(NH4)2C2O4混合,得到混合沉淀剂溶液;
将混合盐溶液以5ml/s滴入混合沉淀剂溶液中,并加入10mol的叔丁醇C4H10O作为分散剂,搅拌,搅拌速率为200r/min;加入氨水调节pH值至7,静置陈化36h;过滤得沉淀物,并依次用去离子水和无水乙醇洗涤,再放入80℃烘箱中干燥,取出后放入研钵中研磨1h,得到前驱体粉体。
将所得前驱体粉体置于坩埚中,在800℃下煅烧4h,即得到高光效的闪烁材料粉体。该粉体粒度在300~400nm之间,衰减时间降低至33ns,发光效率提高了30%。
实施例3:(Tb0.005Ce0.03Lu0.965)3Ga3Al2O12粉体
按(Tb0.005Ce0.03Lu0.965)3Ga3Al2O12中各金属元素的化学计量比分别称取Tb2O3、CeO2、Lu2O3、Ga2O3、Al2O3原料粉体,使用浓硝酸使原料分解后,加入去离子水,配制包含Tb3+、Ce3+、Lu3+、Ga3+和Al3+离子的混合盐溶液;分别配制浓度为2mol/L的氨水、浓度为5mol/L的NH4HCO3溶液、浓度为4mol/L的(NH4)2C2O4溶液,并按摩尔比5:1:0.2将氨水、NH4HCO3、(NH4)2C2O4混合,得到混合沉淀剂溶液;将上述盐溶液和沉淀剂溶液混合,并在混合溶液中加入2mol的叔丁醇C4H10O作为分散剂。
将混合盐溶液以3ml/s滴入混合沉淀剂溶液中,并加入2mol的叔丁醇C4H10O作为分散剂,搅拌,搅拌速率为500r/min;加入氨水调节pH值至11,静置陈化0.5h;过滤得沉淀物,并依次用去离子水和无水乙醇洗涤,再放入50℃烘箱中干燥,取出后放入研钵中2h,得到前驱体粉体。
将所得前驱体粉体置于坩埚中,在1200℃下煅烧4h,即得到高光效的闪烁材料粉体。该粉体粒度在300~600nm之间,衰减时间降低至30ns,发光效率提高了35%。

Claims (4)

1.一种快衰减高光效闪烁材料,其特征在于,其化学式为:
(TbxCeyLu1-x-y)3Ga3Al2O12
式中,x为Tb3+掺杂Lu3+位的摩尔百分数,y为Ce3+掺杂Lu3+位的摩尔百分数,0<x≤0.1,0<y≤0.1。
2.一种权利要求1所述的快衰减高光效闪烁材料的制备方法,其特征在于,采用化学共沉淀法制备,具体步骤如下:
(1)按(TbxCeyLu1-x-y)3Ga3Al2O12,0<x≤0.1,0<y≤0.1中各金属元素的化学计量比分别称取金属氧化物原料,使用浓硝酸使原料分解后,加入去离子水,配制包含Tb3+、Ce3+、Lu3+、Ga3+和Al3+离子的混合盐溶液;分别配制浓度为0.1~5mol/L的氨水、浓度为0.1~5mol/L的碳酸氢铵溶液、浓度为0.1~5mol/L草酸铵溶液,并按摩尔比2~25:1~5:1将氨水、碳酸氢铵溶液、草酸铵溶液混合,得到混合沉淀剂溶液;
(2)在搅拌条件下,将混合盐溶液按1~5ml/s滴入混合沉淀剂溶液中,并加入0.5~10mol的叔丁醇作为分散剂,用氨水调节pH值至7~11,静置陈化0.5~36h;过滤得沉淀物,洗涤,干燥,研磨,得到前驱体粉体;
(3)将所得前驱体粉体置于坩埚中,在900~1000℃下煅烧2~4h,即得到闪烁材料粉体。
3.根据权利要求2所述的快衰减高光效闪烁材料的制备方法,其特征在于,步骤(2)中所述搅拌的转速为20~500r/min。
4.根据权利要求2所述的快衰减高光效闪烁材料的制备方法,其特征在于,步骤(2)中所述干燥的温度为50~80℃。
CN202010070111.5A 2020-01-21 2020-01-21 一种快衰减高光效闪烁材料及其制备方法 Active CN111253152B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010070111.5A CN111253152B (zh) 2020-01-21 2020-01-21 一种快衰减高光效闪烁材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010070111.5A CN111253152B (zh) 2020-01-21 2020-01-21 一种快衰减高光效闪烁材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111253152A CN111253152A (zh) 2020-06-09
CN111253152B true CN111253152B (zh) 2022-06-17

Family

ID=70954331

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010070111.5A Active CN111253152B (zh) 2020-01-21 2020-01-21 一种快衰减高光效闪烁材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111253152B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115650726B (zh) * 2022-11-18 2023-09-19 上海御光新材料科技股份有限公司 一种钆基石榴石闪烁陶瓷及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1466955B1 (en) * 2003-04-09 2011-11-23 Schlumberger Technology B.V. Single crystal scintillators
CN102690113A (zh) * 2012-06-06 2012-09-26 上海大学 镥铝石榴石透明闪烁陶瓷的低温真空烧结制备方法
CN103936420A (zh) * 2014-04-17 2014-07-23 中国科学院宁波材料技术与工程研究所 化学共沉淀法制备偏离化学计量比石榴石相闪烁体粉体的方法
CN106978629A (zh) * 2015-12-01 2017-07-25 美国西门子医疗解决公司 用于控制钆‑镓石榴石闪烁体中的镓含量的方法
CN108884387A (zh) * 2016-03-08 2018-11-23 劳伦斯·利弗莫尔国家安全有限责任公司 用于正电子发射断层成像的透明陶瓷石榴石闪烁体检测器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6793848B2 (en) * 2001-10-11 2004-09-21 General Electric Company Terbium or lutetium containing garnet scintillators having increased resistance to radiation damage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1466955B1 (en) * 2003-04-09 2011-11-23 Schlumberger Technology B.V. Single crystal scintillators
CN102690113A (zh) * 2012-06-06 2012-09-26 上海大学 镥铝石榴石透明闪烁陶瓷的低温真空烧结制备方法
CN103936420A (zh) * 2014-04-17 2014-07-23 中国科学院宁波材料技术与工程研究所 化学共沉淀法制备偏离化学计量比石榴石相闪烁体粉体的方法
CN106978629A (zh) * 2015-12-01 2017-07-25 美国西门子医疗解决公司 用于控制钆‑镓石榴石闪烁体中的镓含量的方法
CN108884387A (zh) * 2016-03-08 2018-11-23 劳伦斯·利弗莫尔国家安全有限责任公司 用于正电子发射断层成像的透明陶瓷石榴石闪烁体检测器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Composition engineering of single crystalline films based on the;Yuriy Zorenko et al.;《Optical Materials》;20160329;第3-10页 *
Yuriy Zorenko et al..Composition engineering of single crystalline films based on the.《Optical Materials》.2016,第3-10页. *

Also Published As

Publication number Publication date
CN111253152A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
Shi et al. Solution combustion synthesis, photoluminescence and X-ray luminescence of Eu-doped nanoceria CeO 2: Eu
Hou et al. Luminescent properties of nano-sized Y2O3: Eu fabricated by co-precipitation method
CN104557041B (zh) 一种氧化钇基透明陶瓷的制备方法
CN101698609B (zh) 一种球形、单分散单尺寸氧化钇纳米粉体的制备方法
CN108689422B (zh) 一种大比表面积纳米氧化钆粉体的制备方法
Wei et al. Synthesis and size dependent luminescent properties of hexagonal (Y, Gd) BO 3∶ Eu nanocrystals
CN101973569B (zh) 一种钇铝石榴石荧光粉的合成方法
WO2022188480A1 (zh) 锂电池复合正极材料的前驱体及复合正极材料的制备方法
CN103214016B (zh) 一种钇铝石榴石纳米粉体的制备方法
CN109678506B (zh) 一种氧化铒透明陶瓷的制备方法
CN109052450B (zh) 一种高纯度氧化钆的制备方法
CN104818023A (zh) 含有晶体缺陷修复工艺的稀土发光材料制备方法及其产物
CN111253152B (zh) 一种快衰减高光效闪烁材料及其制备方法
Yan et al. Preparation of YAG: Ce3+ phosphor by sol-gel low temperature combustion method and its luminescent properties
Thu et al. Fabrication of far red emission phosphors Y 3 Al 5 O 12: Eu (YAG: Eu) by co-precipitation method
CN101591176A (zh) 一种合成Gd3Ga5O12(GGG)透明陶瓷纳米晶的方法
CN103113889A (zh) 一种钼酸盐红色荧光粉及其制备方法
Venkatesh et al. Effects of monovalent cation doping on the structure and photoluminescence of GdAlO3: Eu3+ phosphor
Stamenković et al. Structural and Luminescence Properties of SrGd2O4 nanocrystalline Phosphor doped with Dy3+ and Sm3+
Li et al. Synthesis and luminescence properties of nanocrystalline Gd 3 Ga 5 O 12: Eu 3+ by a homogeneous precipitation method
CN101333441A (zh) Ce3+掺杂的镥铝石榴石纳米陶瓷发光粉体的制备方法
CN102220132A (zh) 一种掺杂金属纳米粒子的发光材料及其制备方法
CN101265408B (zh) 一种钐掺杂铝酸钆基荧光粉体及其制备方法
Xue et al. Characterization and optical transition in Tb-doped 12CaO· 7Al2O3 powders
Žalga et al. Sol–gel synthesis of RE3+-activated CaWO

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant