CN113930073B - 一种极超高温聚酰亚胺导热绝缘材料及其制备方法 - Google Patents

一种极超高温聚酰亚胺导热绝缘材料及其制备方法 Download PDF

Info

Publication number
CN113930073B
CN113930073B CN202111284133.2A CN202111284133A CN113930073B CN 113930073 B CN113930073 B CN 113930073B CN 202111284133 A CN202111284133 A CN 202111284133A CN 113930073 B CN113930073 B CN 113930073B
Authority
CN
China
Prior art keywords
insulating material
parts
heat
polyimide
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111284133.2A
Other languages
English (en)
Other versions
CN113930073A (zh
Inventor
熊需海
王静
陈平
张承双
李桂洋
任荣
姚健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Aerospace University
Original Assignee
Shenyang Aerospace University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Aerospace University filed Critical Shenyang Aerospace University
Priority to CN202111284133.2A priority Critical patent/CN113930073B/zh
Publication of CN113930073A publication Critical patent/CN113930073A/zh
Application granted granted Critical
Publication of CN113930073B publication Critical patent/CN113930073B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08L79/085Unsaturated polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • C08K2003/2213Oxides; Hydroxides of metals of rare earth metal of cerium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/282Binary compounds of nitrogen with aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Abstract

一种极超高温聚酰亚胺导热绝缘材料及其制备方法,属于高分子材料领域。该极超高温聚酰亚胺导热绝缘材料,包括的原料及其质量份数为:可反应型聚酰亚胺树脂:100份;导热填料:5~20份;修复剂:3~5份;防老剂:0.5~3份;活性稀释剂:1~10份。极超高温聚酰亚胺导热绝缘材料的制备方法,是以可反应型聚酰亚胺树脂为基料,加入导热填料、修复剂、防老剂和活性稀释剂,采用熔融共混工艺制备改性树脂体系,经程序控温固化获得玻璃化转变温度大于350℃、初始热分解温度大于500℃、导热系数大于0.3W/m.K,电击穿强度大于80kV/mm,热膨胀系数小于40PPM/℃的绝缘材料体系,优异性能满足特种电机定子电磁线绕组密封绝缘的使用要求,在稠油热采技术领域具有广泛应用前景。

Description

一种极超高温聚酰亚胺导热绝缘材料及其制备方法
技术领域
本发明属于高分子材料技术领域,具体涉及到一种极超高温聚酰亚胺导热绝缘材料及其制备方法。
背景技术
耐高温绝缘材料是高性能新型电机研发的关键核心技术,特别是在一些特殊应用环境的电机,其对耐高温绝缘材料提出了更高的要求;比如稠油开采领域,潜油电泵工作环境须耐受高温高压蒸汽,表面温度高达370℃,远远超过了传统的绝缘材料的耐热等级。美国Baker Hughes公司是世界高温潜油电泵研发的领导者,相继研发了四代高温潜油电泵并提出了耐温等级的划分标准,标准温度(120℃)、高温(163℃,第一代)、极端高温(220℃,第二代)、超高温(250℃,第三代)、超超高温(275℃,第四代);俄罗斯Novomet公司最近报道研制出耐300℃高温的潜油电泵;上述耐高温潜油电泵的耐热等级均不能满足超深井稠油开采所面临的临界状态水蒸汽极超高温的注入环境工况。
高性能聚酰亚胺(PI)树脂是耐热等级最高的有机高分子材料之一,热分解温度通常大于500℃。采用电磁线PI薄膜绕包技术是解决耐高温潜油电机绝缘系统最有效的方法,耐200~300℃高精密电机的定子电磁线绕组通常都采用聚酰亚胺薄膜绕包线。然而,PI薄膜不熔不溶,不能形成连续密封的绝缘层;必须在PI薄膜一面或两面涂覆氟46(F46)树脂、聚醚醚酮(PEEK)树脂等作为粘合剂,形成了PI复合薄膜;在高温烧结过程中,F46或PEEK熔化将绕包层粘结成为连续密封的整体绝缘结构。F46树脂和PEEK树脂的熔融温度分别为约260℃和343℃,当使用环境温度大于它们熔融温度时就失去粘性,导致绝缘结构整体性下降。改进措施是在PI绕包线绕组表面浸渍PI漆膜,提升绝缘结构的整体性和绝缘等级。应用实践表明,PI漆膜长期耐受高温过程中会逐渐脆化丧失韧性;在振动、冷热交替等外力作用下出现微裂纹损伤进而碎片化剥落,影响绝缘系统的可靠性和耐久性;另外,浸渍工艺挥发大量溶剂,环境污染严重;浸漆后定子内部仍存在大量空隙,散热效果差。树脂灌注密封工艺,能够完全填充定子内部的空隙,显著提高绕组绝缘的整体性和定子导热散热效果。商品化的环氧树脂胶和有机硅树脂胶是常规潜油电机、牵引电机广泛采用的灌封绝缘材料;然而,两类灌封胶的耐热等级较低,只能在低于250℃温度条下使用。由于在250℃以上,有机材料的热氧老化失效加剧,绝大多少有机碳骨架分子链发生热解并逐步气化;因此,目前国内外尚没有关于耐热性达300℃以上极超高温灌封绝缘材料的报道。
发明内容
本发明要解决的技术问题是提供一种极超高温聚酰亚胺导热绝缘材料及其制备方法;即以可反应型聚酰亚胺树脂为基料,加入导热填料、修复剂、防老剂和活性稀释剂,采用熔融共混工艺制备改性树脂体系,经程序控温固化获得玻璃化转变温度大于350℃、初始热分解温度大于500℃的绝缘材料体系。
本发明提供的一种极超高温聚酰亚胺导热绝缘材料,包括的原料及各个原料的质量份数为:
可反应型聚酰亚胺树脂:100份;导热填料:5~20份;修复剂:3~5份;防老剂:0.5~3份;活性稀释剂:1~10份。
所述的可反应型聚酰亚胺树脂为乙炔基封端的聚酰亚胺齐聚物、苯乙炔基封端的聚酰亚胺齐聚物中的一种或混合物;
所述的可反应型聚酰亚胺树脂的结构式为:
其中n为0~5之间的整数,R=-H或
结构中的一种或几种的组合;
结构中的一种或几种的组合;
所述的导热填料选用微米和/或纳米级导热填料,导热填料选用氧化铝粉末、氧化镁粉末、氧化锌粉末、氮化铝粉末、氮化硼粉末、碳化硅粉末中的一种或几种的混合物。
所述的修复剂选用微米级聚醚醚酮微粒,微米级聚醚酮酮微粒、微米级聚芳醚腈微粒中的一种或几种的混合物。
所述的防老剂选用镧系稀土氧化物中的一种或几种的混合物。
所述的活性稀释剂选用乙炔基和/或苯乙炔基封端的单官能团化合物中的一种或几种的混合物;所述的活性稀释剂的结构式为:
其中,R=-H或
结构中的一种。
本发明提供一种极超高温聚酰亚胺导热绝缘材料的制备方法,包括以下步骤:
步骤1:按极超高温聚酰亚胺导热绝缘材料的原料和配比,准备原料;将原料加入密闭耐压釜中搅拌均匀,得到混合粉料;
步骤2:将混合粉料加热至200~300℃熔融并抽真空脱泡20~60min,制得灌注树脂胶;
步骤3:将灌注树脂胶进行多阶段梯度升温程序固化,得到极超高温聚酰亚胺导热绝缘材料。
所述的多阶段梯度升温程序固化为在250~380℃之间,进行2~4梯度升温,优选为3梯度,每个梯度保温1~3h,更优选的多阶段梯度升温程序固化工艺为:250~300℃/1h+310~350℃/2h+360~380℃/2h。
所述的极超高温聚酰亚胺导热绝缘材料,其玻璃化转变温度大于350℃、初始热分解温度大于500℃,导热系数大于0.3W/m.K,电击穿强度大于80kV/mm,热膨胀系数小于40PPM/℃。
本发明的一种极超高温聚酰亚胺导热绝缘材料及其制备方法,其有益效果为:
1)可反应型聚酰亚胺树脂和活性稀释剂的分子结构均由芳杂环结构、醚键和含氟基团等构成,保证绝缘材料具有优异的高温热氧/热稳定性。
2)极超高温聚酰亚胺导热绝缘材料的基料采用乙炔基和/或苯乙炔基封端的齐聚物,在一定温度下能够熔化为低粘度的液体树脂,具备可灌注特性;固化机理为不饱和键的加聚反应、不产生小分子,能够形成致密的固化网络;固化物的固化物的玻璃化转变温度大于350℃,初始热分解温度大于500℃;这些特性赋予绝缘材料优异的力学性能、导热性能和绝缘性能。
3)导热填料的加入,提升了绝缘材料的导热性能,消除了局部热量集聚的突变高温对树脂基体热稳定性的消极影响;导电填料为无机物,能够降低绝缘材料的热膨胀系数。
4)稀土防老剂的加入能够捕捉有机材料热氧老化过程形成的自由基、抑制降解反应,提升绝缘材料的热氧老化性能;同时与导热填料协同,能够增强绝缘材料的导热性和力学性能。
5)微米级聚醚醚酮实心微球在350℃为粘稠液体,在毛细效应作用下能够渗透填充固化网络中因老化、疲劳产生的微裂纹,抵御高温热氧腐蚀性介质向固化网络内部迁移,降低热氧降解速率,提升绝缘材料的使用寿命。
6)活性稀释剂为芳杂环结构低熔点小分子化合物,与可反应型聚酰亚胺树脂具有相同的官能团、反应活性类似,其加入能够明显降低可反应型聚酰亚胺树脂的熔融温度和熔融粘度、改善了绝缘材料工艺性能;同时,不影响绝缘材料的固化工艺、不降低绝缘材料的耐热等级。
7)本发明的制备方法主要采用熔融共混工艺,不产生有毒有害的废弃物,绿色高效。本发明的绝缘材料的固化物耐热性性能优异,本发明各种性能满足特种电机定子电磁线绕组密封绝缘的使用要求,在稠油热采技术领域具有广泛应用前景。
附图说明
图1为本发明实施例1制备的极超高温聚酰亚胺导热绝缘材料的DMA曲线(升温速率为5℃/min)。
具体实施方式
以下结合技术方案,进一步说明本发明的具体实施方式。
以下实施例中,可反应型聚酰亚胺树脂采用通用的聚酰亚胺两步法合成工艺;首先芳香族二酐、芳香族二胺和封端剂在N,N-二甲基乙酰胺极性溶剂中反应生成聚酰胺酸,然而在乙酸酐脱水剂的作用下发生酰亚胺环化反应生成可反应型聚酰亚胺。
以下实施例中,活性稀释剂采用与可反应型聚酰亚胺树脂相同的合成工艺制备。
实施例1
一种极超高温聚酰亚胺导热绝缘材料的制备方法,包括以下步骤:
将100份由2,3',3,4'-联苯四羧酸二酐、对苯二胺、苯基乙炔基苯酐合成的可反应型聚酰亚胺树脂、10份微米级氮化硼粉末、3份微米级PEEK颗粒、1份三氧化二镧、5份由苯基乙炔基苯酐和苯胺合成的活性稀释剂加入密闭耐压釜中搅拌均匀,将混合粉料加热至300℃,搅拌抽真空脱气30min,得到灌注树脂胶;
将灌注树脂胶倒入模具中,在300℃/1h+350℃/2h+380℃/2h的多阶段梯度升温程序固化,得到极超高温聚酰亚胺导热绝缘材料的固化物。极超高温聚酰亚胺导热绝缘材料的固化物的DMA曲线见图1,极超高温聚酰亚胺导热的固化物的玻璃化转变温度411℃,初始热分解温度545℃,导热系数为0.42W/m.K,电击穿强度为100kV/mm,热膨胀系数为24PPM/℃。
其中,本实施例采用的可反应型聚酰亚胺树脂的结构式为:
采用的活性稀释剂的结构式为:
实施例2
一种极超高温聚酰亚胺导热绝缘材料的制备方法,包括以下步骤:
将100份(按质量份数)由3,3',4,4'-联苯四羧酸二酐、4,4'-二氨基二苯醚、苯基乙炔基苯酐合成的可反应型聚酰亚胺树脂、5份微米级氮化硼粉末、3份微米级PEEK颗粒、1份三氧化二镧、5份由苯基乙炔基苯酐和苯胺合成的活性稀释剂加入密闭耐压釜中搅拌均匀,加热至280℃,搅拌抽真空脱气60min,得到灌注树脂胶;将灌注树脂胶倒入模具中,按照280℃/1h+330℃/2h+370℃/2h的多阶段梯度升温程序固化,得到极超高温聚酰亚胺导热绝缘材料的固化物。极超高温聚酰亚胺导热绝缘材料的固化物的玻璃化转变温度390℃,初始热分解温度536℃,导热系数为0.35W/m.K,电击穿强度为85kV/mm,热膨胀系数为33PPM/℃。
其中,本实施例采用的可反应型聚酰亚胺树脂的结构式为:
采用的活性稀释剂的结构式为:
实施例3
一种极超高温聚酰亚胺导热绝缘材料的制备方法,包括以下步骤:
将100份由六氟异丙基邻苯二甲酸酐、间苯二胺、乙炔基苯酐合成的可反应型聚酰亚胺树脂、10份微米级氮化硼粉末和5份微米级氧化铝粉末、5份微米级PEEK颗粒、0.5份三氧化二镧、5份由乙炔基苯酐和1-萘胺合成的活性稀释剂加入密闭耐压釜中搅拌均匀,加热至200℃,搅拌抽真空脱气30min,得到灌注树脂胶;将灌注树脂胶倒入模具中,按照250℃/1h+310℃/2h+360℃/2h的升温程序固化,得到绝缘材料的固化物。固化物的玻璃化转变温度为376℃,初始热分解温度为516℃,导热系数为0.54W/m.K,电击穿强度为82kV/mm,热膨胀系数为38PPM/℃。
其中,本实施例采用的可反应型聚酰亚胺树脂的结构式为:
采用的活性稀释剂的结构式为:
实施例4
一种极超高温聚酰亚胺导热绝缘材料的制备方法,包括以下步骤:
准备原料:可反应型聚酰亚胺树脂:100份;纳米碳化硅粉末:10份;聚芳醚腈:4份;氧化铈:1份;活性稀释剂:1份;
本实施例采用的可反应型聚酰亚胺树脂的结构式为:
本实施例的活性稀释剂的结构式为:
将上述原料放在密闭耐压釜中搅拌混合均匀,加热至260℃熔融并抽真空脱泡40min,得到灌注树脂胶;将灌注树脂胶在300℃/1h+350℃/2h+380℃/2h的多阶段升温程序固化,得到极超高温聚酰亚胺导热绝缘材料的固化物。
实施例5
一种极超高温聚酰亚胺导热绝缘材料的制备方法,包括以下步骤:
准备原料:可反应型聚酰亚胺树脂:100份;纳米氧化铝粉末:5份,微米氮化铝粉末:5份;微米级聚醚醚酮微粒:2份,微米级聚醚酮酮微粒:2份;氧化钕:0.5份,三氧化二镧:0.5份;活性稀释剂:1份;
本实施例采用的可反应型聚酰亚胺树脂的结构式为:
本实施例的活性稀释剂的结构式为:
将上述原料放在密闭耐压釜中搅拌混合均匀,加热至260℃熔融并抽真空脱泡40min,得到灌注树脂胶;将灌注树脂胶在260℃/1h+320℃/2h+360℃/2h的多阶段升温程序固化,得到极超高温聚酰亚胺导热绝缘材料的固化物。
实施例6
一种极超高温聚酰亚胺导热绝缘材料的制备方法,包括以下步骤:
准备原料:可反应型聚酰亚胺树脂:100份;微米级氧化镁粉末:4份,微米级氧化锌粉末:10份;微米级聚醚酮酮微粒:3份;氧化铽:0.5份;活性稀释剂:10份;
本实施例采用的可反应型聚酰亚胺树脂为以下两种结构式的混合物,混合比例为1:1,具体的结构式为:
本实施例的活性稀释剂的结构式为:
将上述原料放在密闭耐压釜中搅拌混合均匀,加热至240℃熔融并抽真空脱泡20min,得到灌注树脂胶;将灌注树脂胶在290℃/1h+340℃/2h+360℃/2h的多阶段升温程序固化,得到极超高温聚酰亚胺导热绝缘材料的固化物。
实施例7
一种极超高温聚酰亚胺导热绝缘材料的制备方法,包括以下步骤:
准备原料:可反应型聚酰亚胺树脂:100份;微米级氧化镁粉末:4份,微米级氧化锌粉末:10份;微米级聚醚酮酮微粒:3份;三氧化二镧:0.5份;活性稀释剂:10份;
本实施例采用的可反应型聚酰亚胺树脂的结构式:
本实施例的活性稀释剂的结构式同实施例6。
将上述原料放在密闭耐压釜中搅拌混合均匀,加热至240℃熔融并抽真空脱泡40min,得到灌注树脂胶;将灌注树脂胶在280℃/1h+340℃/2h+360℃/2h的多阶段升温程序固化,得到极超高温聚酰亚胺导热绝缘材料的固化物。
实施例8
一种极超高温聚酰亚胺导热绝缘材料的制备方法,包括以下步骤:
准备原料:可反应型聚酰亚胺树脂:100份;微米级氧化镁粉末:4份,微米级氧化锌粉末:10份;微米级聚醚酮酮微粒:3份;氧化钕:0.5份;活性稀释剂:10份;
本实施例采用的可反应型聚酰亚胺树脂的结构式为:
本实施例的活性稀释剂的结构式同实施例6。
将上述原料放在密闭耐压釜中搅拌混合均匀,加热至240℃熔融并抽真空脱泡40min,得到灌注树脂胶;将灌注树脂胶在260℃/1h+350℃/2h+370℃/2h的多阶段升温程序固化,得到极超高温聚酰亚胺导热绝缘材料的固化物。
对比例1
一种聚酰亚胺材料,同实施例1,不同之处在于采用的活性稀释剂为N-苯基马来酰亚胺;当温度升至250℃时,N-苯基马来酰亚胺快速挥发,释放出刺激性气味,难以获得稳定的灌注树脂胶。
对比例2
一种聚酰亚胺材料,同实施例1,不同之处在于导热填料微米级氮化硼粉末的份数为25%,树脂预聚混合料粘度显著增加,流动性变差,难以满足灌注工艺的要求。

Claims (5)

1.一种极超高温聚酰亚胺导热绝缘材料,其特征在于,包括的原料及各个原料的质量份数为:
可反应型聚酰亚胺树脂:100份;导热填料:5~20份;修复剂:3~5份;防老剂:0.5~3份;活性稀释剂:1~10份;
所述的可反应型聚酰亚胺树脂为乙炔基封端的聚酰亚胺齐聚物、苯乙炔基封端的聚酰亚胺齐聚物中的一种或两者的混合物;
所述的可反应型聚酰亚胺树脂的结构式为:
其中n为0~5之间的整数,且n≠0,
结构中的一种或几种的组合;
结构中的一种或几种的组合;
所述的活性稀释剂选用乙炔基和/或苯乙炔基封端的单官能团化合物中的一种或几种的混合物;
所述的活性稀释剂的结构式为:
结构中的一种;
所述的导热填料选用微米和/或纳米级导热填料,导热填料选用氧化铝粉末、氧化镁粉末、氧化锌粉末、氮化铝粉末、氮化硼粉末、碳化硅粉末中的一种或几种的混合物;
所述的修复剂选用微米级聚醚醚酮微粒,微米级聚醚酮酮微粒、微米级聚芳醚腈微粒中的一种或几种的混合物;
所述极超高温为玻璃化转变温度大于350℃、初始热分解温度大于500℃。
2.根据权利要求1所述的极超高温聚酰亚胺导热绝缘材料,其特征在于,所述的防老剂选用镧系稀土氧化物中的一种或几种的混合物。
3.权利要求1~2任意一项所述的极超高温聚酰亚胺导热绝缘材料的制备方法,其特征在于,包括以下步骤:
步骤1:按极超高温聚酰亚胺导热绝缘材料的原料和配比,准备原料;将原料加入密闭耐压釜中搅拌均匀,得到混合粉料;
步骤2:将混合粉料加热至200~300℃熔融并抽真空脱泡20~60 min,制得灌注树脂胶;
步骤3:将灌注树脂胶进行多阶段梯度升温程序固化,得到极超高温聚酰亚胺导热绝缘材料。
4.根据权利要求3所述的极超高温聚酰亚胺导热绝缘材料的制备方法,其特征在于,所述的多阶段梯度升温程序固化为在250~380℃之间,进行2~4梯度升温,每个梯度保温1~3h。
5.根据权利要求3所述的极超高温聚酰亚胺导热绝缘材料的制备方法,其特征在于,所述的极超高温聚酰亚胺导热绝缘材料,其导热系数大于0.3 W/m.K,电击穿强度大于80 kV/mm,热膨胀系数小于40 PPM/℃。
CN202111284133.2A 2021-11-01 2021-11-01 一种极超高温聚酰亚胺导热绝缘材料及其制备方法 Active CN113930073B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111284133.2A CN113930073B (zh) 2021-11-01 2021-11-01 一种极超高温聚酰亚胺导热绝缘材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111284133.2A CN113930073B (zh) 2021-11-01 2021-11-01 一种极超高温聚酰亚胺导热绝缘材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113930073A CN113930073A (zh) 2022-01-14
CN113930073B true CN113930073B (zh) 2024-02-06

Family

ID=79285235

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111284133.2A Active CN113930073B (zh) 2021-11-01 2021-11-01 一种极超高温聚酰亚胺导热绝缘材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113930073B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113674992A (zh) * 2021-08-30 2021-11-19 西安微电子技术研究所 一种使用导热胶料浸渍绕制件的工艺方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4098767A (en) * 1974-11-25 1978-07-04 Hughes Aircraft Company Copolymers of ethynyl terminated polyimides and diethynylbenzene
CN105504282A (zh) * 2016-01-11 2016-04-20 东华大学 一种芴基Cardo型聚酰亚胺稀释剂及其制备方法和应用
CN105646986A (zh) * 2016-03-01 2016-06-08 西南科技大学 一种具有三维隔离结构的导热绝缘高分子复合材料及其制备方法
CN109928907A (zh) * 2019-02-20 2019-06-25 上海交通大学 一种具有优异加工性和耐高温的活性稀释剂及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1314760A4 (en) * 2000-08-29 2004-11-10 Otsuka Chemical Co Ltd RESIN COMPOSITION, MOLDED OBJECT MANUFACTURED FROM SUCH A COMPOSITION AND USE THEREOF

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4098767A (en) * 1974-11-25 1978-07-04 Hughes Aircraft Company Copolymers of ethynyl terminated polyimides and diethynylbenzene
CN105504282A (zh) * 2016-01-11 2016-04-20 东华大学 一种芴基Cardo型聚酰亚胺稀释剂及其制备方法和应用
CN105646986A (zh) * 2016-03-01 2016-06-08 西南科技大学 一种具有三维隔离结构的导热绝缘高分子复合材料及其制备方法
CN109928907A (zh) * 2019-02-20 2019-06-25 上海交通大学 一种具有优异加工性和耐高温的活性稀释剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Effect of Blending Modifications for Phenylethynyl-terminated Polyimides;Ping Yu et al.,;《Fibers and Polymers》;第21卷(第2期);第282-289页 *
Molecular design of interpenetrating fluorinated polyimide network with enhanced high performance for heat-resistant matrix;Dianrui Zhou et al;《Polymer》;第173卷;第66-79页 *

Also Published As

Publication number Publication date
CN113930073A (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
CN109913185B (zh) 一种含导热膜的多层结构导热复合材料及其制备方法
Lin et al. Epoxy thermoset resins with high pristine thermal conductivity
US5939472A (en) Epoxy resin composition for molding having improved mechanical properties and crack resistance
US2846599A (en) Electric motor components and the like and method for making the same
CN106281174B (zh) 一种高韧性、耐冲击、高柔性环氧灌封胶及其制备方法
CN113930073B (zh) 一种极超高温聚酰亚胺导热绝缘材料及其制备方法
CN105315454B (zh) 有机硅改性制备含硅双羟基聚苯醚的方法及产物的应用
JPH01144462A (ja) 多価フェノールポリシアネートエステルと熱可塑性ポリマーとのブレンド
CN108165220A (zh) 一种环氧灌封胶及其制备方法与其在核电设备上的应用
CN101499369A (zh) 用于干式电力变压器的材料及其使用方法
CN112029241A (zh) 一种低介电耐高温苯并环丁烯树脂复合材料的制备方法
CN113881190A (zh) 一种电力电子变压器封装用环氧树脂复合材料及制备方法
Luo et al. Dielectric and mechanical properties of diglycidyl ether of bisphenol a modified by a new fluoro‐terminated hyperbranched poly (phenylene oxide)
CN112745792A (zh) 一种高强度耐候性灌封胶的制备方法
CN112852369B (zh) 一种耐高温环氧胶黏剂及其制备方法
CN113402847A (zh) 一种低填充高导热聚合物复合材料及其制备方法
CN109825231B (zh) 一种阻燃抗紫外环氧包封胶及其制备方法
CN106633669A (zh) 一种制备覆铜板用低透射率的改性环氧树脂胶液及其制备方法
CN110184009A (zh) 一种环氧树脂基导热绝缘胶的制备方法
CN109337428A (zh) 一种耐高温聚酰亚胺绝缘浸渍漆及其制备方法和应用
Liu et al. Preparation and characterization of quartz‐fiber‐cloth‐reinforced, polymerization‐of‐monomer‐reactant‐type polyimide substrates with a high impact strength
CN114621726A (zh) 一种低密度超高流动性导热灌封胶及其制备方法
CN110628320A (zh) 小扁线专用聚酰胺酰亚胺漆包线绝缘漆及其制备方法
Chen et al. Thermally conductive, healable glass fiber cloth reinforced polymer composite based on β-hydroxyester bonds crosslinked epoxy with improved heat resistance
CN113861683A (zh) 高导热超耐高温灌封绝缘材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20240110

Address after: 110136, Liaoning, Shenyang moral and Economic Development Zone, No. 37 South Avenue moral

Applicant after: SHENYANG AEROSPACE University

Address before: 110000 Room 606, No. 39-1, Chuangxin Second Road, China (Liaoning) pilot Free Trade Zone, Hunnan District, Shenyang City, Liaoning Province

Applicant before: Liaoning Jingwei Technology Co.,Ltd.

GR01 Patent grant
GR01 Patent grant