CN113999870B - 一种表达cbdas的重组酿酒酵母及其构建方法和应用 - Google Patents

一种表达cbdas的重组酿酒酵母及其构建方法和应用 Download PDF

Info

Publication number
CN113999870B
CN113999870B CN202010120594.5A CN202010120594A CN113999870B CN 113999870 B CN113999870 B CN 113999870B CN 202010120594 A CN202010120594 A CN 202010120594A CN 113999870 B CN113999870 B CN 113999870B
Authority
CN
China
Prior art keywords
cbdas
saccharomyces cerevisiae
expressing
primer
recombinant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010120594.5A
Other languages
English (en)
Other versions
CN113999870A (zh
Inventor
张云丰
李宗瑾
许薷芳
罗小舟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Senris Biotechnology Shenzhen Co ltd
Original Assignee
Senris Biotechnology Shenzhen Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Senris Biotechnology Shenzhen Co ltd filed Critical Senris Biotechnology Shenzhen Co ltd
Priority to CN202010120594.5A priority Critical patent/CN113999870B/zh
Publication of CN113999870A publication Critical patent/CN113999870A/zh
Application granted granted Critical
Publication of CN113999870B publication Critical patent/CN113999870B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种表达CBDAS的重组酿酒酵母及其构建方法和应用,将CBDAS定位于酿酒酵母的内源内质网定位肽的网膜上表达,获得表达CBDAS的重组酿酒酵母,首先以酿酒酵母的基因组为模板,通过PCR扩增得到上游同源臂416d‑Up片段和下游同源臂416d‑Down片段;然后以质粒pZF048或pZF049为模板,通过PCR扩增得到Gal1‑CBDAS‑CEN1‑tADH1片段或;Gal1‑CBDAS‑CYB5‑tADH1片段,将这些片段转化至酿酒酵母中,获得表达CBDAS的重组酿酒酵母,通过使用酿酒酵母自身内质网定位肽表达异源蛋白CBDAS,提高了该酶的表达活性,增加了产物CBDA的产量。

Description

一种表达CBDAS的重组酿酒酵母及其构建方法和应用
技术领域
本发明涉及合成生物学技术领域基因工程改造技术,更具体地,本发明涉及在酿酒酵母中利用内源内质网定位肽构建的CBDAS高活性表达菌株及其构建方法和应用。
背景技术
大麻素是大麻植物的次级代谢产物,随着大麻素的工业开发和利用,2020年的产值预计达到1000亿美元。目前,已发现的大麻素种类超过100种,主要包括大麻二酚(cannabidiol CBD)、四氢大麻酚(tetrahydrocannabinol,THC、大麻酚(cannabinol,CBG)和大麻环萜酚(cannabichromene,CBC)等,其中互为同分异构体CBD和THC含量最高。与致幻作用的THC相比,非精神活性的CBD具有更加良好的应用前景。CBD通过与人体大脑中的CB1受体和免疫细胞中的CB2受体结合,行使抗肿瘤、神经保护、代谢和免疫调节、抗炎抗氧化、保护心血管和护肝等功效。2018年6月25日,FDA采用优先审批程序首次批准了工业大麻植物来源的CBD处方药Epidiolex,用于治疗两种非常严重且罕见的婴儿癫痫病Dravet综合征和Lennox-Gastut综合症。
工业生产上,首先是提取大麻植物合成的前体大麻二酚酸CBDA,再经过脱羧后获得CBD。然而,从大麻植物中获取CBDA的方法,存在培养时间长、效率低、成本高、造成生物质浪费、产品纯度低和含致幻THC的风险等缺点。因此,采用合成生物学技术,以酿酒酵母为细胞工厂高效生产CBDA十分必要。CBDA从头生物合成途径如图1所示,大麻萜酚酸(cannabigerolic acid,CBGA)是合成CBDA的重要前体化合物,通过大麻二酚酸合酶CBDAS转化为CBDA。为了增加CBDA的生物合成产量,表达具有高活性的CBDAS是关键的步骤之一。本专利首次通过使用酿酒酵母内源内质网定位肽,将CBDAS定位于内质网膜上表达,能极大地提高CBDAS的生物活性,增加产物CBDA的产量。
发明内容
本发明克服了现有技术的不足,提供一种表达CBDAS的重组酿酒酵母及其构建方法和应用。
为解决上述的技术问题,本发明的一种实施方式采用以下技术方案:
第一方面,本发明提供了一种表达CBDAS的重组酿酒酵母的构建方法,将CBDAS定位于酿酒酵母的内源内质网定位肽的网膜上表达,获得表达CBDAS的重组酿酒酵母。
所述的表达CBDAS的重组酿酒酵母的构建方法中,使用的内质网定位肽包括CEN1和CYB5。
所述的表达CBDAS的重组酿酒酵母的构建方法中,将CBDAS定位于酿酒酵母的内源内质网定位肽的网膜上表达的其中一种方式包括以下步骤:
(1)以酿酒酵母的基因组为模板,通过PCR扩增得到上游同源臂416d-Up片段;
(2)以酿酒酵母的基因组为模板,通过PCR扩增得到下游同源臂416d-Down片段;
(3)以质粒pZF048为模板,通过PCR扩增得到Gal1-CBDAS-CEN1-tADH1片段;
(4)将416d-Up、Gal1-CBDAS-CEN1-tADH1、416d-Down作为插入片段转化至酿酒酵母中,获得表达CBDAS的重组酿酒酵母。
所述的表达CBDAS的重组酿酒酵母的构建方法中,将CBDAS定位于酿酒酵母的内源内质网定位肽的网膜上表达的另一种方式包括以下步骤:
(1)以酿酒酵母的基因组为模板,通过PCR扩增得到上游同源臂416d-Up片段;
(2)以酿酒酵母的基因组为模板,通过PCR扩增得到下游同源臂416d-Down片段;
(3)以质粒pZF049为模板,通过PCR扩增得到Gal1-CBDAS-CYB5-tADH1片段;
(4)将416d-Up、Gal1-CBDAS-CYB5-tADH1、416d-Down作为插入片段转化至酿酒酵母中,获得表达CBDAS的重组酿酒酵母。
所述的表达CBDAS的重组酿酒酵母的构建方法中,转化至酿酒酵母的方法为醋酸锂/PEG3350法;出发的酿酒酵母可以选择菌株ySC-31。
所述的表达CBDAS的重组酿酒酵母的构建方法中,醋酸锂/PEG3350法的步骤包括:将酿酒酵母接种到YPD培养基中稀释至OD值为0.2,培养至少4.5h,收集细胞,将含有所述插入片段与质粒pCUT-416d的转化液与细胞混合,42℃培养孵育,然后收集细胞。
所述的表达CBDAS的重组酿酒酵母的构建方法中,插入片段的用量为:每5OD酿酒酵母菌液中的细胞,对应使用50μL DNA混合物悬浮该细胞,50μL DNA混合物由2μg所述插入片段、250ng质粒pCUT-416d以及足量ddH2O混合而成。
所述的表达CBDAS的重组酿酒酵母的构建方法中,插入片段转化至酿酒酵母后,将收集到的细胞涂布到缺少尿嘧啶的筛选平板上,获取单克隆菌落,测序验证后进行保存。
第二方面,本发明提供了采用上述构建方法得到的表达CBDAS的重组酿酒酵母。
第三方面,本发明提供了上述重组酿酒酵母发酵生产CBDAS或CBDA的应用。
下面对本发明的技术方案进行更加详细的描述。
本发明可以采用两种组合方式完成将基因片段转化到酿酒酵母中,插入片段组合方式A为:416d-Up,Gal1-CBDAS-CEN1-tADH1,416d-Down;在Gal1-CBDAS-CEN1-tADH1片段中,Gal1是表达启动子pGAL1,CEN1是表达信号肽(酿酒酵母的内源内质网定位肽),tADH1是终止子ADH1,CBDAS是大麻二酚酸合酶表达基因;插入片段组合方式B为:416d-Up,Gal1-CBDAS-CYB5-tADH1,416d-Down;在Gal1-CBDAS-CYB5-tADH1片段中,Gal1是表达启动子pGAL1,CYB5是表达信号肽(酿酒酵母的内源内质网定位肽),tADH1是终止子ADH1,CBDAS是大麻二酚酸合酶表达基因;通过将CBDAS定位在酿酒酵母的CEN1或CYB5上进行表达,来获得表达CBDAS的重组酿酒酵母。
在进行转化前,首先需要获得插入片段,这些插入片段,可以通过Q5High-Fidelity DNAPolymerase(Q5高保真DNA聚合酶)进行PCR扩增整合片段。以酿酒酵母基因组为模板,使用引物1和引物2扩增获得上游同源臂416d-Up片段,使用引物3和引物4扩增获得下游同源臂416d-Down片段。进而,以质粒pZF048为模板,使用引物5和引物6扩增出片段Gal1-CBDAS-CEN1-tADH1,或者以质粒pZF049为模板,使用引物5和引物6扩增出片段Gal1-CBDAS-CYB5-tADH1。然后将片段的组合转化到酿酒酵母中。引物7和引物8用于对重组酿酒酵母进行PCR反应,获得菌落PCR阳性克隆的菌液,用于基因测序。
表1引物序列
在转化的过程中,先将出发酵母菌株在YPD培养基中活化,然后接种到YPD培养基中稀释至OD值为0.2,30℃培养后,通过离心、洗涤获得酵母菌细胞;配制DNA混合物,每个构建取5OD的菌液获得细胞,并与50μL DNA混合物混合,使细胞重悬,50μL DNA中插入片段共2μg,插入片段是416d-Up、Gal1-CBDAS-CEN1-tADH1、416d-Down的混合物或者416d-Up、Gal1-CBDAS-CYB5-tADH1、416d-Down的混合物,除此之外还包括质粒pCUT-416d和ddH2O。在悬浮的细胞中加入醋酸锂转化混合物,经培养后获取细胞,涂布到筛选平板上,获取单菌落,即为表达CBDAS的重组酿酒酵母,测序验证转化成功后,将重组酿酒酵母进行保存。
与现有技术相比,本发明至少具有以下有益效果:通过使用酿酒酵母自身内质网定位肽表达异源蛋白CBDAS,提高了该酶的表达活性,增加了产物CBDA的产量。本发明首次阐明使用酿酒酵母自身内质网信号肽能够促进CBDAS的表达活性,对CBDA的工业生产具有十分重要的指导意义。
附图说明
图1为大麻二酚酸在酿酒酵母中的合成途径。
图2为CBDA的检测数据,其中,Control指不加内质网定位肽;Standard指标样。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
首先对实施例中使用的一系列原料加以说明:
YPD培养基配方:酵母浸膏10.0g/L,蛋白胨20.0g/L,葡萄糖20.0g/L。
醋酸锂转化混合物:50%W/V PEG3350260μL,1mol/L LiOAc 36μL,变性鱼精DNA10μL(变性鱼精使用前先置于95℃金属浴变性5min),ddH2O4μL。
缺少尿嘧啶的筛选平板配方:酵母氮源母液1.7g/L,硫酸铵5g/L,各种氨基酸如表2所示,琼脂20g/L,葡萄糖20g/L,注:葡萄糖分开灭菌。
表2筛选平板中各种氨基酸的含量
氨基酸 (mg/L) 氨基酸 (mg/L)
硫酸腺嘌呤 18 L-苯丙氨酸 76
L-丙氨酸 76 L-脯氨酸 76
L-精氨酸 76 L-丝氨酸 76
L-天冬氨酸 76 L-苏氨酸 76
L-天冬酰胺 76 L-色氨酸 76
L-半胱氨酸 76 L-酪氨酸 76
L-谷氨酸 76 L-缬氨酸 76
L-甘氨酸 76 L-甲硫氨酸 76
L-异亮氨酸 76 L-赖氨酸 76
L-谷氨酰胺 76 L-亮氨酸 360
L-组氨酸 76 —— ——
通过Q5 High-Fidelity DNA Polymerase进行PCR扩增整合片段:
以酿酒酵母基因组为模板,使用引物1和2扩增获得上游同源臂416d-Up片段,使用引物3和4扩增获得下游同源臂416d-Down片段。进而,以质粒pZF048和pZF049为模板,使用引物5和6分别扩增出片段Gal1-CBDAS-CEN1-tADH1和Gal1-CBDAS-CYB5-tADH1。各引物的序列参见表1及序列表中第3至10的序列,Gal1-CBDAS-CEN1-tADH1片段参见序列表中第1个序列,Gal1-CBDAS-CYB5-tADH1片段参见序列表中第2个序列。Gal1-CBDAS-CEN1-tADH1和Gal1-CBDAS-CYB5-tADH1的内质网定位肽序列如表3。
表3内质网定位肽序列
进而,将获得的片段转化酿酒酵母,插入片段组合方式A为:416d-Up,Gal1-CBDAS-CEN1-tADH1,416d-Down;组合方式B为:416d-Up,Gal1-CBDAS-CYB5-tADH1,416d-Down。
转化实施例1插入片段组合方式A
将出发菌株ySC-31接种于10mL液体YPD培养基中,30℃、200rpm培养过夜。第二天测定菌液OD值,并取适量菌液接种于50mL YPD培养基中稀释至OD值为0.2,继续培养4.5h。每个构建取5OD菌液,常温3000rcf,离心5min,弃上清,并用ddH2O洗涤两次,获得酵母菌细胞。最后用50μL DNA混合物(416d-Up、Gal1-CBDAS-CEN1-tADH1、416d-Down三种插入片段共2μg,质粒pCUT-416d 250ng,加ddH2O至DNA混合物达到50μL)悬浮细胞。然后加入上述醋酸锂转化混合物,混匀。42℃水浴40min。25℃,5000rpm,离心1min,弃上清,并用500μL ddH2O,轻轻吹匀。取50μL菌液涂布于上述缺少尿嘧啶的筛选平板上,30℃培养72h,获得重组酿酒酵母。
转化实施例2插入片段组合方式B
将出发菌株ySC-31接种于10mL液体YPD培养基中,30℃、200rpm培养过夜。第二天测定菌液OD值,并取适量菌液接种于50mL YPD培养基中稀释至OD值为0.2,继续培养4.5h。每个构建取5OD菌液,常温3000rcf,离心5min,弃上清,并用ddH2O洗涤两次,获得酵母菌细胞。最后用50μL DNA混合物(416d-Up、Gal1-CBDAS-CYB5-tADH1、416d-Down三种插入片段共2μg,质粒pCUT-416d 250ng,加ddH2O至DNA混合物达到50μL)悬浮细胞。然后加入上述醋酸锂转化混合物,混匀。42℃水浴40min。25℃,5000rpm,离心1min,弃上清,并用500μL ddH2O,轻轻吹匀。取50μL菌液涂布于上述缺少尿嘧啶的筛选平板上,30℃培养72h,获得重组酿酒酵母。
菌落PCR及测序验证
待实施例1或实施例2的筛选平板上长出单克隆菌落后,进行菌落PCR及测序验证,具体步骤是:用枪头挑取少量细胞分别置于20μL 20mmol/L NaOH溶液,涡旋混匀,于金属浴95℃孵育20min,涡旋混匀,取1μL菌液作为模板进行菌落PCR反应,反应引物为引物7和引物8,阳性克隆条带在3054bp,阴性克隆条带为750bp。挑选菌落PCR阳性克隆的菌液送致金唯智公司进行测序验证。测序正确的菌株进行划线保存和甘油冻存。
重组酿酒酵母产CBDA检测数据
CBDA样品准备:收集实施例1中培养72小时得到的产物,以其为样品进行提取并检测CBDA。根据收集样品检测的OD600加入不同量的破壁酶(稀释50倍OD:0.0~0.2加0.5ul,0.2~0.4加1.5ul,0.4~0.6加2.5ul,破壁酶4U/ul),每个样品做3个平行。加入破壁酶后,将研磨管置于1L烧杯或三角瓶中,在30℃,200rpm摇床处理60min;酶解后,每管加入200ul体积的玻璃珠和0.4ml乙酸乙酯/甲酸混合液,该混合液中甲酸含量为0.05%(V/V),在高速组织研磨仪中,以70Hz处理180s,间隔30s,重复三次,每次处理后将研磨托盘置于冰上冷却1min;,震荡15~30s,瞬时离心后,取上层有机层0.28ml至1.5ml于离心管中,重复两次,并将收集的上层有机相合并。三次提取的有机层,采用45℃、真空度-0.1MPa旋蒸1h,挥干至无溶剂残留;将干燥后的1.5ml离心管置于冰上降至低温后,每管加入乙腈/双蒸水/甲酸混合液(体积比:80%/20%/0.05%)重悬,震荡30s后13000rpm,0℃离心5min,每管取60ul上清,用有机膜过滤至液相检测瓶内插管中作为检测样品。
实施例2的产物采用同样的方法制作检测样品。
CBDA检测数据:将萃取制备的样品用安捷伦液相质谱分析仪器,进行CBDA产物的鉴定。以出发菌株作为对照,以及用CBDA和CBDA的合成前体CBGA标样作为参照进行分析,结果如图2所示。
从图2可以看出,与对照相比,加了定位肽CYB5和CNE1后,能明显观测到CBDA的合成(左边框标记的峰图)。
尽管这里参照本发明的解释性实施例对本发明进行了描述,但是,应该理解,本领域技术人员可以设计出很多其他的修改和实施方式,这些修改和实施方式将落在本申请公开的原则范围和精神之内。更具体地说,在本申请公开的范围内,可以对主题组合布局的组成部件和/或布局进行多种变型和改进。除了对组成部件和/或布局进行的变型和改进外,对于本领域技术人员来说,其他的用途也将是明显的。
<110>森瑞斯生物科技(深圳)有限公司
<120>一种表达CBDAS的重组酿酒酵母及其构建方法和应用
<160>10
<210>1
<211>2377
<212> DNA
<213>人工序列
<400>1
attatcttag cctaaaaaaa ccttctcttt ggaactttca gtaatacgct taactgctca
ttgctatatt gaagtacgga ttagaagccg ccgagcgggc gacagccctc cgacggatga
ctctcctccg tgcgtcctcg tcatcaccgg tcgcgttcct gaaacgcaga tgtgcctcgc
gccgcactgc tccgaacaat aaagattcta caatactagc ttttatggtt atgaagagga
aaaattggca gtaacctggc cccacaaacc ttcaaattaa cgaatcaaat taacaaccat
aggatgataa tgcgattagt tttttagcct tatttctggg gtaattaatc agcgaagcga
tgatttttga tctattaaca gatatataaa tggaaaagct gcataaccac tttaactaat
actttcaaca ttttcagttt gtattacttc ttattcaaat gtcataaaag tatcaacaaa
aaattgttaa tatacctcta tactttaacg tcaaggagaa aaaactataa tgAATCCAAG
AGAAAATTTC TTGAAGTGTT TTTCTCAGTA TATCCCGAAT AATGCGACGA ACCTTAAGTT
AGTATACACT CAGAACAACC CTCTATATAT GAGCGTTCTA AATTCTACAA TCCACAACCT
AAGATTTACG TCCGACACGA CTCCGAAACC CCTAGTTATA GTGACACCGT CACATGTTAG
CCATATACAG GGCACCATAC TATGTTCCAA AAAAGTTGGG TTACAAATAC GTACCCGTAG
CGGGGGACAC GACAGTGAGG GGATGAGTTA TATTAGTCAG GTGCCTTTCG TCATAGTGGA
TTTAAGAAAT ATGAGGTCAA TTAAAATCGA CGTTCACTCA CAAACTGCCT GGGTTGAGGC
GGGGGCCACA TTGGGTGAAG TATATTACTG GGTCAATGAG AAGAACGAGA ATCTTTCACT
AGCAGCCGGT TATTGTCCCA CAGTCTGCGC CGGCGGTCAC TTTGGCGGCG GCGGATACGG
TCCCTTAATG AGAAATTACG GGCTTGCCGC AGACAATATC ATAGATGCTC ACTTAGTTAA
TGTTCATGGA AAAGTGTTAG ACCGTAAAAG CATGGGGGAG GATCTGTTTT GGGCGCTTAG
AGGGGGAGGG GCAGAATCAT TTGGAATAAT AGTGGCATGG AAAATCAGGC TTGTGGCTGT
TCCAAAGAGT ACCATGTTCT CAGTAAAGAA AATAATGGAG ATCCATGAGC TAGTTAAACT
TGTGAATAAA TGGCAAAACA TAGCCTATAA ATATGATAAG GACTTGCTGC TTATGACTCA
TTTCATAACC AGAAACATTA CGGATAACCA AGGGAAGAAC AAAACAGCCA TCCATACCTA
CTTTAGCTCC GTTTTCTTGG GTGGTGTAGA CAGCTTAGTT GACCTGATGA ACAAGAGTTT
TCCGGAACTA GGTATCAAGA AGACAGATTG TAGACAACTT TCCTGGATTG ATACCATAAT
CTTTTACAGC GGAGTCGTCA ATTATGACAC TGACAACTTC AACAAGGAAA TTTTATTAGA
TAGGAGTGCG GGTCAAAATG GGGCCTTCAA GATCAAACTA GACTACGTTA AAAAACCCAT
TCCTGAAAGT GTTTTTGTTC AGATTCTGGA GAAGCTGTAT GAAGAAGATA TTGGCGCGGG
GATGTACGCT CTTTATCCGT ACGGCGGCAT AATGGATGAG ATTAGTGAAA GCGCCATCCC
TTTCCCCCAC AGAGCTGGTA TCCTGTACGA GTTGTGGTAT ATCTGCTCCT GGGAGAAACA
GGAGGATAAC GAAAAGCACT TAAATTGGAT TAGGAATATC TACAATTTCA TGACGCCCTA
CGTTTCCAAG AACCCCAGGT TGGCCTATTT GAACTACAGG GATCTTGATA TTGGAATCAA
CGACCCCAAA AACCCAAACA ACTACACCCA GGCAAGGATT TGGGGAGAGA AGTACTTCGG
GAAGAACTTC GACAGGCTAG TTAAGGTGAA AACGCTAGTT GATCCAAATA ATTTTTTCAG
AAACGAACAG AGTATCCCTC CCTTACCGCG TCATAGGCAC TTTGTGCTTA CTGCGGCCGT
CGTGCTCTTG ACGACGTCGG TTCTTTGTTG TGTAGTATTT ACAtaactcg aggcgaattt
cttatgattt atgattttta ttattaaata agttataaaa aaaataagtg tatacaaatt
ttaaagtgac tcttaggttt taaaacgaaa attcttattc ttgagtaact ctttcctgta
ggtcaggttg ctttctcagg tatagcatga ggtcgctctt attgaccaca cctctaccgg
catgccgagc aaatgcctgc aaatcgctcc ccatttc
<210>2
<211> 2383
<212> DNA
<213>人工序列
<400>2
attatcttag cctaaaaaaa ccttctcttt ggaactttca gtaatacgct taactgctca
ttgctatatt gaagtacgga ttagaagccg ccgagcgggc gacagccctc cgacggatga
ctctcctccg tgcgtcctcg tcatcaccgg tcgcgttcct gaaacgcaga tgtgcctcgc
gccgcactgc tccgaacaat aaagattcta caatactagc ttttatggtt atgaagagga
aaaattggca gtaacctggc cccacaaacc ttcaaattaa cgaatcaaat taacaaccat
aggatgataa tgcgattagt tttttagcct tatttctggg gtaattaatc agcgaagcga
tgatttttga tctattaaca gatatataaa tggaaaagct gcataaccac tttaactaat
actttcaaca ttttcagttt gtattacttc ttattcaaat gtcataaaag tatcaacaaa
aaattgttaa tatacctcta tactttaacg tcaaggagaa aaaactataa tgAATCCAAG
AGAAAATTTC TTGAAGTGTT TTTCTCAGTA TATCCCGAAT AATGCGACGA ACCTTAAGTT
AGTATACACT CAGAACAACC CTCTATATAT GAGCGTTCTA AATTCTACAA TCCACAACCT
AAGATTTACG TCCGACACGA CTCCGAAACC CCTAGTTATA GTGACACCGT CACATGTTAG
CCATATACAG GGCACCATAC TATGTTCCAA AAAAGTTGGG TTACAAATAC GTACCCGTAG
CGGGGGACAC GACAGTGAGG GGATGAGTTA TATTAGTCAG GTGCCTTTCG TCATAGTGGA
TTTAAGAAAT ATGAGGTCAA TTAAAATCGA CGTTCACTCA CAAACTGCCT GGGTTGAGGC
GGGGGCCACA TTGGGTGAAG TATATTACTG GGTCAATGAG AAGAACGAGA ATCTTTCACT
AGCAGCCGGT TATTGTCCCA CAGTCTGCGC CGGCGGTCAC TTTGGCGGCG GCGGATACGG
TCCCTTAATG AGAAATTACG GGCTTGCCGC AGACAATATC ATAGATGCTC ACTTAGTTAA
TGTTCATGGA AAAGTGTTAG ACCGTAAAAG CATGGGGGAG GATCTGTTTT GGGCGCTTAG
AGGGGGAGGG GCAGAATCAT TTGGAATAAT AGTGGCATGG AAAATCAGGC TTGTGGCTGT
TCCAAAGAGT ACCATGTTCT CAGTAAAGAA AATAATGGAG ATCCATGAGC TAGTTAAACT
TGTGAATAAA TGGCAAAACA TAGCCTATAA ATATGATAAG GACTTGCTGC TTATGACTCA
TTTCATAACC AGAAACATTA CGGATAACCA AGGGAAGAAC AAAACAGCCA TCCATACCTA
CTTTAGCTCC GTTTTCTTGG GTGGTGTAGA CAGCTTAGTT GACCTGATGA ACAAGAGTTT
TCCGGAACTA GGTATCAAGA AGACAGATTG TAGACAACTT TCCTGGATTG ATACCATAAT
CTTTTACAGC GGAGTCGTCA ATTATGACAC TGACAACTTC AACAAGGAAA TTTTATTAGA
TAGGAGTGCG GGTCAAAATG GGGCCTTCAA GATCAAACTA GACTACGTTA AAAAACCCAT
TCCTGAAAGT GTTTTTGTTC AGATTCTGGA GAAGCTGTAT GAAGAAGATA TTGGCGCGGG
GATGTACGCT CTTTATCCGT ACGGCGGCAT AATGGATGAG ATTAGTGAAA GCGCCATCCC
TTTCCCCCAC AGAGCTGGTA TCCTGTACGA GTTGTGGTAT ATCTGCTCCT GGGAGAAACA
GGAGGATAAC GAAAAGCACT TAAATTGGAT TAGGAATATC TACAATTTCA TGACGCCCTA
CGTTTCCAAG AACCCCAGGT TGGCCTATTT GAACTACAGG GATCTTGATA TTGGAATCAA
CGACCCCAAA AACCCAAACA ACTACACCCA GGCAAGGATT TGGGGAGAGA AGTACTTCGG
GAAGAACTTC GACAGGCTAG TTAAGGTGAA AACGCTAGTT GATCCAAATA ATTTTTTCAG
AAACGAACAG AGTATCCCTC CCTTACCGCG TCATAGGCAC GGTAGTGGTA CATTGGTTGT
CATATTGGCC ATTTTAATGC TAGGTGTTGC TTATTATTTG TTGAACGAAt aactcgaggc
gaatttctta tgatttatga tttttattat taaataagtt ataaaaaaaa taagtgtata
caaattttaa agtgactctt aggttttaaa acgaaaattc ttattcttga gtaactcttt
cctgtaggtc aggttgcttt ctcaggtata gcatgaggtc gctcttattg accacacctc
taccggcatg ccgagcaaat gcctgcaaat cgctccccat ttc
<210>3
<211> 24
<212> DNA
<213> 人工序列
<400>3
TATCGTCCAA CTGCATGGAG ATGA
<210>4
<211> 44
<212> DNA
<213>人工序列
<400>4
ggttttttta ggctaagata atGGGTCCGG TTAAACGGAT CTCG
<210>5
<211> 56
<212>DNA
<213>人工序列
<400>5
caaatgcctg caaatcgctc cccatttcCC GAACATGCTC CTTCACTATT TTAACA
<210>6
<211> 30
<212> DNA
<213>人工序列
<400>6
ATTTTTCAAT TGAGGAAACT TGAAAGGTGT
<210>7
<211> 60
<212> DNA
<213>人工序列
<400>7
CAATGCGAGA TCCGTTTAAC CGGACCCatt atcttagcct aaaaaaacct tctctttgga
<210>8
<211> 44
<212> DNA
<213>人工序列
<400>8
AATAGTGAAG GAGCATGTTC GGgaaatggg gagcgatttg cagg
<210>9
<211> 21
<212> DNA
<213>人工序列
<400>9
TCATACTATG TGTTGCCCTA C
<210>10
<211> 21
<212> DNA
<213>人工序列
<400>10
CAGGAAAATA TACATCGCAG G

Claims (5)

1.一种表达CBDAS的重组酿酒酵母的构建方法,其特征在于,将416d-Up、Gal1-CBDAS-CEN1-tADH1、416d-Down作为插入片段转化至酿酒酵母中,获得表达CBDAS的重组酿酒酵母;或者,
将416d-Up、Gal1-CBDAS-CYB5-tADH1、416d-Down作为插入片段转化至酿酒酵母中,获得表达CBDAS的重组酿酒酵母;
其中,416d-Up是以酿酒酵母基因组为模板,使用引物1和引物2扩增获得,所述引物1的序列如SEQ ID No.3,所述引物2的序列如SEQ ID No.4;
416d-Down是以酿酒酵母基因组为模板,使用引物3和引物4扩增获得,
所述引物3的序列如SEQ ID No.5,所述引物4的序列如SEQ ID No.6;
CEN1的序列为:
TTTGTGCTTACTGCGGCCGTCGTGCTCTTGACGACGTCGGTTCTTT
GTTGTGTAGTATTTACA;
CYB5的序列为:
GGTAGTGGTACATTGGTTGTCATATTGGCCATTTTAATGCTAGGTG
TTGCTTATTATTTGTTGAACGAA。
2.根据权利要求1所述的表达CBDAS的重组酿酒酵母的构建方法,其特征在于所述转化至酿酒酵母的方法为醋酸锂/PEG3350法;所述酿酒酵母是菌株ySC-31。
3.根据权利要求1所述的表达CBDAS的重组酿酒酵母的构建方法,其特征在于所述插入片段转化至酿酒酵母后,将收集到的细胞涂布到缺少尿嘧啶的筛选平板上,获取单克隆菌落,测序验证后进行保存。
4.采用权利要求1-3任意一项所述的构建方法得到的表达CBDAS的重组酿酒酵母。
5.权利要求4所述的重组酿酒酵母发酵生产CBDAS或CBDA的应用。
CN202010120594.5A 2020-02-26 2020-02-26 一种表达cbdas的重组酿酒酵母及其构建方法和应用 Active CN113999870B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010120594.5A CN113999870B (zh) 2020-02-26 2020-02-26 一种表达cbdas的重组酿酒酵母及其构建方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010120594.5A CN113999870B (zh) 2020-02-26 2020-02-26 一种表达cbdas的重组酿酒酵母及其构建方法和应用

Publications (2)

Publication Number Publication Date
CN113999870A CN113999870A (zh) 2022-02-01
CN113999870B true CN113999870B (zh) 2024-02-20

Family

ID=79920065

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010120594.5A Active CN113999870B (zh) 2020-02-26 2020-02-26 一种表达cbdas的重组酿酒酵母及其构建方法和应用

Country Status (1)

Country Link
CN (1) CN113999870B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114591923B (zh) * 2022-05-10 2022-08-30 森瑞斯生物科技(深圳)有限公司 大麻二酚酸合成酶突变体及其构建方法与应用
CN116891808A (zh) * 2023-07-12 2023-10-17 森瑞斯生物科技(深圳)有限公司 一种亚细胞结构定位的大麻二酚酸合成酶的酿酒酵母菌株构建方法和应用
CN116904412B (zh) * 2023-07-25 2024-04-26 森瑞斯生物科技(深圳)有限公司 一种大麻二酚酸合成酶序列优化的酿酒酵母菌株构建方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084970A (ja) * 1996-07-23 1998-04-07 H S P Kenkyusho:Kk 新規転写調節因子
CN104789625A (zh) * 2015-01-27 2015-07-22 湖南农业大学 人α防御素5在酿酒酵母中分泌表达的方法
CN108795789A (zh) * 2018-07-02 2018-11-13 山东省食品发酵工业研究设计院 一种高产衣康酸解脂耶氏酵母工程菌株及其构建方法、发酵工艺与应用
CN110914416A (zh) * 2017-04-27 2020-03-24 加州大学董事会 产生大麻素和大麻素衍生物的微生物和方法
CN113308442A (zh) * 2021-04-28 2021-08-27 天津大学 重组酿酒酵母菌株及其构建方法
CN113366009A (zh) * 2018-11-27 2021-09-07 科纳科学有限责任公司 用于生物合成大麻素的双向多酶支架
CN115786149A (zh) * 2022-08-02 2023-03-14 江南大学 一种生产母乳脂质替代品酿酒酵母菌株及其应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002000842A2 (en) * 2000-06-23 2002-01-03 The University Of Chicago Methods for isolating centromere dna
US20050271739A1 (en) * 2004-06-08 2005-12-08 Wang Xiang H Methods and compositions for accelerating alcohol metabolism
CN105431529A (zh) * 2013-05-03 2016-03-23 德克萨斯大学系统董事会 用于真菌脂质生产的组合物和方法
JP6754697B2 (ja) * 2014-12-03 2020-09-16 株式会社カネカ セントロメアdna配列を含むベクター及びその用途
CN110358692B (zh) * 2018-04-09 2021-07-27 中国科学院青岛生物能源与过程研究所 生产神经酸的重组酵母菌株及其应用
WO2019209885A2 (en) * 2018-04-23 2019-10-31 Renew Biopharma, Inc. Enzyme engineering to alter the functional repertoire of cannabinoid synthases
CN112795495B (zh) * 2020-12-14 2021-10-26 大连理工大学 利用酿酒酵母生产异源大麻环萜酚的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084970A (ja) * 1996-07-23 1998-04-07 H S P Kenkyusho:Kk 新規転写調節因子
CN104789625A (zh) * 2015-01-27 2015-07-22 湖南农业大学 人α防御素5在酿酒酵母中分泌表达的方法
CN110914416A (zh) * 2017-04-27 2020-03-24 加州大学董事会 产生大麻素和大麻素衍生物的微生物和方法
CN108795789A (zh) * 2018-07-02 2018-11-13 山东省食品发酵工业研究设计院 一种高产衣康酸解脂耶氏酵母工程菌株及其构建方法、发酵工艺与应用
CN113366009A (zh) * 2018-11-27 2021-09-07 科纳科学有限责任公司 用于生物合成大麻素的双向多酶支架
CN113308442A (zh) * 2021-04-28 2021-08-27 天津大学 重组酿酒酵母菌株及其构建方法
CN115786149A (zh) * 2022-08-02 2023-03-14 江南大学 一种生产母乳脂质替代品酿酒酵母菌株及其应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
The Integration of Metabolomics and Next-Generation Sequencing Data to Elucidate the Pathways of Natural Product Metabolism in Medicinal Plants;Federico Scossa等;Planta Medica;第855-873页 *
不同分泌信号对豹蛙酶在巴斯德毕赤酵母中分泌效率的影响;何庆;赵洪亮;薛冲;姚学勤;孙博;刘志敏;;生物技术通讯(05);第622-625页 *
基于外泌蛋白质组的酿酒酵母信号肽元件的分析及鉴定;田雷瑜;曹筠嵩;刘忞之;杨燕;王伟;;中国医药生物技术(04);第319-327页 *
猪繁殖与呼吸综合征病毒GP5蛋白在酿酒酵母中的定位研究;李能章;邱荣蓉;黄园媛;邹灵秀;彭远义;;中国预防兽医学报(08);第670-672页 *
玉米酵母双杂交cDNA文库的构建及ZmCEN互作蛋白的筛选;雷海英;白凤麟;段永红;王志军;;西北植物学报(04);第598-606页 *

Also Published As

Publication number Publication date
CN113999870A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
CN113999870B (zh) 一种表达cbdas的重组酿酒酵母及其构建方法和应用
Wu et al. Enhanced ethanol production from sugarcane molasses by industrially engineered Saccharomyces cerevisiae via replacement of the PHO4 gene
CN108795789A (zh) 一种高产衣康酸解脂耶氏酵母工程菌株及其构建方法、发酵工艺与应用
CN115927029A (zh) 一种产大麻萜酚酸的重组酿酒酵母及其构建方法和应用
CN114369541A (zh) 一种优化代谢流产大麻萜酚酸的重组酿酒酵母及其构建方法和应用
WO2023143136A1 (zh) 一种发酵生产α-檀香烯的酵母工程菌及其应用
CN102952813A (zh) 蓝色天然染料的合成方法及提取工艺
CN114657078B (zh) 一种高产大麻二酚酸的酿酒酵母菌株构建方法和应用
CN116904412B (zh) 一种大麻二酚酸合成酶序列优化的酿酒酵母菌株构建方法和应用
CN113980993B (zh) Mal33基因缺失在提高酿酒酵母对木质纤维素水解液抑制物耐受性中的应用
CN107723300B (zh) 过表达CgGsh1基因提高产甘油假丝酵母2-苯乙醇耐受性及产量
CN116891808A (zh) 一种亚细胞结构定位的大麻二酚酸合成酶的酿酒酵母菌株构建方法和应用
US20230220369A1 (en) Taxadiene synthase tcts2, encoding nucleotide sequence and use thereof
CN1900285A (zh) 能催化吲哚生成靛蓝的P450BM-3Asp168His变体基因及其用途
CN111218409A (zh) 一种耐高盐的酿酒酵母菌株、其构建方法及应用
CN114634938A (zh) 植物乳杆菌基因fol KE在叶酸生物合成中的应用
CN1900286A (zh) 能催化吲哚生成靛蓝的P450BM-3Asp168Leu变体基因及其用途
WO2024098353A1 (zh) 一种产大麻萜酚酸的重组酿酒酵母及其构建方法和应用
CN113528365A (zh) 产大麻二酚的重组酿酒酵母、其构建方法以及应用
CN1900287A (zh) 能催化吲哚生成靛蓝的P450BM-3Glu435Thr变体基因及其用途
TW201542814A (zh) 新穎嗜甲烷菌及其用途
CN116875475A (zh) 一株高产大麻素合成前体的酵母菌株及其构建方法和应用
CN116162644B (zh) 一种苯丙氨酸解氨酶基因pal的新用途
CN110951665B (zh) 一种敲除克雷伯氏菌Zn转运蛋白提高1,3-丙二醇产量的方法
CN116590203B (zh) 一株谷氨酸棒杆菌及其在发酵生产l-异亮氨酸中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant