WO2016058561A1 - 一种磁性纳米材料固相萃取剂及其制备方法、用途 - Google Patents

一种磁性纳米材料固相萃取剂及其制备方法、用途 Download PDF

Info

Publication number
WO2016058561A1
WO2016058561A1 PCT/CN2015/096881 CN2015096881W WO2016058561A1 WO 2016058561 A1 WO2016058561 A1 WO 2016058561A1 CN 2015096881 W CN2015096881 W CN 2015096881W WO 2016058561 A1 WO2016058561 A1 WO 2016058561A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
solid phase
silica particles
layer
extracting agent
Prior art date
Application number
PCT/CN2015/096881
Other languages
English (en)
French (fr)
Inventor
赵晓丽
吴丰昌
汤智
刘双柳
Original Assignee
中国环境科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国环境科学研究院 filed Critical 中国环境科学研究院
Publication of WO2016058561A1 publication Critical patent/WO2016058561A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen

Definitions

  • the invention belongs to the field of chemical analysis test equipment and relates to a novel mixed micelle type Fe 3 O 4 @SiO 2 @Mg-Al LDH composite solid phase extracting agent.
  • Solid phase extraction is currently the most widely used new environmental sample preparation method. Compared with traditional liquid-liquid extraction, solid phase extraction has the advantages of short extraction time, high recovery rate, high enrichment ratio and low consumption of organic reagents.
  • magnetic nanomaterials have attracted extensive attention in various fields due to the combination of the unique physical and chemical properties of nanomaterials and the magnetic properties of magnetic materials. Its excellent adsorption performance and high specific surface area make it a great potential for contaminant enrichment and sample preparation.
  • the superparamagnetism of the material rapidly settles to the bottom of the beaker under the action of an external magnetic field, which overcomes the shortcomings of the large resistance of the nanomaterial solid phase extraction technology, the time-consuming operation, and the difficulty in separating the extractant from the mother liquor.
  • the adsorption self-assembly behavior of ionic surfactants on the surface of metal oxide particles has become a research hotspot in recent years. It can form mixed micelles on the surface of alumina, iron oxide, silica, titania and the like. It has been reported in the literature that the selectivity of the extractant can be adjusted by controlling the pH of the solution, the type and concentration of the surfactant, and the like, and can be applied to the extraction of organic substances having different ionic, hydrophobic, amphiphilic and acid-alkaline properties.
  • the adsorption self-assembly behavior of surfactants is closely related to the specific surface area of nanomaterials. The larger the specific surface area, the higher the extraction capacity of pollutants.
  • the Fe 3 O 4 @SiO 2 @Mg-Al LDH magnetic nano solid phase extracting agent prepared by the invention has the large specific surface area of the layered double metal hydroxide, the magnetic separation ability of the magnetic material, the rapid adsorption of the nano material and the easy washing The advantages of desorption and strong extraction ability of mixed micelles.
  • the technical solution disclosed by the present invention is: a magnetic nano material solid phase extracting agent comprising magnetic silica particles as a core, a layered double metal hydroxide as a shell layer; A silica coating is formed on the magnetic nanocore; the layered double metal hydroxide shell is a Mg-Al double hydroxide.
  • the magnetic nano core in the magnetic silica particles is one of Fe 3 O 4 , Co, FeCo, Ni, FeCo, FeO.
  • the magnetic nanocore is prepared by a solvothermal method.
  • the magnetic nanocore has a diameter between 150 nm and 250 nm.
  • the silica layer in the magnetic silica particles is obtained by hydrolysis of TEOS.
  • the TEOS described in the present invention means: tetraethyl orthosilicate, also known as ethyl silicate; tetraethyl silicate; ethyl silicate; tetraethoxysilane; tetraethyl orthosilicate; Is Si(OC 2 H 5 ) 4 ; colorless liquid; melting point -77 ° C, boiling point 168.5 ° C, density 0.9346 g cm -3 ; stable to air; slightly soluble in water, slow hydrolysis in pure water, in acid or The hydrolysis can be accelerated in the presence of a base; and the boiling water can be used to obtain a silicic acid sol having no electrolyte.
  • the invention also discloses a preparation method of a magnetic nano material solid phase extracting agent, comprising the following steps:
  • (1) preparing a magnetic nano core preparing a magnetic nano core by a solvothermal method
  • the surface of the magnetic silica particles is coated with a double metal hydroxide layer: coprecipitation in the step of using alkaline conditions under the condition of Mg(NO 3 ) 2 ⁇ 6H 2 O, Al(NO 3 ) 3 ⁇ 9H 2 O ( 2)
  • the surface of the prepared magnetic silica particles forms a double metal hydroxide layer.
  • the invention also discloses a self-assembly method of a surfactant on the surface layer of the above-mentioned magnetic nano material solid phase extracting agent, wherein the surfactant SDS occurs on the surface of the magnetic double metal hydroxide shell under acidic conditions. Adsorption self-assembly behavior to form mixed micelles.
  • the invention also discloses a preparation method of the Fe 3 O 4 @SiO 2 @Mg-Al LDH composite nano material extracting agent, comprising the following steps:
  • Fe 3 O 4 nanoparticles by solvothermal method: FeCl 3 ⁇ 6H 2 O, NaAc and sodium citrate are dissolved in ethylene glycol solvent, magnetically stirred for 20 min to 60 min; the obtained solution is transferred to a sealed reaction kettle. The reaction is carried out at 180-240 ° C for 6-14 h. After the reaction is completed, the prepared Fe 3 O 4 nanoparticles are separated and washed, and dried for use;
  • the surface of the magnetic silica particles is coated with a double metal hydroxide layer: the magnetic silica particles are taken, dispersed in deionized water, and an alkaline solution is added dropwise until the solution is alkaline, and Mg is stirred under stirring conditions.
  • a mixed solution of NO 3 ) 2 ⁇ 6H 2 O, Al(NO 3 ) 3 ⁇ 9H 2 O is added to the alkaline solution; after the completion of the dropwise addition, the product is collected after 20-40 minutes of ultrasonication, and the product is dispersed again. Ultrasonic irradiation was continued for 20-40 min in ionized water, and finally Fe3O4@SiO2@Mg-Al LDH composite nanomaterial extractant was prepared.
  • the molar ratio between FeCl 3 ⁇ 6H 2 O, NaAc and sodium citrate is (1-1.5): (3.4-3.8): (0.3-0.5).
  • the molar ratio between FeCl 3 ⁇ 6H 2 O, NaAc and sodium citrate is 1:3.5:0.4.
  • the volume ratio of ethanol to deionized water in the mixture of ethanol and deionized water is (3-4): (0.8-1), preferably, ethanol and deionized water.
  • the volume ratio is 4:1.
  • the molar ratio of Mg(NO 3 ) 2 ⁇ 6H 2 O to Al(NO 3 ) 3 ⁇ 9H 2 O is (2-3): (1-1.5); preferably, The molar ratio of Mg(NO 3 ) 2 ⁇ 6H 2 O to Al(NO 3 ) 3 ⁇ 9H 2 O is 3:1.
  • the alkaline solution is added dropwise until the pH of the solution is between 9 and 11; more preferably, the pH of the solution is 10.
  • the alkaline solution is obtained by dissolving Na 2 CO 3 and NaOH in an aqueous methanol solution. Further, the alkaline solution is obtained by dissolving Na 2 CO 3 and NaOH in an aqueous methanol solution having a volume ratio of 1:1.
  • the invention also discloses the use of the magnetic Fe 3 O 4 @SiO 2 @Mg-Al LDH composite nano material prepared above as a solid phase extracting agent for enriching or separating organic pollutants in an environmental water sample.
  • the organic pollutant in the environmental water sample is a phthalate compound.
  • the phthalate contaminants include n-propyl decanoate (DPP), n-butyl phthalate (DBP), cyclohexyl decanoate (DCP), and n-octyl decanoate (DOP).
  • the method for preparing Fe 3 O 4 @SiO 2 @Mg-Al LDH solid phase extracting agent disclosed in the invention is: firstly, magnetic Fe 3 O 4 particles having a diameter of about 200 nm are prepared by a solvothermal method; Under the alkaline condition, the SiO 2 layer was coated on the surface of the Fe 3 O 4 particles, and the obtained SiO 2 layer was about 25 nm thick. Finally, the Mg-Al LDH layer was synthesized by ultrasonication at a constant pH of 10.
  • the ionic surfactant can easily form a mixed micelle on the surface of the metal oxide, and the magnetic layered double metal hydroxide can be immersed in a solution of a certain concentration of the surfactant, and the adsorption self-assembly behavior can occur.
  • the selectivity of the extractant can be quickly and conveniently adjusted by controlling the pH of the solution and the extraction conditions such as the type and concentration of the surfactant. Due to the different types of extractants, the extracted contaminants are different, so the selectivity of the extractant needs to be adjusted.
  • anionic surfactants are suitable for extracting anionic compounds, and cationic surfactants are suitable for extracting cations.
  • Type compounds different pH values, different types of surfactants that are easily adsorbed, resulting in different extracted contaminants.
  • the nanosolid phase extractant obtained is dispersed in an aqueous solution, and the organic matter is adsorbed for 10 minutes, and then the solid-liquid rapid magnetic field is applied within 5 minutes under the action of an external magnetic field.
  • the extraction process can be completed by separation; in the solid-liquid separation process, the extractant combined with the target pollutant is quickly separated from the aqueous solution.
  • the separated nanomaterial is eluted with a small amount of organic solvent, and the eluate is concentrated and then subjected to liquid chromatography to determine the target concentration.
  • the whole pretreatment process is very fast. Therefore, the mixed micelle type Fe 3 O 4 @SiO 2 @Mg-Al LDH solid phase extractant has a good application prospect in the enrichment and separation of organic pollutants in large volume environmental samples. .
  • the solid phase extraction agent of the present invention has the following advantages:
  • the amount of extractant is small and the extraction efficiency is high.
  • the mass of the extractant in the commercial solid phase extraction column is generally between 200 and 500 mg, and the Fe 3 O 4 @SiO 2 @Mg-Al LDH prepared by the invention can quantitatively recover the trace of 300 mL of the water sample only by using 30 mg.
  • the amount of organic pollutants is generally between 200 and 500 mg, and the Fe 3 O 4 @SiO 2 @Mg-Al LDH prepared by the invention can quantitatively recover the trace of 300 mL of the water sample only by using 30 mg.
  • the amount of organic pollutants is about 100 mL of the water sample only by using 30 mg.
  • the main raw materials used in the preparation process are FeCl 3 ⁇ 6H 2 O, ammonia water, and tetraethoxysilane (TEOS), which are inexpensive and convenient to purchase.
  • TEOS tetraethoxysilane
  • the target adsorbed on the nanomaterial can be easily eluted with a small amount of organic solvent, and the surfactant constituting the mixed micelle itself is completely eluted, and the mixed micelle is easily catalyzed by double metal hydroxide in the next extraction.
  • the surface of the object is reformed. To a certain extent, it overcomes the shortcomings of the short-lived, non-reusable, and expensive solid phase extraction stationary phase.
  • Select phthalate pollutants such as n-propyl phthalate (DPP), n-butyl phthalate (DBP), cyclohexyl decanoate (DCP) and n-octyl phthalate (DOP), etc. as representatives of common pollutants
  • DPP n-propyl phthalate
  • DBP n-butyl phthalate
  • DCP cyclohexyl decanoate
  • DOP n-octyl phthalate
  • the desorption process is also relatively simple, usually 12mL (4mL ⁇ 3) organic solvent can completely elute organic pollutants. Under the action of an external magnet, the extractant and the ambient water sample can be completely separated within 5 minutes. After concentration to 0.5 mL, it can be used for liquid chromatography injection analysis.
  • FIG. 1 is a schematic view showing the synthesis of a magnetic nano material extracting agent of the present invention
  • FIG. 2 is a TEM and SEM photograph of the magnetic nanomaterial extractant and various intermediate products of the present invention, (A) Fe 3 O 4 , (B) Fe 3 O 4 @SiO 2 , (C) Fe 3 O 4 @SiO 2 @Mg-Al LDH;
  • FIG. 3 is an infrared spectrum diagram of a magnetic nano material extractant and various intermediate products of the present invention
  • FIG. 6 is an XRD spectrum diagram of a magnetic nano material extractant and various intermediate products of the present invention.
  • Figure 7 is an XPS spectrum of the magnetic nanomaterial extractant and various intermediate products of the present invention.
  • Figure 8 is a flow chart of solid phase extraction of magnetic nanomaterials of the present invention.
  • an embodiment of the present invention includes:
  • Example 1 A magnetic nanomaterial solid phase extracting agent comprising magnetic silica particles as a core, a layered double hydroxide as a shell layer; the magnetic silica particles are coated with silica Formed on the magnetic nano core; the layered double metal hydroxide shell layer is Mg-Al double metal hydroxide.
  • the magnetic nano core is Fe 3 O 4 .
  • Example 2 A magnetic nanomaterial solid phase extracting agent comprising magnetic silica particles as a core, a layered double hydroxide as a shell layer; the magnetic silica particles are coated with silica Formed on the magnetic nano core; the layered double metal hydroxide shell layer is Mg-Al double metal hydroxide.
  • the magnetic nano core is one of Fe 3 O 4 , Co, FeCo, Ni, FeCo, and FeO.
  • the magnetic nanocore is prepared by a solvothermal method.
  • Embodiment 3 This embodiment is different from the above embodiment in that, in this embodiment, the diameter of the magnetic nano core is between 150 nm and 250 nm, and the diameter of the magnetic nano core may be 150 nm, 180 nm, 200 nm, 220 nm, 250nm.
  • the silica layer in the magnetic silica particles is obtained by hydrolysis of TEOS.
  • Fig. 1 The synthesis diagram of the Fe 3 O 4 @SiO 2 @Mg-Al LDH magnetic nano material extracting agent provided by the present invention is shown in Fig. 1.
  • the specific preparation method can be divided into the following steps:
  • nano-ferric oxide is prepared.
  • 4.05g FeCl 3 ⁇ 6H 2 O, 5.2g NaAc and 1.25g sodium citrate were dissolved in 90mL ethylene glycol solvent, magnetically stirred for 60min, and the obtained yellow mixture was transferred to a sealed polytetrafluoroethylene reactor.
  • the prepared ferroferric oxide magnetic nanoparticles are separated by an external magnetic field; the obtained ferroferric oxide magnetic nanoparticles are washed 3 times with ethanol and placed in a vacuum desiccator at 60 ° C. After 12 hours of drying, it was used.
  • the Fe 3 O 4 magnetic nanoparticles were coated with silica to prepare embedded magnetic silica particles.
  • the TEOS of mL was stirred at room temperature for 10 h; the obtained magnetic silica gel particles were washed 3 times with absolute ethanol, and then dried in a vacuum desiccator at 60 ° C for 12 hours and then used.
  • a double metal hydroxide layer is formed on the surface of the magnetic silica particles.
  • a mixed droplet of 6H 2 O and 0.72 mmol of Al(NO 3 ) 3 ⁇ 9H 2 O was added to the above solution; the mixture was sonicated for half an hour, the product was collected, and again dispersed in 50 mL of deionized water and ultrasonication was continued for 40 min.
  • the resulting product was dried in a vacuum desiccator at 60 ° C for 12 hours and then used.
  • FIG. 1 The schematic diagram of the synthesis of the Fe 3 O 4 @SiO 2 @Mg-Al LDH magnetic nano material extracting agent provided by the present invention is shown in FIG. 1 , and the specific preparation method can be divided into the following steps:
  • nano-ferric oxide is prepared.
  • 2.7 g of FeCl 3 ⁇ 6H 2 O, 4.67 g of NaAc and 0.75 g of sodium citrate were dissolved in 100 mL of ethylene glycol solvent, magnetically stirred for 50 min, and the obtained yellow mixture was transferred to a sealed polytetrafluoroethylene reactor.
  • the prepared ferroferric oxide magnetic nanoparticles are separated by an external magnetic field; the obtained ferroferric oxide magnetic nanoparticles are washed 3 times with ethanol and placed in a vacuum desiccator at 60 ° C. After 12 hours of drying, it was used.
  • the Fe 3 O 4 magnetic nanoparticles were coated with silica to prepare embedded magnetic silica particles.
  • 1.25 g of the above Fe 3 O 4 magnetic nanoparticles were added, and added to a mixture of 150 mL of ethanol and 50 mL of deionized water, and then 3.6 mL of a 25% volume fraction of NH 3 ⁇ H 2 O solution was added, and ultrasonically stirred for 30 minutes and then added to 3.0.
  • the TEOS of mL was stirred at room temperature for 10 h; the obtained magnetic silica gel particles were washed 3 times with absolute ethanol, and then dried in a vacuum desiccator at 60 ° C for 12 hours and then used.
  • a double metal hydroxide layer is formed on the surface of the magnetic silica particles.
  • a mixed droplet of 6H 2 O and 1.08 mmol of Al(NO 3 ) 3 ⁇ 9H 2 O was added to the above solution; the mixture was sonicated for half an hour, the product was collected, and again dispersed in 50 mL of deionized water and ultrasonication was continued for 40 min.
  • the resulting product was dried in a vacuum desiccator at 60 ° C for 12 hours and then used.
  • Fig. 1 The synthesis diagram of the Fe 3 O 4 @SiO 2 @Mg-Al LDH magnetic nano material extracting agent provided by the present invention is shown in Fig. 1.
  • the specific preparation method can be divided into the following steps:
  • nano-ferric oxide is prepared.
  • 2.7 g of FeCl 3 ⁇ 6H 2 O, 4.8 g of NaAc and 1.0 g of sodium citrate were dissolved in 80 mL of ethylene glycol solvent, magnetically stirred for 30 min, and the obtained yellow mixture was transferred to a sealed polytetrafluoroethylene reactor.
  • the obtained ferroferric oxide magnetic nanoparticles are separated by an external magnetic field; the obtained ferroferric oxide magnetic nanoparticles are washed 3 times with ethanol and placed in a vacuum desiccator at 60 ° C. After drying for 12 h, it was used.
  • the Fe 3 O 4 magnetic nanoparticles were coated with silica to prepare embedded magnetic silica particles.
  • 0.85 g of the above Fe 3 O 4 magnetic nanoparticles were added, and added to a mixture of 200 mL of ethanol and 50 mL of deionized water, and then 3.6 mL of a 25% volume fraction of NH 3 ⁇ H 2 O solution was added, and ultrasonically stirred for 30 minutes and then added to 2.5.
  • the TEOS of mL was stirred at room temperature for 12 h; the obtained magnetic silica gel particles were washed 3 times with absolute ethanol, and then placed in a vacuum desiccator at 60 ° C for 12 h and then used.
  • a double metal hydroxide layer is formed on the surface of the magnetic silica particles.
  • a mixed droplet of 6H 2 O and 0.48 mmol of Al(NO 3 ) 3 ⁇ 9H 2 O was added to the above solution; the mixture was sonicated for 30 min, the product was collected, and again dispersed in 50 mL of deionized water and ultrasonication was continued for 30 min.
  • the resulting product was placed in a vacuum desiccator and dried at 60 ° C for 12 h.
  • Example 7 Structural Characterization of Magnetic Nanomaterial Extractant and Its Intermediates of the Invention
  • This embodiment is a structural characterization of the magnetic nano material extractant and its intermediate products, as follows:
  • Fig. 2 (A, D) the prepared magnetic Fe 3 O 4 is spherical, the dispersibility is very good, the particle size is about 200 nm, and the particle size is uniform; as can be seen from Fig. 2 (B, E), After SiO 2 coating, the particle size becomes larger and the surface becomes smooth.
  • the thickness of SiO 2 layer is about 25 nm, forming a typical core-shell structure with Fe 3 O 4 as the core and silica gel as the shell layer. well.
  • the transmission electron micrograph of Fe 3 O 4 @SiO 2 @Mg-Al LDH (Fig. 2C) shows that the LDH nanosheets are deposited vertically on the surface of the silicon layer to form a petal-like structure.
  • the spherical core is tight and the density of the shell is obviously Smaller. From the scanning electron microscope image (Fig. 2F), it can be seen that the morphology of the nanosheets is relatively regular, and there are sufficient gaps between the different nanosheets to provide sufficient points for subsequent modification.
  • Fe 3 O 4 , Fe 3 O 4 @SiO 2 and Fe 3 O 4 @SiO 2 @Mg-Al LDH particles were characterized by Nicolet 170 SX Fourier transform infrared spectroscopy (FT-IR) and determined by KBr tableting method. For methods and parameter settings, see Yonghui Deng, et al, J. Am. Chem. Soc., 2008, 130(1), 28-29.
  • FT-IR Fourier transform infrared spectroscopy
  • the infrared spectrum of various magnetic particles is shown in Fig. 3.
  • the absorption peak of 1400 cm -1 is generated by a modification of the Fe 3 O COO- 4 surface, at 1626cm -1 are overlapping and vibration COO- OH groups generated.
  • the tensile vibration of Fe-O and OH groups at peaks was observed at 585 and 3434 cm -1 .
  • the peak at 585 cm -1 can be seen in all three materials, but the strength decreases with the coating of the SiO 2 layer and the LDH layer.
  • the hysteresis regression curves of Fe 3 O 4 , Fe 3 O 4 @SiO 2 and Fe 3 O 4 @SiO 2 @Mg-Al LDH particles were measured using a vibration sample magnetometer (Lake shore VSM 7300 series). For the determination method and parameter setting, see Yonghui Deng, et al, J. Am. Chem. Soc., 2008, 130(1), 28-29.
  • the hysteresis loop of various magnetic particles is shown in Fig. 4.
  • various magnetic particles exhibit typical superparamagnetism, and the remanence and coercive force of the magnetization curve are almost zero.
  • Fe 3 O 4 @SiO 2 and Fe 3 O 4 @SiO 2 @Mg-Al LDH slightly decreased compared with Fe 3 O 4 magnetic particles.
  • the final prepared Fe 3 O 4 @SiO 2 @Mg-Al LDH has a saturation magnetic strength of 29.62 emug -1 , which fully satisfies the requirements of magnetic separation. Its superparamagnetism makes the MLDH extractant fully disperse in water without an external magnetic field. After the extraction, the separation process can be quickly separated from the mother liquor by magnetic deposition.
  • the specific surface area and pore volume of the magnetic nanoparticles were determined by a Gemini 2375V4.01 nitrogen adsorption BET specific surface area analyzer (Norcross, USA). For measurement methods and parameter settings, see Ian J. Bruce, et al, Journal of Magnetism and Magnetic Materials. 284 (2004) 145-160.
  • Fe 3 O 4 @SiO 2 @Mg-Al LDH magnetic mesoporous carbon particles have a specific surface area of 354.82 (m 2 g -1 ); a pore volume of 1.63 (cm 3 g -1 ) ).
  • the N 2 adsorption-desorption curves are typical IV-type closed curves (Fig. 5A), demonstrating the mesoporous structure of the material.
  • the mesoporous pore size distribution of the material exhibited a sharp peak shape (Fig. 5B) with an average pore diameter of 2.73 nm.
  • the X-ray diffraction (XRD) pattern of the magnetic nanomaterial extractant was obtained on a b/max-RB Diffractometer (Rigaku, Japan), and the Cu K ⁇ ray was filtered using nickel, scanning ranged from 10° to 80°, and the scanning speed was 4°. /min.
  • XRD X-ray diffraction
  • the cubic structure of the face of the Fe 3 O 4 atom can be seen from the diffraction peak of the curve a.
  • the diffraction peak of amorphous SiO 2 is added to the curve.
  • the material still has a characteristic peak of Fe 3 O 4 after coating the silica gel layer and the LDH layer, indicating that the spinel crystal structure of the Fe 3 O 4 nanoparticle is coated. No changes occurred after the layer modification.
  • the composite materials were scanned by full-spectrum and narrow-spectrum using X-ray spectrometer, and the surface elements were analyzed.
  • Example 8 Extraction performance test of magnetic nano material extractant of the present invention
  • the phthalate esters of n-propyl phthalate (DPP), n-butyl phthalate (DBP), cyclohexyl phthalate (DCP) and n-octyl phthalate (DOP) were selected as common contaminants.
  • DPP n-propyl phthalate
  • DBP n-butyl phthalate
  • DCP cyclohexyl phthalate
  • DOP n-octyl phthalate
  • the operation steps of the test are shown in FIG. 8.
  • the specific experimental procedure is as follows: 30 mg of the magnetic LDH particles prepared in Example 4 or Example 5 or Example 6 and 20 mg of SDS are added to 400 mL of PAEs water sample, and uniformly dispersed by ultrasonic stirring.
  • the concentration of the target in the concentrated liquid was determined by high performance liquid chromatography, and the recovery rate of each pollutant was calculated.
  • the pollutant recovery rate can reach more than 80%.
  • the spiked recovery results of environmental water samples such as tap water and river water are satisfactory, the recovery rate is more than 80%, and the reproducibility of the analysis results is RSD ⁇ 10%.
  • the column temperature was 30 ° C; the injection volume was 20 ⁇ L, and the mobile phase flow rate was 1 mL min -1 .
  • the flow rate is 1.0 mL/min, the UV detection wavelength is 226 nm; the mobile phase is acetonitrile water system, gradient mode: channel A is 50% acetonitrile aqueous solution, channel B is 100% acetonitrile, 0-22 min, from 60% B to 100% B, 22-35min, 100% B.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Water Supply & Treatment (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Compounds Of Iron (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种用于吸附环境水样中酞酸酯类有机污染物的磁性纳米材料固相萃取剂及其制备方法。磁性纳米材料固相萃取剂包括作为内核的磁性二氧化硅颗粒,作为壳层的层状双金属氢氧化物。磁性二氧化硅颗粒是由二氧化硅包覆在磁性纳米核心上形成;层状双金属氢氧化物壳层为Mg-Al双金属氢氧化物。

Description

一种磁性纳米材料固相萃取剂及其制备方法、用途 技术领域
本发明属于化学分析测试仪器设备领域,涉及一种新型混合胶束式Fe3O4@SiO2@Mg-Al LDH复合材料固相萃取剂。
背景技术
固相萃取是目前应用最为广泛的较新型的环境样品前处理方法。与传统液液萃取相比,固相萃取具有萃取时间短、回收率高、富集倍数高以及有机试剂消耗少等优点。近年来,磁性纳米材料由于结合了纳米材料独特的理化性质和磁性材料的磁性能而引起各个领域的广泛关注。其卓越的吸附性能和较高的比表面积使其在污染物富集和样品前处理方面具有很大的应用潜力。材料的超顺磁性使其在外加磁场作用下快速沉降到烧杯底部,克服了一般纳米材料固相萃取技术上样阻力大、操作耗时、萃取剂与母液分离困难的缺点。
离子型表面活性剂在金属氧化物颗粒表面的吸附自组装行为近年来成为研究热点。它可以在氧化铝、氧化铁、二氧化硅、二氧化钛等表面形成混合胶束。有文献报道了通过控制溶液pH值、表面活性剂种类及浓度等调节萃取剂的选择性,进而可以应用于离子型、疏水型、两亲型和酸碱性不同的有机物的萃取。有研究表面活性剂的吸附自组装行为与纳米材料的比表面积密切相关,比表面积越大,对污染物的萃取容量也越高。因此,对比较面积大的纳米材料进行半胶束/吸附胶束修饰修饰后在固相萃取方面将大有可为。以Fe3O4为核心的磁性层状双金属氢氧化物(Layered double hydroxide,LDH)由于比表面积大、成本低、表面易于修饰等优势引起了众多研究者的关注,并广泛应用于吸附、催化、分子学及生物学领域,将其作为固相萃取剂将有巨大的潜力。
发明内容
本发明制备的Fe3O4@SiO2@Mg-Al LDH磁性纳米固相萃取剂,兼具层状双金属氢氧化物比表面积大、磁性材料的磁分离能力、纳米材料快速吸附和容易洗脱以及混合胶束的强萃取能力等优点。
本发明公开的技术方案是:一种磁性纳米材料固相萃取剂,其包括作为内核的磁性二氧化硅颗粒,作为壳层的层状双金属氢氧化物;所述磁性二氧化硅颗粒是由二氧化硅包覆在磁性纳米核心上形成;所述层状双金属氢氧化物壳层为Mg-Al双金属氢氧化物。
优选的,所述的磁性二氧化硅颗粒中的磁性纳米核心为Fe3O4、Co、FeCo、Ni、FeCo、FeO中的一种。
优选的,所述磁性纳米核心采用溶剂热法制备。
优选的,所述磁性纳米核心的直径在150nm-250nm之间。
优选的,所述的磁性二氧化硅颗粒中的二氧化硅层是TEOS水解获得的。本发明中所述的TEOS是指:正硅酸乙酯,又称硅酸乙酯;硅酸四乙酯;亚硅酸乙酯;四乙氧基硅烷;原硅酸四乙酯;其化学式是Si(OC2H5)4;无色液体;熔点-77℃,沸点168.5℃,密度0.9346g cm-3;对空气较稳定; 微溶于水,在纯水中水解缓慢,在酸或碱的存在下能加速水解作用;与沸水作用得到没有电解质的硅酸溶胶。本发明还公开了一种磁性纳米材料固相萃取剂的制备方法,包括以下步骤:
(1)制备磁性纳米核心:溶剂热法制备磁性纳米核心;
(2)制得磁性二氧化硅颗粒:利用TEOS在碱性条件下在乙醇与水的混合液中水解形成二氧化硅层,将步骤(1)所制备的磁性纳米核心包埋在所述的二氧化硅层内,制得磁性二氧化硅颗粒;
(3)磁性二氧化硅颗粒表面包覆双金属氢氧化物层:利用Mg(NO3)2·6H2O、Al(NO3)3·9H2O在碱性条件下共沉淀在步骤(2)所制备的磁性二氧化硅颗粒表面,形成双金属氢氧化物层。
本发明还公开了一种表面活性剂在上述磁性纳米材料固相萃取剂的表层的自组装方法,该方法中,表面活性剂SDS在酸性条件下,在磁性双金属氢氧化物壳层表面发生吸附自组装行为,形成混合胶束。
本发明还公开了一种Fe3O4@SiO2@Mg-Al LDH复合纳米材料萃取剂的制备方法,包括以下步骤:
(1)溶剂热法制备Fe3O4纳米颗粒:将FeCl3·6H2O、NaAc和柠檬酸钠溶于乙二醇溶剂中,磁性搅拌20min-60min;将所得溶液转移至密封反应釜中,180-240℃下反应6-14h,反应结束后,将制备的Fe3O4纳米颗粒分离出来并清洗干净,干燥备用;
(2)制得磁性二氧化硅颗粒:取上述制备的Fe3O4纳米颗粒加入到乙醇和去离子水的混合液中,再加入25%的NHH2O溶液,超声搅拌后加入TEOS,室温下搅拌10-15h;得到磁性二氧化硅颗粒(Fe3O4@SiO2);将制备的磁性二氧化硅颗粒清洗干净,干燥备用;
(3)磁性二氧化硅颗粒表面包覆双金属氢氧化物层:取上述磁性二氧化硅颗粒,分散到去离子水中,滴加碱性溶液至溶液呈碱性,在搅拌条件下将Mg(NO3)2·6H2O、Al(NO3)3·9H2O的混合液滴加至所述碱性溶液;滴加完成后,超声20-40min后收集产物,将产物再次分散至去离子水中继续超声20-40min,最终制备得到Fe3O4@SiO2@Mg-Al LDH复合纳米材料萃取剂。
优选的,上述步骤(1)中,FeCl3·6H2O、NaAc与柠檬酸钠之间的摩尔比是(1-1.5):(3.4-3.8):(0.3-0.5)。优选的,FeCl3·6H2O、NaAc与柠檬酸钠之间的摩尔比是1:3.5:0.4。
优选的,上述步骤(2)中,乙醇和去离子水的混合液中,乙醇和去离子水的体积比是(3-4):(0.8-1),优选的,乙醇和去离子水的体积比是4:1。在制备过程中,TEOS加的量越大,SiO2层的厚度越大。
优选的,上述步骤(3)中,Mg(NO3)2·6H2O与Al(NO3)3·9H2O的摩尔比是(2-3):(1-1.5);优选的,Mg(NO3)2·6H2O与Al(NO3)3·9H2O的摩尔比是3:1。
优选的,上述步骤(3)中,滴加碱性溶液至溶液pH值在9-11之间;更优选的,溶液pH值=10。所述的碱性溶液是由Na2CO3和NaOH溶解于甲醇水溶液中得到的。更进一步的,所述的碱性溶液是由Na2CO3和NaOH溶解于体积比为1:1的甲醇水溶液中得到的。
本发明还公开了上述制备的磁性Fe3O4@SiO2@Mg-Al LDH复合纳米材料为固相萃取剂在富集或 分离环境水样中有机污染物的用途。
优选的,所述的环境水样中的有机污染物为酞酸酯类化合物。所述的酞酸酯类污染物包括酞酸正丙酯(DPP)、酞酸正丁酯(DBP)、酞酸环己酯(DCP)和酞酸正辛酯(DOP)。
本发明中公开的制备Fe3O4@SiO2@Mg-Al LDH固相萃取剂的方法是:首先用溶剂热法制备了直径在200nm左右的磁性Fe3O4颗粒;然后通过水解法,在碱性条件下,将SiO2层包覆Fe3O4颗粒表面,得到的SiO2层厚度在25nm左右;最后利用超声法,在pH恒定为10的条件合成Mg-Al LDH层。离子型表面活性剂极易在金属氧化物表面形成混合胶束,只需将制得的磁性层状双金属氢氧化物浸入一定浓度的表面活性剂的溶液中,吸附自组装行为即可发生。通过控制溶液pH值和表面活性剂种类、浓度等萃取条件就可以快速方便的调节萃取剂的选择性。由于萃取剂的种类不同,适用萃取的污染物不同,故需对萃取剂的选择性进行调节,一般来说:阴离子型表面活性剂适于萃取阴离子型化合物,阳离子型表面活性剂适于萃取阳离子型化合物;pH值不同,容易吸附的表面活性剂种类也就不同,从而导致萃取的污染物不同。要从水样中萃取目标物,只需将制得的纳米固相萃取剂分散在水溶液中,静置10分钟即可完成对有机物的吸附,然后在外加磁场作用下5分钟内固液快速磁分离即可完成萃取的过程;固液分离过程中,将结合了目标污染物的萃取剂快速从水溶液中分离出来。分离出来的纳米材料用少量的有机溶剂洗脱,再将洗脱液浓缩后进入液相色谱测定目标物浓度。整个前处理过程非常的快速,因此,混合胶束式Fe3O4@SiO2@Mg-Al LDH固相萃取剂在大体积环境样品中有机污染物的富集分离方面有很好的应用前景。
与现有传统的固相萃取材料样品前处理方法相比,本发明所述的固相萃取剂具有以下优点:
1.萃取剂用量少,萃取效率高。目前商品化的固相萃取柱中萃取剂的质量一般在200-500mg之间,而本发明制备的Fe3O4@SiO2@Mg-Al LDH仅需要30mg就可定量回收300mL水样中痕量的有机污染物。
2.环境友好。在固相萃取过程中,只需消耗极少量的有机溶剂,不会引入其他有毒有害的物质,对环境友好。
3.操作简便、萃取速度快。一方面,由于纳米材料粒径小,扩散路径短,因此能够实现快速吸附;另一方面,制得Fe3O4@SiO2@Mg-Al LDH磁性纳米材料有很好的超顺磁性,使用一个强磁铁就能方便的实现萃取剂与母液快速完全分离。
4.成本低廉,制备简单。制备过程中用到的主要原料为FeCl3·6H2O、氨水、四乙氧基硅烷(TEOS),价格低廉,购买方便。
5.稳定性好,可再生和重复利用。吸附在纳米材料上的目标物能够很容易的用少量有机溶剂洗脱下来,构成混合胶束本身的表面活性剂也被完全洗脱,下次萃取时混合胶束又极易在双金属氢氧化物表面重新形成。在一定程度上克服了一般固相萃取固定相使用寿命短、不可重复利用、价格昂贵的缺点。
选择酞酸酯类污染物酞酸正丙酯(DPP)、酞酸正丁酯(DBP)、酞酸环己酯(DCP)和酞酸正辛酯(DOP),等作为常见污染物的代表,对表面活性剂十二烷基硫酸钠(SDS)修饰的Fe3O4@SiO2@Mg-Al LDH磁性层状双金属氢氧化物固相萃取剂的萃取性能进行了测试。结果证明该萃取剂具有很好的萃取能力,400mL环境水样品中使用30mg萃取剂,对于大部分有机污染物的萃取率均能达到90%以上。其解吸过程也比较简单,通常12mL(4mL×3)有机溶剂就能够将有机污染物完全洗脱下来。在外加磁铁的作用下,萃取剂与环境水样品在5min内即可实现完全分离。浓缩到0.5mL后,即可用于液相色谱进样分析。
附图说明
以下,结合附图来详细说明本发明的实施例,其中:
图1为本发明磁性纳米材料萃取剂的合成示意图;
图2为本发明磁性纳米材料萃取剂及各种中间产物的TEM和SEM照片,(A)Fe3O4,(B)Fe3O4@SiO2,(C)Fe3O4@SiO2@Mg-Al LDH;
图3为本发明磁性纳米材料萃取剂及各种中间产物的红外谱图;
图4为本发明磁性纳米材料萃取剂及各种中间产物的磁滞回线;
图5为本发明磁性纳米材料萃取剂的N2吸附-脱附曲线图;
图6为本发明磁性纳米材料萃取剂及各种中间产物的XRD谱图;
图7为本发明磁性纳米材料萃取剂及各种中间产物的XPS谱图;
图8为本发明磁性纳米材料固相萃取流程图。
具体实施方式
以下结合较佳实施例进一步阐述本发明,但这些实施例仅限于说明本发明,并不能限制本发明的范围。请参考附图1至附图8,本实用新型实施例包括:
实施例1:一种磁性纳米材料固相萃取剂,包括作为内核的磁性二氧化硅颗粒,作为壳层的层状双金属氢氧化物;所述磁性二氧化硅颗粒是由二氧化硅包覆在磁性纳米核心上形成;所述层状双金属氢氧化物壳层为Mg-Al双金属氢氧化物。本实施例中,所述的磁性纳米核心是Fe3O4
实施例2:一种磁性纳米材料固相萃取剂,包括作为内核的磁性二氧化硅颗粒,作为壳层的层状双金属氢氧化物;所述磁性二氧化硅颗粒是由二氧化硅包覆在磁性纳米核心上形成;所述层状双金属氢氧化物壳层为Mg-Al双金属氢氧化物。本实施例中,所述的磁性纳米核心是Fe3O4、Co、FeCo、Ni、FeCo、FeO中的一种。本实施例中,磁性纳米核心是通过溶剂热法制备的。
实施例3:本实施例与上述实施例的不同之处在于,本实施例中,磁性纳米核心的直径是在150nm-250nm之间,磁性纳米核心的直径可以是150nm、180nm、200nm、220nm、250nm。本实施例中,磁性二氧化硅颗粒中的二氧化硅层是TEOS水解得到的。
实施例4:本发明磁性纳米材料萃取剂的制备方法
本发明所提供的Fe3O4@SiO2@Mg-Al LDH磁性纳米材料萃取剂的合成示意图如图1所示,其具 体的制备方法可分为以下步骤:
首先,制备纳米四氧化三铁。先将4.05g FeCl3·6H2O,5.2g NaAc和1.25g柠檬酸钠溶于90mL乙二醇溶剂中,磁性搅拌60min,将所得黄色混合液转移到密封的聚四氟乙烯反应釜中,180℃反应6h,反应结束后,利用外加磁场将制得的四氧化三铁磁性纳米颗粒分离出来;用乙醇将所得的四氧化三铁磁性纳米颗粒清洗3次后置于真空干燥器中60℃干燥12小时后备用。
其次,将Fe3O4磁性纳米颗粒用二氧化硅包覆,制得包埋式磁性二氧化硅颗粒。取上述Fe3O4磁性纳米颗粒1.02g,加入到250mL乙醇和50mL去离子水的混合液中,再加入3.6mL 25%体积分数的NHH2O溶液,超声搅拌30分钟后加入3.0mL的TEOS,在室温下搅拌10h;用无水乙醇清洗得到的磁性硅胶颗粒3次后置于真空干燥器中60℃干燥12小时后备用。
再次,在磁性二氧化硅颗粒表面形成双金属氢氧化物层。取上述磁性二氧化硅颗粒0.1g,分散到50mL去离子水,随后滴加碱性溶液直至pH=10,在机械搅拌作用下以1mLmin-1的速度将20mL含1.44mmol Mg(NO3)2·6H2O和0.72mmolAl(NO3)3·9H2O的混合液滴加至上述溶液;将上述混合液超声半小时后收集产物,再次分散到50mL去离子水中继续超声40min。最后所得产物置于真空干燥器中60℃干燥12小时后备用。
实施例5:本发明磁性纳米材料萃取剂的制备方法
本发明所提供的Fe3O4@SiO2@Mg-Al LDH磁性纳米材料萃取剂的合成示意图如图1所示,其具体的制备方法可分为以下步骤:
首先,制备纳米四氧化三铁。先将2.7g FeCl3·6H2O,4.67g NaAc和0.75g柠檬酸钠溶于100mL乙二醇溶剂中,磁性搅拌50min,将所得黄色混合液转移到密封的聚四氟乙烯反应釜中,180℃反应6h,反应结束后,利用外加磁场将制得的四氧化三铁磁性纳米颗粒分离出来;用乙醇将所得的四氧化三铁磁性纳米颗粒清洗3次后置于真空干燥器中60℃干燥12小时后备用。
其次,将Fe3O4磁性纳米颗粒用二氧化硅包覆,制得包埋式磁性二氧化硅颗粒。取上述Fe3O4磁性纳米颗粒1.25g,加入到150mL乙醇和50mL去离子水的混合液中,再加入3.6mL 25%体积分数的NHH2O溶液,超声搅拌30分钟后加入3.0mL的TEOS,在室温下搅拌10h;用无水乙醇清洗得到的磁性硅胶颗粒3次后置于真空干燥器中60℃干燥12小时后备用。
再次,在磁性二氧化硅颗粒表面形成双金属氢氧化物层。取上述磁性二氧化硅颗粒0.2g,分散到80mL去离子水,随后滴加碱性溶液直至pH=10,在机械搅拌作用下以1mLmin-1的速度将40mL含1.44mmol Mg(NO3)2·6H2O和1.08mmol Al(NO3)3·9H2O的混合液滴加至上述溶液;将上述混合液超声半小时后收集产物,再次分散到50mL去离子水中继续超声40min。最后所得产物置于真空干燥器中60℃干燥12小时后备用。
实施例6:本发明磁性纳米材料萃取剂的制备方法
本发明所提供的Fe3O4@SiO2@Mg-Al LDH磁性纳米材料萃取剂的合成示意图如图1所示,其具 体的制备方法可分为以下步骤:
首先,制备纳米四氧化三铁。先将2.7g FeCl3·6H2O,4.8g NaAc和1.0g柠檬酸钠溶于80mL乙二醇溶剂中,磁性搅拌30min,将所得黄色混合液转移到密封的聚四氟乙烯反应釜中,200℃反应10h,反应结束后,利用外加磁场将制得的四氧化三铁磁性纳米颗粒分离出来;用乙醇将所得的四氧化三铁磁性纳米颗粒清洗3次后置于真空干燥器中60℃干燥12h后备用。
其次,将Fe3O4磁性纳米颗粒用二氧化硅包覆,制得包埋式磁性二氧化硅颗粒。取上述Fe3O4磁性纳米颗粒0.85g,加入到200mL乙醇和50mL去离子水的混合液中,再加入3.6mL 25%体积分数的NHH2O溶液,超声搅拌30分钟后加入2.5mL的TEOS,在室温下搅拌12h;用无水乙醇清洗得到的磁性硅胶颗粒3次后置于真空干燥器中60℃干燥12h后备用。
再次,在磁性二氧化硅颗粒表面形成双金属氢氧化物层。取上述磁性二氧化硅颗粒0.1g,分散到50mL去离子水,随后滴加碱性溶液直至pH=10,在机械搅拌作用下以1mL/min的速度将20mL含1.44mmolMg(NO3)2·6H2O和0.48mmolAl(NO3)3·9H2O的混合液滴加至上述溶液;将上述混合液超声30min后收集产物,再次分散到50mL去离子水中继续超声30min。最后所得产物置于真空干燥器中60℃干燥12h后备用。
实施例7:本发明磁性纳米材料萃取剂及其中间产物的结构表征
本实施例为对磁性纳米材料萃取剂及其中间产物的结构表征,具体如下:
1.TEM和SEM照片
采用日本电子JEOL.JEM-200CX型透射电子显微镜(TEM)和Hitachi S-2400场发射扫描电镜(SEM),对Fe3O4@SiO2@Mg-Al磁性层状双金属氢氧化物及中间产物的粒径与形貌结构进行分析。
从图2(A,D)可以看出,所制备的磁性Fe3O4成球形,分散性非常好,粒径在200nm左右,颗粒大小均匀;从图2(B,E)可以看出,SiO2包覆后,颗粒粒径变大,表面变得光滑,SiO2层厚度在25nm左右,形成典型的以Fe3O4为核心、硅胶为壳层的核-壳式结构,分散性依然很好。Fe3O4@SiO2@Mg-Al LDH的透射电镜图片(图2C)可以看出LDH纳米片垂直沉积到硅层表面后形成类似花瓣状的结构,球形核心紧密一些,壳层密度明显要小一些。从扫描电镜图片(图2F)可以看出纳米片形貌较为规则,且不同纳米片之间有充足的空隙,可为后续的修饰提供足够的点位。
2.红外谱图
利用Nicolet 170 SX傅立叶变换红外光谱仪(FT-IR)对Fe3O4、Fe3O4@SiO2和Fe3O4@SiO2@Mg-Al LDH颗粒进行表征,使用KBr压片法,测定方法和参数设定见Yonghui Deng,et al,J.Am.Chem.Soc.,2008,130(1),28-29。
各种磁性颗粒的红外谱图如图3所示。在Fe3O4的谱图上,1400cm-1处的吸收峰是由修饰在Fe3O4表面的COO-产生的,在1626cm-1处的是COO-和O-H基团重叠振动产生的。585和3434cm-1处观察到得峰时Fe-O和O-H基团拉伸振动形成的。585cm-1处的峰在三种材料中都能看到,但是强度随着SiO2 层和LDH层的包覆而有所降低。与Fe3O4的标准红外图谱进行对照,合成的Fe3O4@SiO2磁性硅胶颗粒和Fe3O4@SiO2@Mg-Al LDH磁性双金属氢氧化物颗粒在1080cm-1处明显多出了Si-O键的特征峰,但同时COO-吸收峰消失了。随着LDH层的引入,3434和1626cm-1处的峰强增加,同时在1384cm-1处增加了一个新的由NO3 -基团产生吸收峰,同时也证明了我们的LDH合成是成功的。
3.磁滞回线
采用振动样品磁强计(vibration sample magnetometer,Lake shore VSM 7300系列)测量了Fe3O4、Fe3O4@SiO2和Fe3O4@SiO2@Mg-Al LDH颗粒的磁滞回归曲线,测定方法和参数设定见Yonghui Deng,et al,J.Am.Chem.Soc.,2008,130(1),28-29。
各种磁性颗粒的磁滞回线如图4所示。从图4中可看出,各种磁性颗粒均表现出典型的超顺磁性,其磁化曲线的剩磁和矫顽力都几乎为零。随着非磁性成分的增多,Fe3O4@SiO2和Fe3O4@SiO2@Mg-Al LDH对比Fe3O4磁性颗粒略微有所下降。最终制备的Fe3O4@SiO2@Mg-Al LDH饱和磁强度为29.62emug-1,完全满足磁性分离的要求,其超顺磁性使得MLDH萃取剂在无外加磁场时能充分分散在水中,萃取结束后又可以通过磁沉降快速与母液分离,完成萃取过程。
4.比表面积、介孔直径和孔体积
通过Gemini 2375V4.01型氮吸附BET比表面积测定仪(美国Norcross公司)测定磁性纳米颗粒的比表面积和孔体积,测定方法和参数设定见Ian J.Bruce,et al,Journal of Magnetism and Magnetic Materials 284(2004)145-160。
测定本发明磁性纳米材料萃取剂的结果:Fe3O4@SiO2@Mg-Al LDH磁性介孔碳颗粒比表面积为354.82(m2g-1);孔体积为1.63(cm3g-1)。其N2吸附-脱附曲线均为典型的IV型闭合曲线(图5A),证明了材料的介孔结构。材料的介孔孔径分布呈现一个尖锐的峰型(图5B),平均孔径分别为2.73nm。
5.XRD谱图
磁性纳米材料萃取剂的X-射线衍射(XRD)图谱是在b/max-RB Diffractometer(日本Rigaku)上获得,使用镍过滤Cu Kα射线,扫描范围从10°到80°,扫描速度为4°/min。测定方法和参数设定见Yonghui Deng,Dawei Qi,Chunhui Deng,et al,J.Am.Chem.Soc.,2008,130(1),28-29。
如图6所示,从曲线a的衍射峰可以看出Fe3O4原子面心的立方体结构。包覆硅胶层后,曲线上多出了无定形SiO2的衍射峰。曲线c上,在2θ=10.25°,23.01°,38.43°和61.77°出现典型的LDH衍射峰。与Fe3O4磁性粒子的XRD谱图对照,可以看包覆硅胶层和LDH层后材料仍然具有Fe3O4的特征峰,表明Fe3O4纳米粒子的尖晶石晶体结构在包覆层修饰之后没有发生改变。
6.XPS谱图
利用X射线光谱仪对合成材料进行了全谱和窄谱的扫描,对其表面元素进行了分析。
如图7所示,Fe3O4@SiO2@Mg-Al LDH的谱图上O1s,Mg1s和Al2p的衍射峰分别出现在539.95,1308.76和79.95eV,这表明Mg-Al LDH成功修饰在了Fe3O4@SiO2表面。
实施例8:本发明磁性纳米材料萃取剂的萃取性能测试
本实施例选择酞酸酯类污染物酞酸正丙酯(DPP)、酞酸正丁酯(DBP)、酞酸环己酯(DCP)和酞酸正辛酯(DOP)作为常见污染物的代表,对实施例4、5、6中制备磁性纳米材料萃取剂的吸附性能进行了测试,测试数据记录见如下表1。
测试的操作步骤如图8所示,具体实验过程如下:取30mg实施例4或实施例5或实施例6制备的磁性LDH颗粒和20mg SDS加入到400mL PAEs水样中,超声搅拌使之均匀分散在溶液中形成悬浊液,然后用0.1M HCl或NaOH调节溶液pH为4.5,静置10分钟达到吸附平衡后,置于强磁场中使萃取剂与溶液快速分离(5分钟之内可实现完全分离);弃去母液,用12mL乙腈分3次反复淋洗萃取剂(每次4mL),使吸附在萃取剂上的PAEs被洗脱下来,将洗脱液合并后用N2吹至0.5mL,取20μL进样,采用高效液相色谱-紫外检测系统(HPLC-UV)测定含量。利用高效液相色谱测定浓缩液中目标物的浓度,再计算出各污染物的回收率。400mL环境水样品中只需要使用30mg的Fe3O4@SiO2@Mg-Al LDH磁性纳米萃取剂,污染物回收率大部分能达到80%以上。对自来水、河水等环境水样品的加标回收结果令人满意,回收率大于80%,分析结果的重现性RSD≤10%。
酞酸酯污染物测定的条件如下:
迪马DIKMA Diamonsil C18色谱柱(4.6mm×250mm,5μm);
柱温30℃;进样量20μL,流动相流速1mLmin-1
流速为1.0mL/min,紫外检测波长226nm;流动相为乙腈水体系,梯度模式:通道A为50%乙腈水溶液,通道B为100%乙腈,0-22min,从60%的B变为100%的B,22-35min,100%的B。
表1 几种环境水样中PAEs的检测浓度及其加标回收浓度
Figure PCTCN2015096881-appb-000001

Claims (10)

  1. 一种磁性纳米材料固相萃取剂,其特征在于,所述磁性纳米材料固相萃取剂包括作为内核的磁性二氧化硅颗粒,作为壳层的层状双金属氢氧化物;所述磁性二氧化硅颗粒是由二氧化硅包覆在磁性纳米核心上形成;所述层状双金属氢氧化物壳层为Mg-Al双金属氢氧化物。
  2. 根据权利要求1所述的磁性纳米材料固相萃取剂,其特征在于,所述的磁性二氧化硅颗粒中的磁性纳米核心是Fe3O4、Co、FeCo、Ni、FeCo、FeO中的一种。
  3. 根据权利要求2所述的磁性纳米材料固相萃取剂,其特征在于,所述磁性纳米核心采用溶剂热法制备。
  4. 根据权利要求3所述的磁性纳米材料固相萃取剂,其特征在于,所述磁性纳米核心的直径在150nm–250nm之间。
  5. 根据权利要求1所述的磁性纳米材料固相萃取剂,其特征在于,所述的磁性二氧化硅颗粒中的二氧化硅层是TEOS水解得到的。
  6. 一种磁性纳米材料固相萃取剂的制备方法,包括以下步骤:
    (1)制备磁性纳米核心:溶剂热法制备磁性纳米核心;
    (2)制得磁性二氧化硅颗粒:利用TEOS在碱性条件下在乙醇与水的混合液中水解形成二氧化硅层,将步骤(1)所制备的磁性纳米核心包埋在所述的二氧化硅层内,制得磁性二氧化硅颗粒;
    (3)磁性二氧化硅颗粒表面包覆双金属氢氧化物层:利用Mg(NO3)2·6H2O、Al(NO3)3·9H2O在碱性条件下共沉淀在步骤(2)所制备的磁性二氧化硅颗粒表面,形成双金属氢氧化物层。
  7. 一种表面活性剂在上述权1-权6中的磁性纳米材料固相萃取剂的表层的自组装方法,其特征在于,表面活性剂SDS在酸性条件下,在磁性双金属氢氧化物壳层表面发生吸附自组装行为,形成混合胶束。
  8. 一种Fe3O4@SiO2@Mg-Al LDH复合纳米材料固相萃取剂的制备方法,包括以下步骤:
    (1)溶剂热法制备Fe3O4纳米颗粒:将FeCl3·6H2O、NaAc和柠檬酸钠溶于乙二醇溶剂中,磁性搅拌20min–60min;将所得溶液转移至密封反应釜中,180-240℃下反应6–14h,反应结束后,将制备的Fe3O4纳米颗粒分离出来并清洗干净,干燥备用;
    (2)制得磁性二氧化硅颗粒:取上述制备的Fe3O4纳米颗粒加入到乙醇和去离子水的混合液中,再加入25%的NH3·H2O溶液,超声搅拌后加入TEOS,室温下搅拌10-15h;得到磁性二氧化硅颗粒(Fe3O4@SiO2);将制备的磁性二氧化硅颗粒清洗干净,干燥备用;
    (3)磁性二氧化硅颗粒表面包覆双金属氢氧化物层:取上述磁性二氧化硅颗粒,分散到去离子水中,滴加碱性溶液至溶液呈碱性,在搅拌条件下将Mg(NO3)2·6H2O、Al(NO3)3·9H2O的混合液滴加至所述碱性溶液;滴加完成后,超声20-40min后收集产物,将产物再次分散至去离子水中继续超声20–40min,最终制备得到Fe3O4@SiO2@Mg-Al LDH复合纳米材料萃取剂。
  9. 一种磁性Fe3O4@SiO2@Mg-Al LDH复合纳米材料为固相萃取剂的用途,其特征在于,用于富集 或分离环境水样中的有机污染物。
  10. 根据权利要求9所述的固相萃取剂的用途,其特征在于,所述的环境水样中的有机污染物为酞酸酯类化合物。
PCT/CN2015/096881 2014-10-13 2015-12-10 一种磁性纳米材料固相萃取剂及其制备方法、用途 WO2016058561A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410539224.X 2014-10-13
CN201410539224.XA CN104258807B (zh) 2014-10-13 2014-10-13 一种磁性纳米材料固相萃取剂及其制备方法、用途

Publications (1)

Publication Number Publication Date
WO2016058561A1 true WO2016058561A1 (zh) 2016-04-21

Family

ID=52150455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096881 WO2016058561A1 (zh) 2014-10-13 2015-12-10 一种磁性纳米材料固相萃取剂及其制备方法、用途

Country Status (2)

Country Link
CN (1) CN104258807B (zh)
WO (1) WO2016058561A1 (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111330555A (zh) * 2020-03-13 2020-06-26 天津迪沃特生物电子科技有限公司 一种具有磁性的核壳式介孔硅胶材料及其制备方法和应用
CN111398392A (zh) * 2020-05-18 2020-07-10 河南工业大学 一种基于金属离子依赖性dna酶用于检测邻苯二甲酸二丁酯的电化学免疫传感器制备方法
CN111408347A (zh) * 2020-04-24 2020-07-14 杭州楚环科技股份有限公司 一种新型Fe3O4@SiO2@ESM介孔材料的制备方法及其应用
CN111638198A (zh) * 2020-05-30 2020-09-08 重庆西南果品营养研究院 一种水果中痕量硒的富集测定方法
CN111792909A (zh) * 2020-06-18 2020-10-20 太原理工大学 一种磁性硅柱撑层状粘土球团的制备方法及应用
CN112892469A (zh) * 2021-01-21 2021-06-04 沈阳工业大学 一种稳定的Fe3O4@SiO2磁性微球溶液的制备方法
CN113358800A (zh) * 2021-05-26 2021-09-07 吉林化工学院 一种磁性氮掺杂碳材料及其对塑料瓶装水中邻苯二甲酸酯萃取及分析的方法
CN113351169A (zh) * 2021-06-23 2021-09-07 中国农业科学院蔬菜花卉研究所 一种磁性MOFs/纳米金复合材料及其制备方法和应用
CN113717337A (zh) * 2021-08-30 2021-11-30 山东省分析测试中心 磁性氟化共价有机框架材料及其制备方法和应用
CN113926426A (zh) * 2021-11-11 2022-01-14 东莞理工学院 一种功能化介孔炭吸附废水中邻苯二甲酸酯污染物的方法
CN114113382A (zh) * 2021-11-16 2022-03-01 哈尔滨工业大学 一种双孔径磁性材料的制备方法及其在分析和去除水中有机氯农药的应用
CN114146695A (zh) * 2021-12-17 2022-03-08 中国地质大学(武汉) 一种邻苯二甲酸酯类磁性分子印记聚合物萃取材料的制备方法
CN114160135A (zh) * 2021-11-27 2022-03-11 郑州轻工业大学 磁性Fe3O4复合纳米材料的制备方法
CN114307974A (zh) * 2021-12-31 2022-04-12 甘肃中商食品质量检验检测有限公司 一种新型磁性介孔复合材料、制备方法及应用
CN114870807A (zh) * 2022-04-25 2022-08-09 天津国科医工科技发展有限公司 离子化磁性微球材料
CN114984243A (zh) * 2022-05-30 2022-09-02 常州工业职业技术学院 一种磁性纳米抗生素复合粒子及其制备方法和应用
CN115290416A (zh) * 2022-09-26 2022-11-04 宁德厦钨新能源材料有限公司 磁性颗粒清洁度测试方法
CN115518621A (zh) * 2022-09-28 2022-12-27 中国科学院兰州化学物理研究所 一种玉米棒状金属有机骨架材料镶嵌金属氧化物碳材料的制备及应用
CN112108120B (zh) * 2020-09-22 2023-07-25 宁夏医科大学 磁性层状双氢氧化物-金属有机骨架物复合材料及其制备方法和应用
CN114870807B (zh) * 2022-04-25 2024-06-07 天津国科医疗科技发展有限公司 离子化磁性微球材料

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104258807B (zh) * 2014-10-13 2015-07-01 中国环境科学研究院 一种磁性纳米材料固相萃取剂及其制备方法、用途
CN104785199B (zh) * 2015-04-10 2017-03-29 武汉大学 一种SiO2@MgSi0.84O2.68核壳结构吸附剂及其制备方法和应用
CN105562001B (zh) * 2015-12-18 2017-11-14 河北大学 一种镍基核壳结构纳米催化材料及其制备方法和应用
CN106334524B (zh) * 2016-11-08 2019-07-05 山东大学 核-壳结构层状双金属氢氧化物复合粒子制备方法及应用
CN107175089A (zh) * 2017-06-06 2017-09-19 大连民族大学 一种掺杂钴离子的铁镍磁性微球及其应用
CN107126925B (zh) * 2017-06-12 2019-12-20 扬州工业职业技术学院 一种磁性纳米材料及其在安奈格列汀药物检测中的应用
CN107389836A (zh) * 2017-07-19 2017-11-24 云南中烟工业有限责任公司 一种双层磁性纳米颗粒及其在苯并[α]芘检测中的应用
CN107585825B (zh) * 2017-10-27 2020-05-05 山东建筑大学 一种回收污泥消化液中磷酸盐的吸附磁分离同步回收装置及其废水处理方法
CN109225220B (zh) * 2018-08-28 2020-11-20 北京化工大学 一种具有磁性核的焙烧水滑石催化剂、制备及用于甲苯侧链甲醛烷基化反应
CN109331783B (zh) * 2018-10-23 2021-08-24 南京师范大学常州创新发展研究院 机械化学磁性固相萃取方法、磁性纳米材料及其制备方法
CN110327659B (zh) * 2019-07-19 2021-09-24 苏州艾捷博雅生物电子科技有限公司 一种基于磁性萃取材料的萃取和净化方法及装置
CN110559986B (zh) * 2019-09-23 2022-04-12 江西理工大学 一种磁性花状磷酸钛吸附剂及其制备方法和应用
CN110882702A (zh) * 2019-12-16 2020-03-17 生态环境部环境规划院 一种基于磁性层状双金属氢氧化物的催化材料的制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626762A (en) * 1995-02-13 1997-05-06 Uop Separations by simulated moving bed chromatography operating at low K' values using weakly interating adsorbents as the stationary phase
CN101130157A (zh) * 2007-07-19 2008-02-27 中国科学院生态环境研究中心 混合胶束核壳式Fe3O4/SiO2磁性纳米固相萃取剂的制备及应用
CN103242802A (zh) * 2013-05-16 2013-08-14 南京航空航天大学 吸波性能可调的空心Fe/Fe3O4@SiO2纳米结构的制备方法
WO2014037172A1 (en) * 2012-09-07 2014-03-13 Baden-Wuerttemberg Stiftung Ggmbh Particle for recovering an anion from an aqueous solution
CN104258807A (zh) * 2014-10-13 2015-01-07 中国环境科学研究院 一种磁性纳米材料固相萃取剂及其制备方法、用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101485973B (zh) * 2009-01-07 2011-05-18 中国科学院生态环境研究中心 海藻酸聚合物包覆的Fe3O4@C18磁性纳米固相萃取剂的制备及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626762A (en) * 1995-02-13 1997-05-06 Uop Separations by simulated moving bed chromatography operating at low K' values using weakly interating adsorbents as the stationary phase
CN101130157A (zh) * 2007-07-19 2008-02-27 中国科学院生态环境研究中心 混合胶束核壳式Fe3O4/SiO2磁性纳米固相萃取剂的制备及应用
WO2014037172A1 (en) * 2012-09-07 2014-03-13 Baden-Wuerttemberg Stiftung Ggmbh Particle for recovering an anion from an aqueous solution
CN103242802A (zh) * 2013-05-16 2013-08-14 南京航空航天大学 吸波性能可调的空心Fe/Fe3O4@SiO2纳米结构的制备方法
CN104258807A (zh) * 2014-10-13 2015-01-07 中国环境科学研究院 一种磁性纳米材料固相萃取剂及其制备方法、用途

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111330555A (zh) * 2020-03-13 2020-06-26 天津迪沃特生物电子科技有限公司 一种具有磁性的核壳式介孔硅胶材料及其制备方法和应用
CN111408347A (zh) * 2020-04-24 2020-07-14 杭州楚环科技股份有限公司 一种新型Fe3O4@SiO2@ESM介孔材料的制备方法及其应用
CN111398392A (zh) * 2020-05-18 2020-07-10 河南工业大学 一种基于金属离子依赖性dna酶用于检测邻苯二甲酸二丁酯的电化学免疫传感器制备方法
CN111398392B (zh) * 2020-05-18 2022-04-26 河南工业大学 一种基于金属离子依赖性dna酶用于检测邻苯二甲酸二丁酯的电化学免疫传感器制备方法
CN111638198A (zh) * 2020-05-30 2020-09-08 重庆西南果品营养研究院 一种水果中痕量硒的富集测定方法
CN111638198B (zh) * 2020-05-30 2023-11-24 重庆西南果品营养研究院 一种水果中痕量硒的富集测定方法
CN111792909B (zh) * 2020-06-18 2022-03-15 太原理工大学 一种磁性硅柱撑层状粘土球团的制备方法及应用
CN111792909A (zh) * 2020-06-18 2020-10-20 太原理工大学 一种磁性硅柱撑层状粘土球团的制备方法及应用
CN112108120B (zh) * 2020-09-22 2023-07-25 宁夏医科大学 磁性层状双氢氧化物-金属有机骨架物复合材料及其制备方法和应用
CN112892469A (zh) * 2021-01-21 2021-06-04 沈阳工业大学 一种稳定的Fe3O4@SiO2磁性微球溶液的制备方法
CN112892469B (zh) * 2021-01-21 2023-05-09 沈阳工业大学 一种稳定的Fe3O4@SiO2磁性微球溶液的制备方法
CN113358800A (zh) * 2021-05-26 2021-09-07 吉林化工学院 一种磁性氮掺杂碳材料及其对塑料瓶装水中邻苯二甲酸酯萃取及分析的方法
CN113351169A (zh) * 2021-06-23 2021-09-07 中国农业科学院蔬菜花卉研究所 一种磁性MOFs/纳米金复合材料及其制备方法和应用
CN113351169B (zh) * 2021-06-23 2023-03-14 中国农业科学院蔬菜花卉研究所 一种磁性MOFs/纳米金复合材料及其制备方法和应用
CN113717337B (zh) * 2021-08-30 2023-08-25 山东省分析测试中心 磁性氟化共价有机框架材料及其制备方法和应用
CN113717337A (zh) * 2021-08-30 2021-11-30 山东省分析测试中心 磁性氟化共价有机框架材料及其制备方法和应用
CN113926426A (zh) * 2021-11-11 2022-01-14 东莞理工学院 一种功能化介孔炭吸附废水中邻苯二甲酸酯污染物的方法
CN114113382B (zh) * 2021-11-16 2024-05-10 哈尔滨工业大学 一种双孔径磁性材料在分析水中有机氯农药中的应用
CN114113382A (zh) * 2021-11-16 2022-03-01 哈尔滨工业大学 一种双孔径磁性材料的制备方法及其在分析和去除水中有机氯农药的应用
CN114160135A (zh) * 2021-11-27 2022-03-11 郑州轻工业大学 磁性Fe3O4复合纳米材料的制备方法
CN114160135B (zh) * 2021-11-27 2023-10-31 郑州轻工业大学 磁性Fe3O4复合纳米材料的制备方法
CN114146695A (zh) * 2021-12-17 2022-03-08 中国地质大学(武汉) 一种邻苯二甲酸酯类磁性分子印记聚合物萃取材料的制备方法
CN114307974A (zh) * 2021-12-31 2022-04-12 甘肃中商食品质量检验检测有限公司 一种新型磁性介孔复合材料、制备方法及应用
CN114870807A (zh) * 2022-04-25 2022-08-09 天津国科医工科技发展有限公司 离子化磁性微球材料
CN114870807B (zh) * 2022-04-25 2024-06-07 天津国科医疗科技发展有限公司 离子化磁性微球材料
CN114984243A (zh) * 2022-05-30 2022-09-02 常州工业职业技术学院 一种磁性纳米抗生素复合粒子及其制备方法和应用
CN115290416A (zh) * 2022-09-26 2022-11-04 宁德厦钨新能源材料有限公司 磁性颗粒清洁度测试方法
CN115518621A (zh) * 2022-09-28 2022-12-27 中国科学院兰州化学物理研究所 一种玉米棒状金属有机骨架材料镶嵌金属氧化物碳材料的制备及应用

Also Published As

Publication number Publication date
CN104258807A (zh) 2015-01-07
CN104258807B (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
WO2016058561A1 (zh) 一种磁性纳米材料固相萃取剂及其制备方法、用途
Yang et al. Fabrication of core-shell Fe3O4@ MIL-100 (Fe) magnetic microspheres for the removal of Cr (VI) in aqueous solution
Zhang et al. Preparation of carbon coated Fe3O4 nanoparticles and their application for solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples
Zhao et al. Surfactant-modified flowerlike layered double hydroxide-coated magnetic nanoparticles for preconcentration of phthalate esters from environmental water samples
Zhou et al. A solvothermal method to produce RGO-Fe3O4 hybrid composite for fast chromium removal from aqueous solution
Li et al. Fabrication of mesoporous Fe3O4@ SiO2@ CTAB–SiO2 magnetic microspheres with a core/shell structure and their efficient adsorption performance for the removal of trace PFOS from water
CN105148852B (zh) 一种巯基改性磁性MOFs吸附剂及其制备方法和应用
Han et al. Facile and tunable fabrication of Fe3O4/graphene oxide nanocomposites and their application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples
Liu et al. Hemimicelles/admicelles supported on magnetic graphene sheets for enhanced magnetic solid-phase extraction
Zhang et al. Ultra high adsorption capacity of fried egg jellyfish-like γ-AlOOH (Boehmite)@ SiO2/Fe3O4 porous magnetic microspheres for aqueous Pb (II) removal
Wang et al. Hydrothermal synthesis of hierarchical core–shell manganese oxide nanocomposites as efficient dye adsorbents for wastewater treatment
Aliyari et al. Modified surface-active ionic liquid-coated magnetic graphene oxide as a new magnetic solid phase extraction sorbent for preconcentration of trace nickel
Song et al. Removal and recovery of mercury from aqueous solution using magnetic silica nanocomposites
Sui et al. Polyethylenimine modified magnetic graphene oxide nanocomposites for Cu 2+ removal
Ding et al. A type of raspberry-like silica composite with tunable nickel nanoparticles coverage towards nanocatalysis and protein adsorption
Banaei et al. Synthesis and characterization of new modified silica coated magnetite nanoparticles with bisaldehyde as selective adsorbents of Ag (I) from aqueous samples
Zhang et al. Oriented-assembly of hierarchical Fe3O4@ CuSiO3 microchains towards efficient separation of histidine-rich proteins
Zhang et al. Preparation of magnetic carbon nanotubes with hierarchical copper silicate nanostructure for efficient adsorption and removal of hemoglobin
Ling et al. Formation of uniform magnetic C@ CoNi alloy hollow hybrid composites with excellent performance for catalysis and protein adsorption
Zhang et al. Facile construction of dual functional Fe3O4@ C-MoO2-Ni composites for catalysis and adsorption
Zhang et al. Facile synthesis of sea urchin-like magnetic copper silicate hollow spheres for efficient removal of hemoglobin in human blood
Zhang et al. Magnetic carbon-coated palygorskite loaded with cobalt nanoparticles for Congo Red removal from waters
Wu et al. A green-chemical synthetic route to fabricate a lamellar-structured Co/Co (OH) 2 nanocomposite exhibiting a high removal ability for organic dye
Cao et al. Green synthesis and surface properties of Fe3O4@ SA core–shell nanocomposites
Pan et al. In situ controllable synthesis of graphene oxide-based ternary magnetic molecularly imprinted polymer hybrid for efficient enrichment and detection of eight microcystins

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15851226

Country of ref document: EP

Kind code of ref document: A1