CN114160135A - 磁性Fe3O4复合纳米材料的制备方法 - Google Patents

磁性Fe3O4复合纳米材料的制备方法 Download PDF

Info

Publication number
CN114160135A
CN114160135A CN202111427514.1A CN202111427514A CN114160135A CN 114160135 A CN114160135 A CN 114160135A CN 202111427514 A CN202111427514 A CN 202111427514A CN 114160135 A CN114160135 A CN 114160135A
Authority
CN
China
Prior art keywords
magnetic
mixed solution
solution
ethanol
nano material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111427514.1A
Other languages
English (en)
Other versions
CN114160135B (zh
Inventor
张静涛
石恒真
刘炳坤
刘贝贝
曹启民
孙晓东
韩冰
姚静
翟梦婉
刘姝瑞
陈亚伟
朱梦真
董育恒
沈岩
许兆斌
樊登祎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute Of Agricultural Environment And Soil Hainan Academy Of Agricultural Sciences
INSTITUTE OF VEGETABLE HAINAN ACADEMY OF AGRICULTURAL SCIENCES
Zhengzhou University of Light Industry
Original Assignee
Institute Of Agricultural Environment And Soil Hainan Academy Of Agricultural Sciences
INSTITUTE OF VEGETABLE HAINAN ACADEMY OF AGRICULTURAL SCIENCES
Zhengzhou University of Light Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute Of Agricultural Environment And Soil Hainan Academy Of Agricultural Sciences, INSTITUTE OF VEGETABLE HAINAN ACADEMY OF AGRICULTURAL SCIENCES, Zhengzhou University of Light Industry filed Critical Institute Of Agricultural Environment And Soil Hainan Academy Of Agricultural Sciences
Priority to CN202111427514.1A priority Critical patent/CN114160135B/zh
Publication of CN114160135A publication Critical patent/CN114160135A/zh
Application granted granted Critical
Publication of CN114160135B publication Critical patent/CN114160135B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • B01J35/33
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/06Aluminium; Calcium; Magnesium; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • B01J35/40

Abstract

本发明公开了一种磁性Fe3O4复合纳米材料的制备方法,应用在环境污染治理、食品、生物医药和材料电池等多个领域,是一种可回收的磁性纳米复合材料,具体为金属修饰或掺杂的磁性Fe3O4复合纳米材料,具有良好的可回收性、杀菌性能。实验通过将铁的无机化合物溶于乙醇中,之后加入金属盐,将混合溶液加入至NaOH与乙醇的混合液,再与乙二醇混合,然后将最后得到的混合液倒入反应釜中恒温反应,得到沉淀物;用水和乙醇涤洗干燥后得到金属修饰或掺杂的磁性Fe3O4复合纳米材料;本发明采用溶剂热,通过控制反应条件可制备10~20nm的磁性Fe3O4复合材料,整个制备过程简单,原料相对低廉,使本方法具有实际应用前景。

Description

磁性Fe3O4复合纳米材料的制备方法
技术领域
本发明属于纳米材料制备技术领域,具体涉及一种磁性Fe3O4复合纳米材料的制备方法。
背景技术
纳米Fe3O4磁性强、储量丰富、价格低廉、生物相容性好,具有一定抗菌性能是最常用的环境友好型磁性材料,小尺寸效应、表面效应和丰富的活性位点使Fe3O4表现出较强的吸附能力;此外,纳米Fe3O4具有高的理论比容量及良好的导电性。纳米Fe3O4材料对多种无机离子及有机物具有较强的吸附能力,因其颗粒粒径小,比表面积大,增加了接触机会,导致其吸附能力强,能很快达到吸附平衡,可应用在治理水污染等领域,用来去除水中有机污染物或重金属离子。纳米Fe3O4材料的磁性使吸附材料容易与水体分离,并进行回收,有利于材料的重复利用与污染物的集中处理。
磁性Fe3O4纳米材料的制备方法有很多种,包括化学共沉淀法、微乳法、溶胶-凝胶法、水热法、水解法、溶剂热法等。化学共沉淀法制备出的磁性Fe3O4纳米材料,纳米微粒的粒径较为均匀,具有良好的磁性,操作也比较简单;微乳法制备磁性Fe3O4纳米材料时所用时间较短,合成的磁性Fe3O4纳米材料产量很高,但是工艺不够完善;溶胶-凝胶法制备的磁性Fe3O4纳米颗粒薄膜,颗粒排列十分紧密,具有很好的超顺磁性,但是使用的有些原材料较为昂贵,而且会对人体产生危害;水热法合成的磁性Fe3O4纳米材料结晶性能较好,但是操作方法较为繁琐,很难进行大规模的制备;水解法制备材料时,工艺简单,原材料为无机盐,价格低廉成本较低,但是制备出的纳米粒子形状不规则,粒径分布也不均匀。磁性Fe3O4纳米材料是一种晶胞结构为八面体的晶尖石类铁氧体,Fe2+与Fe3+无序排列,虽然Fe2+和Fe3+在纳米Fe3O4表面不规则排序,其中Fe2+可以破坏细胞结构,使细胞死亡,但由于其有很强的团聚性,Fe2+容易被氧化成Fe3+且表面羟基不足导致抗菌效果不够明显,应用范围受到抑制。本发明采用溶剂热法将金属单质与磁性Fe3O4纳米材料复合,将有效改善合成Fe3O4材料方法以及磁性Fe3O4纳米材料本身易团聚的这些缺陷。尤其是将Cu2+负载在Fe3O4材料后,反应pH值范围变广。纳米Fe3O4材料的超顺磁性与其他材料复合,能够得到具有优越磁分离效果的复合材料,又避免了纳米Fe3O4材料的团聚现象以及氧化过程。
磁性Fe3O4纳米粒子与酸溶解后可释放出亚铁离子和铁离子,可作为Fenton试剂氧化污染物或降解有机物。与金属单质复合后的纳米Fe3O4材料是催化活性较好的催化剂,含有的金属离子能作为电子供体与H2O2反应产生氧化能力很强的羟基自由基(•OH),有效杀灭大肠杆菌,具有较高的催化活性和较宽的pH值范围。同时,在反应完成后可利用磁场将体系中的磁性纳米Fe3O4材料分离出来,能够多次回收再利用,可以实现高效降解有机物。
发明内容
针对纯的纳米Fe3O4材料没有表面保护导致容易团聚、易氧化、表面羟基不足且在酸性条件下不稳定等缺点,提供一种磁性Fe3O4纳米材料的制备方法,此法不需要高成本、操作简单、无毒、安全性高。本发明通过将纳米Fe3O4材料作为磁性载体与其他金属材料复合,能够得到具有优越磁分离的复合材料,同时解决了纳米F3O4材料易团聚且易被氧化的问题。
为解决上述技术问题,本发明采用如下的技术方案:
一种磁性Fe3O4复合纳米材料的制备方法,包括以下步骤:
(1)将铁盐材料溶于乙醇中,搅拌溶解得到铁盐溶液;
(2)向步骤(1)的铁盐溶液中加入金属盐,分散均匀得到混合溶液A;
(3)将氢氧化钠加入到乙醇溶液中混匀得到氢氧化钠的乙醇溶液;
(4)将混合溶液A中滴加至氢氧化钠的乙醇溶液,搅拌混匀得到混合溶液B;
(5)将乙二醇滴加至混合溶液B中,搅拌混匀得到混合溶液C;
(6)将混合溶液C倒入反应釜中在温度140-240℃下恒温反应至少5 h,得到沉淀物;
(7)将步骤(6)的沉淀物用乙醇和水洗涤,干燥后得到磁性Fe3O4复合纳米材料。
进一步,所述步骤(1)中的铁盐为FeCl3,铁盐溶液中铁盐的摩尔浓度为0.1-0.3M。
进一步,所述步骤(2)中的金属盐包括ZnCl2、MgCl2、NiCl2、CuCl2、MnCl2。
进一步,所述步骤(2)混合溶液A中金属盐的摩尔浓度为0.01-0.06 M。
进一步,所述步骤(3)中氢氧化钠的乙醇溶液浓度为0.3-1.1 M。
进一步,将氢氧化钠溶液溶于乙醇后,滴加至步骤(2)混合溶液A中,使得铁盐充分反应。
进一步,混合溶液A、氢氧化钠的乙醇溶液与乙二醇的体积比为2:3:1。
进一步,所述步骤(6)中反应时间为5-12 h。
进一步地,步骤(2)中混合溶液A滴入(3)中氢氧化钠的乙醇溶液,使体系在过碱性条件在充分反应。
本发明应用在环境污染治理、食品、生物医药和材料电池等多个领域,是一种可回收的磁性纳米复合材料。
本发明给出具体反应体系中铁盐的摩尔浓度范围和金属离子(如:ZnCl2、MgCl2、NiCl2、CuCl2、MnCl2等)浓度范围,能合成出更加稳定的纳米Fe3O4复合材料。本发明中的纳米Fe3O4复合材料在过氧化氢存在的条件下发生芬顿反应,产生羟基自由基(•OH),关键因素在于所使用的金属盐(如ZnCl2、MgCl2、NiCl2、CuCl2、MnCl2等)在铁盐中的反应,将金属/过渡金属以不同形式与纳米Fe3O4材料复合,从而提高催化剂的活性。本发明反应所需的温度条件,低于140℃不能很好的晶化;160℃以上时,铁盐可以和金属离子很好的复合,高于240℃后,反应危险性增加。所需反应时间,反应时间>5h就可以得到复合材料,过多延长时间不有利于反应得完全进行。
本发明设计原理如下:
利用金属盐(如:ZnCl2、MgCl2、NiCl2、CuCl2、MnCl2等)与铁在乙醇溶剂环境中反应,再将其滴入含NaOH的醇溶剂中,再加入乙二醇溶剂进行还原,通过溶剂热的方法,制备一系列磁性Fe3O4纳米复合材料。
本发明的磁性Fe3O4复合纳米材料因其具有一定的抗菌性能,较好的吸附能力、可回收性以及良好的导电性能应用在环境污染治理、食品、生物医药及材料电池等多个领域,是一种可回收的磁性纳米复合材料,具体为金属掺杂或修饰的磁性Fe3O4复合纳米材料。磁性Fe3O4纳米材料与金属/过渡金属复合后,其性质发生了改变,表面团聚性降低,可以更好的应用在杀菌,环境污染物吸附等领域;改性后的复合材料磁性也有所增强,具有更好的回收性,重复利用率增强,而且原材料价格低廉,具有实际应用价值;许多金属单质粒径较小,单独存在时容易出现团聚现象,降低抗菌性能等,与磁性Fe3O4纳米材料复合后,金属单质掺杂或负载在磁性Fe3O4纳米材料表面,性质发生改变,进而提高杀菌效率。本发明采用溶剂热,通过控制反应条件可制备10~20nm的磁性Fe3O4复合材料,并在芬顿反应中起到很好的杀灭大肠杆菌的效果,整个制备过程简单,原料相对低廉,使本方法具有实际应用前景。
本发明具有如下的优点以及技术效果:
1. 本发明利用金属盐(如:ZnCl2、MgCl2、NiCl2、CuCl2、MnCl2等)与催化剂复合,提高催化材料催化效率。
2. 本发明利用金属盐(如:ZnCl2、MgCl2、NiCl2、CuCl2、MnCl2等)与催化剂复合,增大了磁性Fe3O4纳米粒子的反应pH值。
3. 本发明利用金属盐(如:ZnCl2、MgCl2、NiCl2、CuCl2、MnCl2等)与催化剂复合,芬顿/类芬顿反应中可以有效分解H2O2,生成羟基自由基,使得杀菌效果更加显著。
4. 本发明通过一步溶剂的方法,制备一系列磁性Fe3O4纳米复合材料,操作简单,易于控制。
5. 本发明方法制得的磁性复合纳米材料,经生物安全检测无毒、稳定性高、抗菌性能好,适合用于生物固定化、环境污染物降解等领域,前景广阔。
附图说明
图1为本发明实施例1制备的Cu-Fe3O4的XRD图谱;
图2为本发明实施例1制备的Cu-Fe3O4的FTIR图谱;
图3为本发明实施例1制备的Cu-Fe3O4的TEM图片;
图4为本发明实施例1制备的Cu-Fe3O4的磁滞回线图谱;
图5为本发明实施例1制备的Cu-Fe3O4的ESR(•OH)图;
图6为本发明实施例1制备的Cu-Fe3O4的ESR(•OOH)图;
图7为本发明实施例2制备的Mn-Fe3O4的XRD图;
图8为本发明实施例3制备的Zn-Fe3O4的XRD图;
图9为本发明实施例4制备的Mg-Fe3O4的XRD图;
图 10为本发明实施例5制备的Ni-Fe3O4的XRD图。
具体实施方式
下面结合具体实施例,对本发明做进一步说明。应理解,以下实施例仅用于说明本发明而非用于限制本发明的范围,该领域的技术熟练人员可以根据上述发明的内容作出一些非本质的改进和调整。
实施例1
本实施例的磁性Fe3O4复合纳米材料的制备方法如下:
(1)在室温下,量取20mL的无水乙醇,将3mmol的FeCl3溶于无水乙醇中,搅拌均匀得到铁盐溶液;
(2)将0.3mmol的CuCl2加入铁盐溶液中,继续搅拌形成混合溶液A;
(3)称取9.6mmol的NaOH溶于30mL无水乙醇中,放置于磁力搅拌器上不断搅拌溶解,形成氢氧化钠的乙醇溶液,待其溶液完全溶解,将混合溶液A滴加至氢氧化钠的乙醇溶液中,得到混合溶液B;继续搅拌5-10min,加入10mL的乙二醇溶液,搅拌均匀得到混合溶液C。
(4)将混合溶液C倒入聚四氟乙烯反应釜中,在180℃烘箱反应8h,自然放凉后用三遍去离子水和一遍无水乙醇洗去杂质,然后放入60℃真空干燥箱中干燥12h,研磨成粉末,记为A。
采用德国Bruker公司D8 Advance型X射线衍射仪对得到的样品进行XRD分析。如图1所示为样品的XRD谱图,XRD谱图显示样品为Cu修饰的Fe3O4复合材料。采用美国Thermo公司Nicolet-5700傅里叶红外光谱仪进行物相分析,如图2所示制备的材料中没有杂峰,并得到与Fe3O4标准卡片(JCPDFNo.65-3107)对应的衍射峰,以及Cu单质的衍射峰。采用日本电子2100型透射电子显微镜(TEM)观察得到样品的形貌结构,如图3所示为样品的TEM照片,结果可见,所得Cu-Fe3O4复合材料的尺寸大约为10-20 nm,相对均匀。美国Quantum Design公司MPMS (SQUID) XL-7超导干涉量子仪测试Fe3O4材料及复合材料的磁性,如图4,改性后的复合材料磁性有所增强。美国布鲁克公司,型号为escan的电子顺磁共振波谱仪,检测在芬顿反应中活性基团羟基自由基和羧基自由基的含量,图5和6。
实施例2
本实施例的磁性Fe3O4复合纳米材料的制备方法如下:
(1)在室温下,量取20mL的无水乙醇,将2mmol的FeCl3溶于无水乙醇中,搅拌均匀得到铁盐溶液;
(2)将0.2mmol的MnCl2加入铁盐溶液中,继续搅拌形成混合溶液A;
(3)称取9mmol的NaOH溶于30mL无水乙醇中,放置于磁力搅拌器上不断搅拌溶解,形成氢氧化钠的乙醇溶液,待其溶液完全溶解,将A混合溶液滴加至氢氧化钠的乙醇溶液中,得到混合溶液B。继续搅拌5-10min,加入10mL的乙二醇溶液,搅拌均匀得到混合溶液C;
(4)将混合溶液C倒入聚四氟乙烯反应釜中,在180℃烘箱反应8h,自然放凉后用三遍去离子水和一遍无水乙醇洗去杂质,然后放入60℃真空干燥箱中干燥12h,研磨成粉末,记为B。
采用实施例1的设备对样品进行检测,样品B的XRD图谱如图7,所得到的Mn-Fe3O4材料中含有Fe3O4的衍射峰,与Fe3O4标准卡片(JCPDFNo.65-3107)对应,但是在复合材料的衍射峰中并未找到与Mn2+、Mn0对应的衍射峰,表明Mn是以掺杂的形式复合在Fe3O4材料中。
实施例3
本实施例的磁性Fe3O4复合纳米材料的制备方法如下:
(1)在室温下,量取20mL的无水乙醇,将4mmol的FeCl3溶于无水乙醇中,搅拌均匀得到铁盐溶液;
(2)将0.6mmol的ZnCl2加入铁盐溶液中,继续搅拌形成混合溶液A。
(3)称取15mmol的NaOH溶于30mL无水乙醇中,放置于磁力搅拌器上不断搅拌溶解,形成氢氧化钠的乙醇溶液,待其溶液完全溶解,将A混合溶液滴加至氢氧化钠的乙醇溶液中,得到混合溶液B。继续搅拌5-10min,加入10mL的乙二醇溶液,搅拌均匀得到混合溶液C;
(4)将混合溶液C倒入聚四氟乙烯反应釜中,在180℃烘箱反应8h,自然放凉后用三遍去离子水和一遍无水乙醇洗去杂质,然后放入60℃真空干燥箱中干燥12h,研磨成粉末,记为C。
采用实施例1的设备对样品进行检测,样品C的XRD图谱如图8,所得到的Zn-Fe3O4材料中含有Fe3O4的衍射峰,于Fe3O4标准卡片(JCPDFNo.65-3107)对应,但是在复合材料的衍射峰中并未找到与Zn2+、Zn0对应的衍射峰,表明Zn是以掺杂的形式复合在Fe3O4材料中。
实施例4
本实施例的磁性Fe3O4复合纳米材料的制备方法如下:
(1)在室温下,量取40mL的无水乙醇,将12mmol的FeCl3溶于无水乙醇中,搅拌均匀得到铁盐溶液;
(2)再将1.8mmol的MgCl2加入铁盐溶液中,继续搅拌形成混合溶液A。
(3)称取66mmol的NaOH溶于60mL无水乙醇中,放置于磁力搅拌器上不断搅拌溶解,形成氢氧化钠的乙醇溶液,待其溶液完全溶解,将A混合溶液滴加至氢氧化钠的乙醇溶液中,得到混合溶液B。继续搅拌5-10min,加入20mL的乙二醇溶液,搅拌均匀得到混合溶液C。
(4)将混合溶液C倒入聚四氟乙烯反应釜中,在180℃烘箱反应8h,自然放凉后用三遍去离子水和一遍无水乙醇洗去杂质,然后放入60℃真空干燥箱中干燥12h,研磨成粉末,记为D。
采用实施例1的设备对样品进行检测,样品D的XRD图谱如图9,所得到的Mg-Fe3O4材料中含有Fe3O4的衍射峰,于Fe3O4标准卡片(JCPDFNo.65-3107)对应,但是在复合材料的衍射峰中并未找到与Mg2+、Mg0对应的衍射峰,表明Mg是以掺杂的形式复合在Fe3O4材料中。
实施例5
本实施例的磁性Fe3O4复合纳米材料的制备方法如下:
(1)在室温下,量取20mL的无水乙醇,将5mmol的FeCl3溶于无水乙醇中,搅拌均匀得到铁盐溶液;
(2)将1.2mmol的NiCl2加入铁盐溶液中,继续搅拌形成混合溶液A。
(3)称取27mmol的NaOH溶于30mL无水乙醇中,放置于磁力搅拌器上不断搅拌溶解,形成氢氧化钠的乙醇溶液,待其溶液完全溶解,将A混合溶液滴加至氢氧化钠的乙醇溶液中,得到混合溶液B。继续搅拌5-10min,加入10mL的乙二醇溶液,搅拌均匀得到混合溶液C。
(4)将混合溶液C倒入聚四氟乙烯反应釜中,在180℃烘箱反应8h,自然放凉后用三遍去离子水和一遍无水乙醇洗去杂质,然后放入60℃真空干燥箱中干燥12h,研磨成粉末,记为E。
采用实施例1的设备对样品进行检测,样品E的XRD图谱如图10,所得到的Ni-Fe3O4材料中含有Fe3O4的衍射峰,于Fe3O4标准卡片(JCPDFNo.65-3107)对应,但是在复合材料的衍射峰中并未找到与Ni2+、Ni0对应的衍射峰,表明Ni是以掺杂的形式复合在Fe3O4材料中。
以上显示和描述了本发明的基本原理和主要特征以及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (8)

1.一种磁性Fe3O4复合纳米材料的制备方法,其特征在于包括以下步骤:
(1)将铁盐材料溶于乙醇中,搅拌溶解得到铁盐溶液;
(2)向步骤(1)的铁盐溶液中加入金属盐,分散均匀得到混合溶液A;
(3)将氢氧化钠加入到乙醇溶液中混匀得到氢氧化钠的乙醇溶液;
(4)将混合溶液A滴加至氢氧化钠的乙醇溶液中,搅拌混匀得到混合溶液B;
(5)将乙二醇滴加至混合溶液B中,搅拌混匀得到混合溶液C;
(6)将混合溶液C倒入反应釜中在温度140-240℃下恒温反应至少5 h,得到沉淀物;
(7)将步骤(6)的沉淀物用乙醇和水洗涤,干燥后得到磁性Fe3O4复合纳米材料。
2.根据权利要求1所述的磁性Fe3O4复合纳米材料的制备方法,其特征在于:所述步骤(1)中的铁盐为FeCl3,铁盐溶液中铁盐的摩尔浓度为0.1-0.3 M。
3.根据权利要求1所述的磁性Fe3O4复合纳米材料的制备方法,其特征在于:所述步骤(2)中的金属盐包括ZnCl2、MgCl2、NiCl2、CuCl2、MnCl2。
4.根据权利要求1所述的磁性Fe3O4复合纳米材料的制备方法,其特征在于:所述步骤(2)混合溶液A中金属盐的摩尔浓度为0.01-0.06 M。
5.根据权利要求1所述的磁性Fe3O4复合纳米材料的制备方法,其特征在于:所述步骤(3)中氢氧化钠的乙醇溶液浓度为0.3-1.1 M。
6.根据权利要求1所述的磁性Fe3O4复合纳米材料的制备方法,其特征在于:将混合溶液A滴加至氢氧化钠的乙醇溶液中,使得铁盐充分反应。
7.根据权利要求1所述的磁性Fe3O4复合纳米材料的制备方法,其特征在于:混合溶液A、氢氧化钠的乙醇溶液与乙二醇的体积比为2:3:1。
8.根据权利要求1所述的磁性Fe3O4复合纳米材料的制备方法,其特征在于,所述步骤(6)中反应时间为5-12 h。
CN202111427514.1A 2021-11-27 2021-11-27 磁性Fe3O4复合纳米材料的制备方法 Active CN114160135B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111427514.1A CN114160135B (zh) 2021-11-27 2021-11-27 磁性Fe3O4复合纳米材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111427514.1A CN114160135B (zh) 2021-11-27 2021-11-27 磁性Fe3O4复合纳米材料的制备方法

Publications (2)

Publication Number Publication Date
CN114160135A true CN114160135A (zh) 2022-03-11
CN114160135B CN114160135B (zh) 2023-10-31

Family

ID=80481228

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111427514.1A Active CN114160135B (zh) 2021-11-27 2021-11-27 磁性Fe3O4复合纳米材料的制备方法

Country Status (1)

Country Link
CN (1) CN114160135B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101323466A (zh) * 2008-06-24 2008-12-17 杭州师范大学 纳米四氧化三铁的制备方法
CA2700179A1 (en) * 2007-09-28 2009-04-02 Nanoco Technologies Limited Nanoparticles
CN102603012A (zh) * 2012-03-13 2012-07-25 中国科学院山西煤炭化学研究所 一种具有良好溶剂分散性的纳米铁氧化物的制备方法
CN103007944A (zh) * 2012-12-13 2013-04-03 同济大学 石墨烯基磁性复合可见光催化材料Fe3O4-G-TiO2的制备方法
CN103208625A (zh) * 2013-04-24 2013-07-17 北京科技大学 一种锂离子电池氧化铁基高性能负极材料的制备方法
CN104437344A (zh) * 2014-10-13 2015-03-25 中南大学 一种铜掺杂复合磁性纳米材料及其制备和应用
WO2016058561A1 (zh) * 2014-10-13 2016-04-21 中国环境科学研究院 一种磁性纳米材料固相萃取剂及其制备方法、用途
CN105885781A (zh) * 2015-01-12 2016-08-24 冯云 一种介孔复合材料的制备方法
CN113951278A (zh) * 2021-06-22 2022-01-21 郑州轻工业大学 过渡金属改性ZnO抗菌材料、制备方法及应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2700179A1 (en) * 2007-09-28 2009-04-02 Nanoco Technologies Limited Nanoparticles
CN101323466A (zh) * 2008-06-24 2008-12-17 杭州师范大学 纳米四氧化三铁的制备方法
CN102603012A (zh) * 2012-03-13 2012-07-25 中国科学院山西煤炭化学研究所 一种具有良好溶剂分散性的纳米铁氧化物的制备方法
CN103007944A (zh) * 2012-12-13 2013-04-03 同济大学 石墨烯基磁性复合可见光催化材料Fe3O4-G-TiO2的制备方法
CN103208625A (zh) * 2013-04-24 2013-07-17 北京科技大学 一种锂离子电池氧化铁基高性能负极材料的制备方法
CN104437344A (zh) * 2014-10-13 2015-03-25 中南大学 一种铜掺杂复合磁性纳米材料及其制备和应用
WO2016058561A1 (zh) * 2014-10-13 2016-04-21 中国环境科学研究院 一种磁性纳米材料固相萃取剂及其制备方法、用途
CN105885781A (zh) * 2015-01-12 2016-08-24 冯云 一种介孔复合材料的制备方法
CN113951278A (zh) * 2021-06-22 2022-01-21 郑州轻工业大学 过渡金属改性ZnO抗菌材料、制备方法及应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
LIU RONGZHENG ET AL.: "Phase transformation and shape evolution of iron oxide nanocrystals synthesized in the ethylene glycol-water system", 《SCIENCE CHINA》, vol. 54, no. 7, pages 1271, XP019918404, DOI: 10.1007/s11433-011-4369-y *
PAULINA PIETRZYK ET AL.: "Titan Yellow and Congo Red Removal with Superparamagnetic Iron- Oxide-Based Nanoparticles Doped with Zinc", 《MAGNETOCHEMISTRY》, vol. 8, no. 91 *
SHIHONG CEN ET AL.: "Synthesis and structure of iron–copper/hollow magnetic/metal–organic framework/coordination sites in a heterogeneous catalyst for a Fentonbased reaction", 《CATALYSIS SCIENCE & TECHNOLOGY》, vol. 10, pages 6687 *
ZHEN-ZHEN WANG ET AL.: "One-Step Green Synthesis of Multifunctional Fe3O4/Cu Nanocomposites toward Efficient Reduction of Organic Dyes", 《EUROPEAN JOURNAL OF INORGANIC CHEMISTRY》, pages 1 - 2 *
马千里: "纳米四氧化三铁的化学制备方法研究进展", 《化工进展》, vol. 31, no. 3, pages 562 - 573 *

Also Published As

Publication number Publication date
CN114160135B (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
Dou et al. Manganese doped magnetic cobalt ferrite nanoparticles for dye degradation via a novel heterogeneous chemical catalysis
He et al. Fabrication of magnetically separable NiFe2O4/Bi24O31Br10 nanocomposites and excellent photocatalytic performance under visible light irradiation
Zhan et al. Facile solvothermal preparation of Fe 3 O 4–Ag nanocomposite with excellent catalytic performance
Xiang et al. Experimental study on synthesis of NiO nano-particles
Zhang et al. Fe3O4 coupled BiOCl: a highly efficient magnetic photocatalyst
Xiong et al. Tailoring morphology, enhancing magnetization and photocatalytic activity via Cr doping in Bi25FeO40
Yang et al. Size-controlled synthesis, magnetic property, and photocatalytic property of uniform α-Fe 2 O 3 nanoparticles via a facile additive-free hydrothermal route
Zhao et al. One-step synthesis of highly water-dispersible Mn 3 O 4 nanocrystals
Mousavi et al. A novel route to the synthesis of α-Fe2O3@ C@ SiO2/TiO2 nanocomposite from the metal-organic framework as a photocatalyst for water treatment
CN109908915B (zh) 一种处理六价铬废水的磁性可见光催化剂及其制备方法
Zhao et al. Magnetic N-doped Co–carbon composites derived from metal organic frameworks as highly efficient catalysts for p-nitrophenol reduction reaction
Rasheed et al. Highly efficient photocatalytic degradation of the Tetracycline hydrochloride on the α-Fe2O3@ CN composite under the visible light
Han et al. Enhancement of hydroxyl radical generation of a solid state photo-Fenton reagent based on magnetite/carboxylate-rich carbon composites by embedding carbon nanotubes as electron transfer channels
Astaraki et al. Effects of ethylene glycol contents on phase formation, magnetic properties and photocatalytic activity of CuFe2O4/Cu2O/Cu nanocomposite powders synthesized by solvothermal method
Chahal et al. Understanding the role of Ni ions on the photocatalytic activity and dielectric properties of hematite nanostructures: An experimental and DFT approach
Sanchez-Lievanos et al. Controlling cation distribution and morphology in colloidal zinc ferrite nanocrystals
Zhong et al. Synthesis of Bi 2 WO 6/ZnFe 2 O 4 magnetic composite photocatalyst and degradation of tetracycline hydrochloride under visible light
Yang et al. Synthesis of hierarchical MnCo2O4. 5 nanostructure modified MnOOH nanorods for catalytic degradation of methylene blue
Gao et al. Multi-functional well-dispersed pomegranate-like nanospheres organized by ultrafine ZnFe2O4 nanocrystals for high-efficiency visible-light-Fenton catalytic activities
Doosti et al. Solar light induced photocatalytic degradation of tetracycline in the presence of ZnO/NiFe2O4/Co3O4 as a new and highly efficient magnetically separable photocatalyst
Sharafinia et al. Decoration of ZnFe2O4 and UiO-66 over g-C3N4 as magnetically novel reusable visible light photocatalyst for degradation of Rh–B
Jia et al. Efficient degradation of ciprofloxacin in wastewater by CuFe2O4/CuS photocatalyst activated peroxynomosulfate
Zhang et al. Investigation the high photocatalytic activity of magnetically separable graphene oxide modified BiOBr nanocomposites for degradation of organic pollutants and antibiotic
Abbasi et al. Superparamagnetic recoverable flowerlike Fe 3 O 4@ Bi 2 O 3 core–shell with gC 3 N 4 sheet nanocomposite: synthesis, characterization, mechanism and kinetic study of photo-catalytic activity
CN114160135B (zh) 磁性Fe3O4复合纳米材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant