CN113913857A - 一种Ni-Ni3C/NC核壳结构纳米材料电催化剂及其制备方法 - Google Patents

一种Ni-Ni3C/NC核壳结构纳米材料电催化剂及其制备方法 Download PDF

Info

Publication number
CN113913857A
CN113913857A CN202111114609.8A CN202111114609A CN113913857A CN 113913857 A CN113913857 A CN 113913857A CN 202111114609 A CN202111114609 A CN 202111114609A CN 113913857 A CN113913857 A CN 113913857A
Authority
CN
China
Prior art keywords
electrocatalyst
nano material
core
shell structure
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111114609.8A
Other languages
English (en)
Other versions
CN113913857B (zh
Inventor
高鹏
贾东梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Normal University
Original Assignee
Hangzhou Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Normal University filed Critical Hangzhou Normal University
Priority to CN202111114609.8A priority Critical patent/CN113913857B/zh
Publication of CN113913857A publication Critical patent/CN113913857A/zh
Application granted granted Critical
Publication of CN113913857B publication Critical patent/CN113913857B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及镍基电催化剂领域,为解决现有技术下用于电解析氢的镍基催化剂过电位较高,稳定性较差的问题,公开了一种Ni‑Ni3C/NC核壳结构纳米材料电催化剂及其制备方法,所述电催化剂为碳壳包覆Ni和Ni3C的纳米棒状材料,其由镍盐与氨三乙酸形成的前驱体煅烧所得。本发明制备的Ni‑Ni3C/NC核壳结构纳米材料电催化剂为棒状多孔纳米材料,其具有小的脱附孔径和大的比表面积,这使得电催化剂有较多的结合位点,因此具有优异的析氢性能,并且稳定性和电催化活性高,可运用于碱性介质的析氢反应中。本发明的制备方法具有步骤简单、反应条件温和的特点,制备成本低,可大规模工业化生产。

Description

一种Ni-Ni3C/NC核壳结构纳米材料电催化剂及其制备方法
技术领域
本发明涉及镍基电催化剂领域,尤其涉及一种Ni-Ni3C/NC核壳结构纳米材料电催化剂及其制备方法。
背景技术
基于环境污染和化石燃料资源日益减少的现实,氢作为一种零碳的可再生能源,被视为新能源发展的重要领域。氢能是一种二次能源,其主要生产方式是在电解槽中将水电化学分解成氢气和氧气。电催化析氢反应中,实现其产业化的关键是电催化剂的选择和制备。酸性介质有利于析氢反应,但酸性电解液产生的腐蚀性酸雾会污染析出的氢气,对电解槽造成严重的化学腐蚀,并且酸性介质的析氢反应只能使用如铂基催化剂及其衍生物一类的贵金属催化剂,因此制备成本较高。而低蒸气压和相对温和的化学环境的碱性电解质可以避免这些问题。来源广泛、价格低廉的镍可作为碱性水电解的电催化剂/电极。但镍基材料的过电位和稳定性限制了镍基催化材料的使用范围。如何改善镍基催化材料的电催化活性,是发展氢能源需要攻克的一道难题。
例如,在中国专利文献上公开的“一种超声法辅助制备交联结构超细Ni/N-C复合催化材料的方法及其应用”,其公告号为CN109267091A,所述制备方法包括将硝酸镍和硝酸锌溶于甲醇中,再加入2-甲基咪唑,将溶液超声得到交联结构Ni/ZIF-8双金属有机框架结构材料;再将交联结构Ni/ZIF-8双金属有机框架结构材料置于瓷舟内,碳化,稀盐酸浸泡得到交联结构超细Ni/N-C复合催化材料。该发明制备得到的催化材料为交联结构,其比表面积小于纳米棒状或球状催化剂,并且该催化剂用于电催化还原二氧化碳,不适用于在碱性介质中电催化析氢。
发明内容
本发明为了克服现有技术下用于电解析氢的镍基催化剂过电位较高,稳定性较差的问题,提供一种Ni-Ni3C/NC核壳结构纳米材料电催化剂及其制备方法,Ni-Ni3C/NC核壳结构纳米材料电催化剂中含氮的碳壳包覆了Ni和Ni3C,隔绝了Ni和Ni3C与空气或碱性介质直接接触,稳定性好,其多孔纳米棒的结构,比表面积高,电催化活性好,并且制备步骤简单,成本低。
为了实现上述目的,本发明采用以下技术方案:
一种Ni-Ni3C/NC核壳结构纳米材料电催化剂,所述电催化剂为碳壳包覆Ni和Ni3C的纳米棒状材料,其由镍盐与氨三乙酸形成的前驱体煅烧所得。
在碱性介质的电解反应中,H2O吸附在催化剂表面然后分解成氢中间体和OH-,氢中间体相互结合生成氢气,因此,氢中间体的吸附和OH-的解吸过程会影响电解析氢的反应速率。镍的H原子结合能与铂相近,但其催化活性比铂差得多,这是因为而镍对OH-的解吸性能较差,这导致镍吸附的OH-阻断了镍对氢中间体的活性催化位点,从而降低了催化活性。而Ni3C的表面缺乏氢中间体吸附位点,因此催化活性也较差。本发明中,Ni-Ni3C纳米界面是电催化剂对电解析氢反应的协同活性位点,由于Ni2+局部带正电,有强静电亲和力,并且 Ni2+比Ni原理有更多的未填满的d轨道,H2O电解产生的OH-被优先吸附在Ni-Ni3C界面的 Ni3C一侧,而Ni对氢中间体吸附性能好,因此Ni-Ni3C之间的纳米界面对析氢的催化活性较好于镍或NiC。碳壳包覆Ni-Ni3C的结构能够隔绝内核金属粒子与空气接触,并阻止金属粒子相互作用而团聚到一起,提高了电催化剂的催化活性和稳定性。
一种Ni-Ni3C/NC核壳结构纳米材料电催化剂的制备方法,所述制备方法包括以下步骤:
(1)将镍盐溶于水中,形成第一溶液;
(2)将氨三乙酸和异丙醇加入到第一溶液中,形成第二溶液;
(3)将第二溶液搅拌后加热,然后冷却至室温得到沉淀,将沉淀洗涤干燥得到前驱体;
(4)将前驱体在惰性气体保护下锻烧得到Ni-Ni3C/NC核壳结构纳米材料电催化剂。
镍离子与氨三乙酸结合形成前驱体,然后前驱体在惰性气体中煅烧得到Ni-Ni3C/NC 核壳结构纳米材料电催化剂,反应中氨三乙酸可为催化剂提供C及N。在煅烧过程中,可通过控制温度及时间调控电催化剂的形貌。
作为优选,所述步骤(1)中,镍盐为硝酸镍、氯化镍、硫酸镍中的一种或几种。
作为优选,所述步骤(1)的第一溶液中镍盐的浓度为0.2~0.35mol/L。
作为优选,所述步骤(2)中异丙醇与步骤(1)中水的体积比为(2~2.5):1。
作为优选,所述步骤(2)中,氨三乙酸与异丙醇的加入比例为(0.12~0.25)g:10mL。
氨三乙酸的加入量较少时,煅烧后无法在Ni-Ni3C表面形成碳壳,而氨三乙酸的加入量较多会导致催化剂中的镍含量较少。
作为优选,所述步骤(3)中,加热过程为在180~200℃反应3~4h。
作为优选,所述步骤(3)中,干燥温度为60~80℃,干燥时间为10~20h。
作为优选,所述步骤(3)中,干燥过程在真空中进行。
真空干燥可充分除去前驱体中的气体成分,改善煅烧后催化剂的多孔形貌。
作为优选,所述步骤(4)中,煅烧温度为450~550℃,煅烧时间为1.5~2.5h。
煅烧温度会影响产物的最终形貌从而影响催化性能,当温度较低时,产物为块状且大小不均一,当温度较高时,产物断裂生成许多碎小的棒状结构。当煅烧温度为500℃时,可以得到长短和粗细较为均一的一维纳米棒结构。
因此,本发明具有如下有益效果:(1)本发明制备的Ni-Ni3C/NC核壳结构纳米材料电催化剂为棒状多孔纳米材料,其具有小的脱附孔径和大的比表面积,这使得电催化剂有较多的结合位点,因此具有优异的析氢性能;(2)本发明制备的电催化剂运用于碱性介质的析氢反应中时,稳定性和电催化活性高;(3)本发明的制备方法具有步骤简单、反应条件温和的特点,制备成本低,可大规模工业化生产。
附图说明
图1是实施例1的XRD测试图。
图2是实施例1的SEM图。
图3是实施例2的SEM图。
图4是实施例3的SEM图。
图5是对比例1的SEM图。
图6是对比例2的SEM图。
具体实施方式
下面结合附图与具体实施方法对本发明做进一步的描述。
实施例1
称取0.46g的六水合硝酸镍,溶于10mL蒸馏水中搅拌,待其完全溶解后,缓慢加入0.4g氨三乙酸和30mL异丙醇直至完全溶解。然后将溶液转移到高压反应釜中,然后置于电热恒温鼓风干燥箱190℃中反应8h,之后冷却至室温。将收集到的浅绿色沉淀经去离子水和无水乙醇多次洗涤离心分离以除去溶液中的杂质离子,最后在70℃真空条件下烘干12h得到前驱体。将前驱体置于在管式炉里在氩气的保护下锻烧2小时,煅烧温度为500℃,冷却后得到最终产物。
实施例2
称取0.75g的六水合氯化镍,溶于10mL蒸馏水中搅拌,待其完全溶解后,缓慢加入0.4g氨三乙酸和30mL异丙醇直至完全溶解。然后将溶液转移到高压反应釜中,然后置于电热恒温鼓风干燥箱190℃中反应8h,之后冷却至室温。将收集到的浅绿色沉淀经去离子水和无水乙醇多次洗涤离心分离以除去溶液中的杂质离子,最后在70℃真空条件下烘干12h得到前驱体。将前驱体置于在管式炉里在氩气的保护下锻烧2小时,煅烧温度为450℃,冷却后得到最终产物。
实施例3
称取0.75g的六水合氯化镍,溶于10mL蒸馏水中搅拌,待其完全溶解后,缓慢加入0.4g氨三乙酸和30mL异丙醇直至完全溶解。然后将溶液转移到高压反应釜中,然后置于电热恒温鼓风干燥箱190℃中反应8h,之后冷却至室温。将收集到的浅绿色沉淀经去离子水和无水乙醇多次洗涤离心分离以除去溶液中的杂质离子,最后在70℃真空条件下烘干12h得到前驱体。将前驱体置于在管式炉里在氩气的保护下锻烧2小时,煅烧温度为550℃,冷却后得到最终产物。
实施例4
称取0.75g的六水合氯化镍,溶于10mL蒸馏水中搅拌,待其完全溶解后,缓慢加入0.3g氨三乙酸和30mL异丙醇直至完全溶解。然后将溶液转移到高压反应釜中,然后置于电热恒温鼓风干燥箱中反应8h,之后冷却至室温。将收集到的浅绿色沉淀经去离子水和无水乙醇多次洗涤离心分离以除去溶液中的杂质离子,最后在70℃真空条件下烘干12h得到前驱体。将前驱体置于在管式炉里在氩气的保护下锻烧2小时,煅烧温度为500℃,冷却后得到最终产物。
实施例5
称取0.75g的六水合氯化镍,溶于10mL蒸馏水中搅拌,待其完全溶解后,缓慢加入0.5g氨三乙酸和30mL异丙醇直至完全溶解。然后将溶液转移到高压反应釜中,然后置于电热恒温鼓风干燥箱中反应8h,之后冷却至室温。将收集到的浅绿色沉淀经去离子水和无水乙醇多次洗涤离心分离以除去溶液中的杂质离子,最后在70℃真空条件下烘干12h得到前驱体。将前驱体置于在管式炉里在氩气的保护下锻烧2小时,煅烧温度为500℃,冷却后得到最终产物。
对比例1
称取0.46g的六水合硝酸镍,溶于10mL蒸馏水中搅拌,待其完全溶解后,缓慢加入0.4g氨三乙酸和30mL异丙醇直至完全溶解。然后将溶液转移到高压反应釜中,然后置于电热恒温鼓风干燥箱190℃中反应8h,之后冷却至室温。将收集到的浅绿色沉淀经去离子水和无水乙醇多次洗涤离心分离以除去溶液中的杂质离子,最后在70℃真空条件下烘干12h得到前驱体。将前驱体置于在管式炉里在氩气的保护下锻烧2小时,煅烧温度为400℃,冷却后得到最终产物。
对比例2
称取0.75g的六水合氯化镍,溶于10mL蒸馏水中搅拌,待其完全溶解后,缓慢加入0.4g氨三乙酸和30mL异丙醇直至完全溶解。然后将溶液转移到高压反应釜中,然后置于电热恒温鼓风干燥箱190℃中反应8h,之后冷却至室温。将收集到的浅绿色沉淀经去离子水和无水乙醇多次洗涤离心分离以除去溶液中的杂质离子,最后在70℃真空条件下烘干12h得到前驱体。将前驱体置于在管式炉里在氩气的保护下锻烧2小时,煅烧温度为600℃,冷却后得到最终产物。
对比例3
称取0.75g的六水合氯化镍,溶于10mL蒸馏水中搅拌,待其完全溶解后,缓慢加入0.2g氨三乙酸和30mL异丙醇直至完全溶解。然后将溶液转移到高压反应釜中,然后置于电热恒温鼓风干燥箱190℃中反应8h,之后冷却至室温。将收集到的浅绿色沉淀经去离子水和无水乙醇多次洗涤离心分离以除去溶液中的杂质离子,最后在70℃真空条件下烘干12h得到前驱体。将前驱体置于在管式炉里在氩气的保护下锻烧2小时,煅烧温度为500℃,冷却后得到最终产物。
对比例4
称取0.75g的六水合氯化镍,溶于10mL蒸馏水中搅拌,待其完全溶解后,缓慢加入0.8g氨三乙酸和30mL异丙醇直至完全溶解。然后将溶液转移到高压反应釜中,然后置于电热恒温鼓风干燥箱190℃中反应8h,之后冷却至室温。将收集到的浅绿色沉淀经去离子水和无水乙醇多次洗涤离心分离以除去溶液中的杂质离子,最后在70℃真空条件下烘干12h得到前驱体。将前驱体置于在管式炉里在氩气的保护下锻烧2小时,煅烧温度为500℃,冷却后得到最终产物。
采用三电极结构在CHI 660E电化学站上对上述实施例及对比例所得的电催化剂进行了电化学表征。铂网为对电极,汞/汞电极为参比电极,电催化剂为工作电极。在进行至少100 次循环伏安法(CV)循环活化和稳定后,以5mV/s的扫描速率和1600rpm的转速记录每个电催化剂的稳定极化曲线,并进行iR补偿。使用Ag/AgCl(饱和KCl)电极和石墨棒作为参比电极和对电极,而带有电催化剂的RDE作为工作电极。使用方程: ERHE=EHg/HgO+0.098+0.059×pH和过电位(η)将电势(EHg/HgO)校准到可逆氢电极 (RHE)通过:η(V)=ERHE-1.23V计算得出。电解液为1mol/L的KOH溶液,记录电流密度达到10mA/cm2、100mA/cm2时的过电位,结果如下表所示。
Figure BDA0003275090290000051
Figure BDA0003275090290000061
本发明所述的电催化剂有较低的过电位,因此其对电解析氢反应的催化性能良好。
对实施例1所得产物进行XRD测试,其检测结果如图1所示,实施例1制得的 Ni-Ni3C/NC纳米材料电催化剂具有良好的结晶度并且没有生成其他杂质,纯度较高。
实施例1-3和对比例1-2中煅烧温度分别为500℃、450℃、500℃、400℃和600℃,将实施例1-3和对比例1-2所得的产物用SEM扫描其形貌,结果分别如图2-6所示。实施例 1制备得到的Ni-Ni3C/NC纳米材料具有良好的微观形貌,为长短和粗细较为均一的一维纳米棒结构,纳米棒表面多孔;实施例2制备的Ni-Ni3C/NC纳米材料大小比较均一;实施例3制备的Ni-Ni3C/NC纳米材料的一维纳米棒结构也比较均一但出现断裂现象;对比例1制备的 Ni-Ni3C/NC纳米材料大小不均一,并且有一部分为块状结构;对比例2制备的Ni-Ni3C/NC 纳米材料在煅烧过程中发生断裂,生成了许多碎小的棒状结构。结合表中数据可知,Ni-Ni3C/NC纳米材料的一维纳米棒结构大小越均一,其催化性能越好,因此在本发明中煅烧温度会影响产物的最终形貌从而影响催化性能。当煅烧温度为450~550℃时,制备得到的 Ni-Ni3C/NC纳米材料催化性能好,其中500℃为最佳煅烧温度。
氨三乙酸的用量也会影响催化剂的性能。比较实施例1、实施例4、实施例5、对比例3和对比例4的数据可知,当氨三乙酸的用量会影响Ni与NiC的比例,进而影响催化剂的催化性能。对比例3的过电位较高,催化性能较差,这是因为当氨三乙酸的加入量过少时,煅烧后无法在Ni-Ni3C表面形成碳壳,金属粒子之间团聚并且反应时直接与溶液接触;而对比例4的催化性能也弱于实施例1、4和5,这是因为氨三乙酸的加入量过多会导致催化剂中的 Ni含量较少,无法形成足够多的Ni-Ni3C纳米界面作为催化活性位点。

Claims (10)

1.一种Ni-Ni3C/NC核壳结构纳米材料电催化剂,其特征是,所述电催化剂为碳壳包覆Ni和Ni3C的纳米棒状材料,其由镍盐与氨三乙酸形成的前驱体煅烧所得。
2.一种如权利要求1所述的Ni-Ni3C/NC核壳结构纳米材料电催化剂的制备方法,其特征是,所述制备方法包括以下步骤:
(1)将镍盐溶于水中,形成第一溶液;
(2)将氨三乙酸和异丙醇加入到第一溶液中,形成第二溶液;
(3)将第二溶液搅拌后加热,然后冷却至室温得到沉淀,将沉淀洗涤干燥得到前驱体;
(4)将前驱体在惰性气体保护下锻烧得到Ni-Ni3C/NC核壳结构纳米材料电催化剂。
3.根据权利要求2所述的一种Ni-Ni3C/NC核壳结构纳米材料电催化剂的制备方法,其特征是,所述步骤(1)中,镍盐为硝酸镍、氯化镍、硫酸镍中的一种或几种。
4.根据权利要求2所述的一种Ni-Ni3C/NC核壳结构纳米材料电催化剂的制备方法,其特征是,所述步骤(1)的第一溶液中镍盐的浓度为0.2~0.35 mol/L。
5.根据权利要求2所述的一种Ni-Ni3C/NC核壳结构纳米材料电催化剂的制备方法,其特征是,所述步骤(2)中异丙醇与步骤(1)中水的体积比为(2~2.5):1。
6.根据权利要求2或5所述的一种Ni-Ni3C/NC核壳结构纳米材料电催化剂的制备方法,其特征是,所述步骤(2)中,氨三乙酸与异丙醇的加入比例为(0.12~0.25)g:10 mL。
7.根据权利要求2所述的一种Ni-Ni3C/NC核壳结构纳米材料电催化剂的制备方法,其特征是,所述步骤(3)中,加热过程为在180~200℃反应3~4 h。
8.根据权利要求2所述的一种Ni-Ni3C/NC核壳结构纳米材料电催化剂的制备方法,其特征是,所述步骤(3)中,干燥温度为60~80℃,干燥时间为10~20 h。
9.根据权利要求2或8所述的一种Ni-Ni3C/NC核壳结构纳米材料电催化剂的制备方法,其特征是,所述步骤(3)中,干燥过程在真空中进行。
10.根据权利要求2所述的一种Ni-Ni3C/NC核壳结构纳米材料电催化剂的制备方法,其特征是,所述步骤(4)中,煅烧温度为450~550℃,煅烧时间为1.5~2.5 h。
CN202111114609.8A 2021-09-23 2021-09-23 一种Ni-Ni3C/NC核壳结构纳米材料电催化剂及其制备方法 Active CN113913857B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111114609.8A CN113913857B (zh) 2021-09-23 2021-09-23 一种Ni-Ni3C/NC核壳结构纳米材料电催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111114609.8A CN113913857B (zh) 2021-09-23 2021-09-23 一种Ni-Ni3C/NC核壳结构纳米材料电催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN113913857A true CN113913857A (zh) 2022-01-11
CN113913857B CN113913857B (zh) 2022-12-20

Family

ID=79235859

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111114609.8A Active CN113913857B (zh) 2021-09-23 2021-09-23 一种Ni-Ni3C/NC核壳结构纳米材料电催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN113913857B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110265678A (zh) * 2019-07-25 2019-09-20 河南师范大学 一种具有核壳结构的NiO@NC双功能电催化剂的制备方法及其应用
CN110350209A (zh) * 2019-07-25 2019-10-18 河南师范大学 一种具有核壳结构的NiO/C双功能电催化剂的制备方法及其应用
CN112705235A (zh) * 2019-10-24 2021-04-27 中国石油化工股份有限公司 碳包覆碳化镍的纳米复合材料及其制备方法和应用
CN112705237A (zh) * 2019-10-24 2021-04-27 中国石油化工股份有限公司 碳包覆碳化镍和镍的纳米复合材料及其制备方法和应用
CN112705236A (zh) * 2019-10-24 2021-04-27 中国石油化工股份有限公司 碳包覆碳化镍的纳米复合材料及其制备方法和应用
CN112853370A (zh) * 2020-12-10 2021-05-28 杭州师范大学 一种Ni/C核壳结构纳米材料电催化剂及其制备方法
CN112877711A (zh) * 2020-12-10 2021-06-01 杭州师范大学 一种Ni-NiO/C核壳结构纳米材料电催化剂及其制备方法
CN113181942A (zh) * 2021-04-26 2021-07-30 吉林化工学院 具有光催化性能的Ni/Ni3C/CdS纳米线催化剂制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110265678A (zh) * 2019-07-25 2019-09-20 河南师范大学 一种具有核壳结构的NiO@NC双功能电催化剂的制备方法及其应用
CN110350209A (zh) * 2019-07-25 2019-10-18 河南师范大学 一种具有核壳结构的NiO/C双功能电催化剂的制备方法及其应用
CN112705235A (zh) * 2019-10-24 2021-04-27 中国石油化工股份有限公司 碳包覆碳化镍的纳米复合材料及其制备方法和应用
CN112705237A (zh) * 2019-10-24 2021-04-27 中国石油化工股份有限公司 碳包覆碳化镍和镍的纳米复合材料及其制备方法和应用
CN112705236A (zh) * 2019-10-24 2021-04-27 中国石油化工股份有限公司 碳包覆碳化镍的纳米复合材料及其制备方法和应用
CN112853370A (zh) * 2020-12-10 2021-05-28 杭州师范大学 一种Ni/C核壳结构纳米材料电催化剂及其制备方法
CN112877711A (zh) * 2020-12-10 2021-06-01 杭州师范大学 一种Ni-NiO/C核壳结构纳米材料电催化剂及其制备方法
CN113181942A (zh) * 2021-04-26 2021-07-30 吉林化工学院 具有光催化性能的Ni/Ni3C/CdS纳米线催化剂制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DUCK HYUN YOUN等: ""Simple Synthesis of Nanostructured Sn/Nitrogen-Doped Carbon Composite Using Nitrilotriacetic Acid as Lithium Ion Battery Anode"", 《CHEMISTRY OF MATERIALS》 *
KELONG CHEN等: ""Modification of g-C3N4 quantum dots by Ni–Ni3C@C nanoparticles for hydrogen production"", 《JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS》 *

Also Published As

Publication number Publication date
CN113913857B (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
CN107008461B (zh) 蜂窝状大孔结构过渡金属基催化剂电极及其制备方法和应用
CN108315758B (zh) 一种电解水产氢催化剂及其制备方法
CN113437314B (zh) 氮掺杂碳负载低含量钌和Co2P纳米粒子的三功能电催化剂及其制备方法和应用
CN112458495B (zh) 一种钌基过渡金属氧化物固溶体的电催化剂及其制备方法和应用
CN112877725A (zh) 一种钌/氧化钌修饰的氮掺杂石墨烯三维复合材料及其制备方法和应用
CN111420651A (zh) 铋基电催化剂的制备方法及铋基电催化剂和应用
CN112830468B (zh) 一种高温氨处理获得富含拓扑缺陷的碳材料的制备方法及应用
CN110565113B (zh) 一种用于碱性电催化析氢的复合电催化材料的制备方法
CN114875442A (zh) 一种钌修饰的钼镍纳米棒复合催化剂及其制备方法和应用
CN115369422A (zh) 一种低铱电解水催化剂、其制备方法和应用
CN110306204B (zh) 一种掺杂银的层状氢氧化镍复合电极材料及其制备方法与应用
CN113512738B (zh) 三元铁镍钼基复合材料电解水催化剂、其制备方法和应用
CN112921351B (zh) 一种自支撑型催化电极的制备方法和应用
CN108707924B (zh) 硒化钌纳米粒子修饰TiO2纳米管阵列的析氢电催化剂、制备方法及应用
CN112023922B (zh) 一种Pt-MnO2材料及其制备方法和应用
CN110629248A (zh) 一种Fe掺杂Ni(OH)2/Ni-BDC电催化剂的制备方法
CN109994744B (zh) 一种促进硼氢化钠直接氧化的镍钴二元催化剂
CN113913857B (zh) 一种Ni-Ni3C/NC核壳结构纳米材料电催化剂及其制备方法
CN114560508B (zh) 一种用于超级电容器的复合催化剂及其制备方法和应用
CN113684499B (zh) 一种高金属负载效率的镍氮共掺杂炭基催化剂的制备方法及其应用
CN113802144A (zh) 单孔共价有机框架化合物与金属复合析氢催化剂的制备方法及应用
CN113802143A (zh) 多级孔共价有机框架化合物与金属复合析氢催化剂的制备方法及应用
Liu et al. Self‐supported bimetallic array superstructures for high‐performance coupling electrosynthesis of formate and adipate
CN115652357B (zh) 一种硫掺杂的钌酸钇及其制备方法和析氧反应电极
CN114318408B (zh) 一种自支撑Cu3P基异质结电催化剂及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant