CN113951278A - 过渡金属改性ZnO抗菌材料、制备方法及应用 - Google Patents

过渡金属改性ZnO抗菌材料、制备方法及应用 Download PDF

Info

Publication number
CN113951278A
CN113951278A CN202110703617.XA CN202110703617A CN113951278A CN 113951278 A CN113951278 A CN 113951278A CN 202110703617 A CN202110703617 A CN 202110703617A CN 113951278 A CN113951278 A CN 113951278A
Authority
CN
China
Prior art keywords
transition metal
solution
zno
metal modified
antibacterial material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110703617.XA
Other languages
English (en)
Other versions
CN113951278B (zh
Inventor
张静涛
刘炳坤
韩冰
孙晓东
刘姝瑞
姚静
翟梦婉
刘贝贝
陈亚伟
李金洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INSTITUTE OF VEGETABLE HAINAN ACADEMY OF AGRICULTURAL SCIENCES
Zhengzhou Wangchen Biotechnology Co ltd
Zhengzhou University of Light Industry
Original Assignee
INSTITUTE OF VEGETABLE HAINAN ACADEMY OF AGRICULTURAL SCIENCES
Zhengzhou Wangchen Biotechnology Co ltd
Zhengzhou University of Light Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INSTITUTE OF VEGETABLE HAINAN ACADEMY OF AGRICULTURAL SCIENCES, Zhengzhou Wangchen Biotechnology Co ltd, Zhengzhou University of Light Industry filed Critical INSTITUTE OF VEGETABLE HAINAN ACADEMY OF AGRICULTURAL SCIENCES
Publication of CN113951278A publication Critical patent/CN113951278A/zh
Application granted granted Critical
Publication of CN113951278B publication Critical patent/CN113951278B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/60Platinum group metals with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dentistry (AREA)
  • Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Inorganic Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种过渡金属改性ZnO抗菌材料、制备方法及应用,属于能源环境和光催化材料领域,具体为通过在锌盐的醇溶液中加入不同过渡金属原料,然后滴加氢氧化钠的醇溶液与之反应,最后得到的混合液倒入反应釜中恒温反应,经过洗涤干燥后得到过渡金属改性ZnO纳米材料。过渡金属单质或离子的改性能够明显拓宽ZnO的可见光吸收范围和抑制光生电子‑空穴对的复合,进而提高材料的光催化抗菌性能。本发明采用一步溶剂热法,通过控制反应条件可制备~10 nm的过渡金属改性ZnO抗菌材料。整个制备过程简单,使本方法具有实际应用前景。

Description

过渡金属改性ZnO抗菌材料、制备方法及应用
技术领域
本发明属于能源环境和光催化材料领域,具体涉及一种过渡金属改性ZnO抗菌材料、制备方法及应用。
背景技术
病原微生物污染对人类生活以及社会发展带来了很大的困扰。由大肠杆菌(Escherichia coli)污染食品所导致的病例更是层出不穷。基于防治病原微生物污染而新兴起的半导体光催化杀菌技术广泛引起了人们的注意。相比于传统杀菌技术,纳米半导体光催化剂在适当波长的光激发下,能生成光生电子和空穴对,迁移到半导体表面的光生电子和空穴可以和环境中的水、氧气等反应产生羟基自由基等活性氧物质,可以有效杀灭病原微生物,且不会对环境产生二次污染。纳米氧化锌(ZnO)作为光催化剂中的佼佼者已在市场上取得瞩目的成就,它具有良好的生物相容性、稳定性和杀菌性,且耗能低、无毒,在农业、医药及环境等领域具有良好的应用前景。然而由于ZnO对可见光响应的效果差,易发生光生电子与空穴复合的情况等,极大程度上限制了纳米材料的应用领域,因此对ZnO进行改性来克服自身缺陷,提高其光催化活性。
金属的修饰或者掺杂是提高ZnO光催化性能的一种优良方法,一方面因为一些金属单质(Au、Pd和Cu等)自身具有表面等离子体共振(SPR)效应,在增强可见光吸收的同时降低光生电子和空穴的复合速率;另一方面部分金属可以掺杂到ZnO晶格中,从而减小ZnO的带隙,拓宽可见光吸收范围。目前,制备金属修饰/掺杂纳米ZnO的方法主要有溶胶-凝胶法、化学气相沉积、光沉积法、磁控溅射等。然后上述方法大多需要两步完成,并且制备工艺较为复杂,成本较高。因此,有必要探索简便易行的方法合成金属改性ZnO纳米材料,以实现其在抗菌领域的实际应用。
发明内容
本发明要解决的技术问题是针对纯ZnO宽禁带宽度导致的低吸收范围和电子-空穴易复合导致的催化效率等两大突出缺点,本发明提供一种过渡金属改性ZnO抗菌材料的制备方法,利用简便的方法改善ZnO这一性质,即低温一步溶剂热法合成,该方法不需要高温,操作简便,成本较低,制得的过渡金属改性ZnO抗菌材料在可见光下能有效杀灭细菌。
为解决上述技术问题,本发明采用如下的技术方案:
一种过渡金属改性ZnO抗菌材料的制备方法,包括如下步骤:
(1)将过渡金属原料加入锌盐的乙醇溶液中,搅拌至完全溶解得到溶液A;
(2)将氢氧化钠的乙醇溶液加入溶液A中搅拌混匀得到溶液B;
(3)将溶液B置于反应釜中在温度60-120℃下恒温反应2-6 h,得到沉淀物;
(4)将步骤(3)所得的沉淀物用乙醇和水洗涤,干燥后得到过渡金属改性ZnO抗菌材料。
进一步,所述步骤(1)中的过渡金属原料包括HAuCl4•3H2O、PdCl2或CuCl2;锌盐为ZnCl2或Zn(NO3)2
进一步,所述步骤(1)中锌盐的乙醇溶液的摩尔浓度为0.05~0.3 mol/L。
进一步,所述步骤(1)中过渡金属原料与锌盐的物质的量之比为1:5~1:100。
进一步,所述步骤(2)中NaOH与锌盐的物质的量之比为4:1~2:1。
进一步,所述步骤(3)中反应温度为80℃,反应时间为4 h。
利用本发明所述的制备方法制得的过渡金属改性ZnO抗菌材料。
本发明所述的过渡金属改性ZnO抗菌材料在光催化抗菌中的应用。
本发明设计原理如下:利用过渡金属原料(如:HAuCl4•3H2O、PdCl2、CuCl2等)与锌盐在醇溶剂环境中反应,再将含NaOH的醇溶剂滴入上述混合溶液中,通过低温溶剂热的方法制备一系列过渡金属改性ZnO抗菌材料。
本发明具有如下的优点以及技术效果:
1. 本发明利用过渡金属改性拓宽ZnO的可见光吸收范围和抑制光生电子-空穴的复合,提高材料光催化抗菌效率。
2. 本发明通过一步溶剂的方法,制备一系列过渡金属改性ZnO抗菌材料,操作简单,易于控制。
3. 本发明制备的过渡金属改性ZnO抗菌材料在可见光下能有效杀灭细菌。
附图说明
图1为本发明实施例1、2制备的ZnO和Au/ZnO的XRD谱图;
图2为本发明实施例2制备的Au/ZnO的TEM照片;
图3为本发明实施例1、2制备的ZnO和Au/ZnO的紫外-可见漫反射谱图;
图4为本发明实施例1、2制备的ZnO和Au/ZnO的光催化杀灭大肠杆菌曲线;
图5为本发明实施例3制备的Pd/ZnO的光催化杀灭大肠杆菌曲线;
图6为本发明实施例4制备的Cu/ZnO的光催化杀灭大肠杆菌曲线。
具体实施方式
下面结合具体实施例,对本发明做进一步说明。应理解,以下实施例仅用于说明本发明而非用于限制本发明的范围,该领域的技术熟练人员可以根据上述发明的内容作出一些非本质的改进和调整。
实施例1
取两个烧杯,分别加入30 mL的无水乙醇,在其中一个烧杯中加入0.15 mol/L的氯化锌(ZnCl2),搅拌至全溶,得到混合溶液A;在另一个烧杯中加入NaOH,NaOH与氯化锌的物质的量之比为2:1,当NaOH全部溶解到乙醇中时,记作溶液B;将B溶液逐滴加到A溶液中,充分混匀后得到溶液C,再将溶液C转移到100 mL的聚四氟乙烯反应釜中,80℃反应4 h。待反应结束,冷却至室温,倒掉上清,用离心机8000 rpm离心6 min,用去离子水和无水乙醇洗涤样品,60℃烘干后研磨,得到纯ZnO样品。
实施例2
本实施例过渡金属改性ZnO抗菌材料的制备方法如下:
取两个烧杯,分别加入30 mL的无水乙醇,在其中一个烧杯中先加入0.05mol/L的氯化锌(ZnCl2),再加入三水氯金酸(HAuCl4•3H2O),三水氯金酸与氯化锌的物质的量之比为1:5,搅拌至全溶,得到混合溶液A;在另一个烧杯中加入NaOH,NaOH与氯化锌的物质的量之比为2:1,当NaOH全部溶解到乙醇中时,记作溶液B;将B溶液逐滴加到A溶液中,充分混匀后得到溶液C,再将溶液C转移到100 mL的聚四氟乙烯反应釜中,80℃反应4 h。待反应结束,冷却至室温,倒掉上清,用离心机8000 rpm离心6 min,用去离子水和无水乙醇洗涤样品,60℃烘干后研磨,得到Au/ZnO样品。
采用德国Bruker公司D8 Advance型X射线衍射仪对得到的Au/ZnO样品进行XRD分析。如图1所示为样品的XRD谱图,XRD谱图显示样品为六方纤锌矿ZnO(JCPDS No.36-1451)和Au单质(JCPDS No.04-0784)的复合材料。采用日本电子2100型透射电子显微镜观察得到样品的形貌结构,如图2所示为样品的TEM照片,结果表明ZnO形貌为10~30 nm的纳米颗粒,且表面负载了Au纳米粒子,粒径为5~15 nm。此外,通过测量晶格条纹可知,晶面间距为0.28nm和0.23 nm的晶格条纹分别对应于ZnO的(100)晶面和Au单质的(111)晶面。
采用日本日立公司U-3900H紫外-可见固体漫反射仪器对样品光学性质进行分析,如图3所示。结果表明,Au/ZnO样品在400-800 nm波长范围内显示出良好的可见光吸收, 这是由于Au单质的表面等离子体共振引起的。
采用北京泊菲莱科技有限公司的氙灯光源进行可见光光催化实验,如图4所示制备的Au/ZnO材料在可见光照射5h后使大肠杆菌数量降低了4个数量级,其抗菌效果远高于纯ZnO材料。实验结果表明,本发明制备的Au/ZnO纳米复合材料是一种具有宽光谱响应和高活性的新型光催化抗菌材料。
实施例3
本实施例过渡金属改性ZnO抗菌材料的制备方法如下:
取两个烧杯,分别加入30 mL的无水乙醇,在其中一个烧杯中先加入0.1mol/L的硝酸锌(Zn(NO3)2),再加入氯化钯(PdCl2),氯化钯与硝酸锌的物质的量之比为1:50,搅拌至全溶,得到混合溶液A;在另一个烧杯中加入NaOH,NaOH与硝酸锌的物质的量之比为3:1,当NaOH全部溶解到乙醇中时,记作溶液B;将B溶液逐滴加到A溶液中,充分混匀后得到溶液C,再将溶液C转移到100 mL的聚四氟乙烯反应釜中,120℃反应2 h。待反应结束,冷却至室温,倒掉上清,用离心机8000 rpm离心6 min,用去离子水和无水乙醇洗涤样品,60℃烘干后研磨,得到Pd/ZnO样品。图5的光催化抗菌实验表明,该样品在可见光下具有很好的杀灭大肠杆菌效果。
实施例4
本实施例过渡金属改性ZnO抗菌材料的制备方法如下:
取两个烧杯,分别加入30 mL的无水乙醇,在其中一个烧杯中先加入0.3mol/L的氯化锌(ZnCl2),再加入氯化铜(CuCl2•2H2O),氯化铜与氯化锌的物质的量之比为1:100,搅拌至全溶,得到混合溶液A;在另一个烧杯中加入NaOH,NaOH与氯化锌的物质的量之比为4:1,当NaOH全部溶解到乙醇中时,记作溶液B;将B溶液逐滴加到A溶液中,充分混匀后得到溶液C,再将溶液C转移到100 mL的聚四氟乙烯反应釜中,60℃反应6 h。待反应结束,冷却至室温,倒掉上清,用离心机8000 rpm离心6 min,用去离子水和无水乙醇洗涤样品,60℃烘干后研磨,得到Cu/ZnO样品。图6的光催化抗菌实验表明,该样品在可见光下具有很好的杀灭大肠杆菌效果。
以上显示和描述了本发明的基本原理和主要特征以及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (8)

1.一种过渡金属改性ZnO抗菌材料的制备方法,其特征在于:包括如下步骤:
(1)将过渡金属原料加入锌盐的乙醇溶液中,搅拌至完全溶解得到溶液A;
(2)将氢氧化钠的乙醇溶液加入溶液A中搅拌混匀得到溶液B;
(3)将溶液B置于反应釜中在温度60-120℃下恒温反应2-6 h,得到沉淀物;
(4)将步骤(3)所得的沉淀物用乙醇和水洗涤,干燥后得到过渡金属改性ZnO抗菌材料。
2.根据权利要求1所述的制备方法,其特征在于:所述步骤(1)中的过渡金属原料包括HAuCl4•3H2O、PdCl2或CuCl2;锌盐为ZnCl2或Zn(NO3)2
3.根据权利要求1所述的制备方法,其特征在于:所述步骤(1)中锌盐的乙醇溶液的摩尔浓度为0.05~0.3 mol/L。
4.根据权利要求1所述的制备方法,其特征在于:所述步骤(1)中过渡金属原料与锌盐的物质的量之比为1:5~1:100。
5.根据权利要求1所述的制备方法,其特征在于:所述步骤(2)中NaOH与锌盐的物质的量之比为4:1~2:1。
6.根据权利要求1所述的制备方法,其特征在于:所述步骤(3)中反应温度为80℃,反应时间为4h。
7.根据权利要求1-6任一所述的制备方法制得的过渡金属改性ZnO抗菌材料。
8.根据权利要求7所述的过渡金属改性ZnO抗菌材料在光催化抗菌中的应用。
CN202110703617.XA 2021-06-22 2021-06-24 过渡金属改性ZnO抗菌材料、制备方法及应用 Active CN113951278B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110690247 2021-06-22
CN2021106902470 2021-06-22

Publications (2)

Publication Number Publication Date
CN113951278A true CN113951278A (zh) 2022-01-21
CN113951278B CN113951278B (zh) 2023-03-10

Family

ID=79460253

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110703617.XA Active CN113951278B (zh) 2021-06-22 2021-06-24 过渡金属改性ZnO抗菌材料、制备方法及应用

Country Status (1)

Country Link
CN (1) CN113951278B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114160135A (zh) * 2021-11-27 2022-03-11 郑州轻工业大学 磁性Fe3O4复合纳米材料的制备方法
CN114797829A (zh) * 2022-03-30 2022-07-29 郑州轻工业大学 一种可见光催化纳米抗菌材料及其制造方法
CN116328778A (zh) * 2023-04-06 2023-06-27 吉林大学 等离激元金属铜-金属氧化物复合结构催化剂及其室温可见光下催化气相甲酸制氢的方法
CN116328778B (zh) * 2023-04-06 2024-10-22 吉林大学 等离激元金属铜-金属氧化物复合结构催化剂及其室温可见光下催化气相甲酸制氢的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103908964A (zh) * 2014-04-08 2014-07-09 河南理工大学 一种贵金属掺杂氧化锌纳米粉体及其制备、应用
CN104275173A (zh) * 2014-07-30 2015-01-14 浙江师范大学 碳包覆金属掺杂氧化锌复合光催化纳米材料及其制备方法
CN105772040A (zh) * 2016-01-22 2016-07-20 浙江师范大学 一种复合光催化抗菌材料及其制备方法
CN106215942A (zh) * 2016-07-12 2016-12-14 华南理工大学 一种掺杂了过渡金属或稀土金属的新型盘状氧化锌的可控合成方法
CN106732590A (zh) * 2016-11-24 2017-05-31 郑州轻工业学院 一种铜/氧化钛光催化纳米材料的制备方法
CN108479772A (zh) * 2018-04-10 2018-09-04 苏州大学 金掺杂纳米氧化锌复合材料及其制备方法与在光催化降解四环素中的应用
CN110250205A (zh) * 2019-07-16 2019-09-20 陕西科技大学 一种钴掺杂氧化锌量子点纳米抗菌剂及其制备方法
CN110679609A (zh) * 2019-09-30 2020-01-14 广明源光科技股份有限公司 一种铜掺杂氧化锌量子点纳米抗菌剂及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103908964A (zh) * 2014-04-08 2014-07-09 河南理工大学 一种贵金属掺杂氧化锌纳米粉体及其制备、应用
CN104275173A (zh) * 2014-07-30 2015-01-14 浙江师范大学 碳包覆金属掺杂氧化锌复合光催化纳米材料及其制备方法
CN105772040A (zh) * 2016-01-22 2016-07-20 浙江师范大学 一种复合光催化抗菌材料及其制备方法
CN106215942A (zh) * 2016-07-12 2016-12-14 华南理工大学 一种掺杂了过渡金属或稀土金属的新型盘状氧化锌的可控合成方法
CN106732590A (zh) * 2016-11-24 2017-05-31 郑州轻工业学院 一种铜/氧化钛光催化纳米材料的制备方法
CN108479772A (zh) * 2018-04-10 2018-09-04 苏州大学 金掺杂纳米氧化锌复合材料及其制备方法与在光催化降解四环素中的应用
CN110250205A (zh) * 2019-07-16 2019-09-20 陕西科技大学 一种钴掺杂氧化锌量子点纳米抗菌剂及其制备方法
CN110679609A (zh) * 2019-09-30 2020-01-14 广明源光科技股份有限公司 一种铜掺杂氧化锌量子点纳米抗菌剂及其制备方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHANGLE WU 等: "Solvothermal synthesis of Cu-doped ZnO nanowires with visible light-driven photocatalytic activity", 《MATERIALS LETTERS》 *
KEZHEN QI 等: "Transition metal doped ZnO nanoparticles with enhanced photocatalytic and antibacterial performances: Experimental and DFT studies", 《CERAMICS INTERNATIONAL》 *
YUNYAN ZHANG 等: "Synthesis of Pd/ZnO nanocomposites with high photocatalytic performance by a solvothermal method", 《APPLIED SURFACE SCIENCE》 *
孙德武等: "过渡金属-氧化锌复合材料光催化性能研究新进展", 《吉林师范大学学报(自然科学版)》 *
戴军等: "铜掺杂氧化锌纳米棒的非线性光学响应竞争特性", 《发光学报》 *
李翠翠 等: "铜掺杂氧化锌可见光光催化活性研究", 《上海市化学化工学会2009年度学术年会论文集》 *
麻晓霞等: "氧化锌型复合抗菌材料抗菌活性研究进展", 《功能材料》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114160135A (zh) * 2021-11-27 2022-03-11 郑州轻工业大学 磁性Fe3O4复合纳米材料的制备方法
CN114160135B (zh) * 2021-11-27 2023-10-31 郑州轻工业大学 磁性Fe3O4复合纳米材料的制备方法
CN114797829A (zh) * 2022-03-30 2022-07-29 郑州轻工业大学 一种可见光催化纳米抗菌材料及其制造方法
CN114797829B (zh) * 2022-03-30 2023-06-16 郑州轻工业大学 一种可见光催化纳米抗菌材料及其制造方法
CN116328778A (zh) * 2023-04-06 2023-06-27 吉林大学 等离激元金属铜-金属氧化物复合结构催化剂及其室温可见光下催化气相甲酸制氢的方法
CN116328778B (zh) * 2023-04-06 2024-10-22 吉林大学 等离激元金属铜-金属氧化物复合结构催化剂及其室温可见光下催化气相甲酸制氢的方法

Also Published As

Publication number Publication date
CN113951278B (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
CN113951278B (zh) 过渡金属改性ZnO抗菌材料、制备方法及应用
CN111185170B (zh) 一种纳米氧化锌包裹纳米银抗菌复合材料的制备方法
CN105540733A (zh) 一种TiO2-还原石墨烯复合材料及其制备方法和在人工海水体系中的应用
Wang et al. Mechanism analysis of surface structure-regulated Cu2O in photocatalytic antibacterial process
CN112958061B (zh) 一种氧空位促进直接Z机制介孔Cu2O/TiO2光催化剂及其制备方法
CN101073830B (zh) 一种明胶-银纳米材料的制备方法
CN103272592B (zh) 一维载银二氧化钛纳米棒光催化剂的制备方法
Toloman et al. V-doped ZnO particles: Synthesis, structural, optical and photocatalytic properties
Zhang et al. Shape-dependent photocatalytic performance of SnFe 2 O 4 nanocrystals synthesized by hydrothermal method
CN114522709B (zh) 一种三维多孔石墨相氮化碳/碘氧化铋/银纳米粒子复合光催化剂及其制备方法和应用
CN111744503A (zh) 一种Z型异质结MoS2/Bi2WO6复合光催化剂及其制备方法和应用
CN110743575A (zh) 一种具有吸附-光催化协同效应的AgIn5S8/SnS2固溶体催化剂的制备方法
Xue et al. Hollow rods of nanocrystalline NiGa2O4: hydrothermal synthesis, formation mechanism, and application in photocatalysis
CN106925306B (zh) 二维超薄ZnO/BiOBr0.9I0.1杂化日光催化剂及其制备方法
CN109999859B (zh) 一种微球状ZnO-BiOI复合材料的制备方法
CN108187701B (zh) 一种管状AgCl结构的AgCl/BiOCl光催化剂制备方法
CN107597100B (zh) 碳点修饰的二维钨酸钠/氧化钨光催化材料的制备方法
CN108097273B (zh) 一种管状AgCl结构的AgCl/BiOCl光催化剂
Jiang et al. Applications of bismuth-based nanoparticles for the removal of pollutants in wastewater: a review
CN113751027A (zh) 一种超薄MgIn2S4纳米片杀菌光催化材料及其制备方法
CN114653382A (zh) 一种p-n型硫化亚锡-锡酸锌半导体材料及其制备方法和应用
Liu et al. One-step synthesis of SnO hierarchical architectures under room temperature and their photocatalytic properties
Cheng et al. Facile synthesis of CQDs/Ag NPs composites with photoluminescence and their potential application in antibacterial materials
CN111266120A (zh) 一种空心结构的CdS/ZnO复合光催化材料及其制备方法
Zhang et al. Preparation of anatase nanocrystallines from low concentration precursor solution via a microwave assisted liquid phase deposition (MW-LPD) process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant