CN113889603A - 一种钠离子电池正极材料及其制备方法 - Google Patents

一种钠离子电池正极材料及其制备方法 Download PDF

Info

Publication number
CN113889603A
CN113889603A CN202110040364.2A CN202110040364A CN113889603A CN 113889603 A CN113889603 A CN 113889603A CN 202110040364 A CN202110040364 A CN 202110040364A CN 113889603 A CN113889603 A CN 113889603A
Authority
CN
China
Prior art keywords
transition metal
nickel
sodium
hydroxide
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110040364.2A
Other languages
English (en)
Inventor
马紫峰
沈锐
车海英
廖建平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sodium Innovation Energy Co ltd
Original Assignee
Zhejiang Sodium Innovation Energy Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sodium Innovation Energy Co ltd filed Critical Zhejiang Sodium Innovation Energy Co ltd
Priority to CN202110040364.2A priority Critical patent/CN113889603A/zh
Publication of CN113889603A publication Critical patent/CN113889603A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明提供了一种钠离子电池正极材料及其制备方法。所述的钠离子电池正极材料包括嵌钠层状过渡金属氧化物,所述嵌钠层状过渡金属氧化物中掺杂有钾离子。本发明通过在合成钠离子正极材料过程中掺入钾离子,提高钠离子电池正极材料的循环稳定性。

Description

一种钠离子电池正极材料及其制备方法
技术领域
本发明涉及钠离子电池正极材料及其制备方法。
背景技术
钠离子电池以其高安全性、丰富的原材料以及低成本等特点成为了近年来电池技术的研发热点。钠离子电池潜在应用场景包括如低速电动车以及储能装置等。正极材料是钠离子电池的关键材料之一,其中层状结构过渡金属氧化物具有较高比容量以及其与目前市场上比较成熟的锂电池的正极材料在合成以及电池制造方面的许多类同性,是钠离子电池正极材料有潜力得到商业化生产的材料之一。
然而,层状结构过渡金属氧化物稳定性较差,在长循环和大电流充放电中容量衰减严重,即循环性能和倍率性能不能完全符合应用的要求。目前解决该问题主流的方法有两种:一是包覆隔离层,防止电解液与材料直接接触,例如氧化铝包覆和碳包覆;二是过渡金属元素掺杂,如钛、铝、锆等,通过掺杂改变材料本征稳定性。
但是,以上方法均会导致材料有效容量降低,前者减少了正极活性材料比例,后者掺杂元素通常为在工作电压下不表现电化学活性,不能提供容量。
发明内容
本发明所要解决的技术问题是提高钠离子电池正极材料的循环稳定性。本发明提供了钠离子电池正极材料及其制备方法。本发明的钠离子电池正极材料具有较高的循环稳定性。
为了解决上述技术问题,本发明采用了如下技术方案:
一种钠离子电池正极材料,其包括嵌钠层状过渡金属氧化物,所述嵌钠层状过渡金属氧化物中掺杂有钾离子。
本发明通过在所述的嵌钠层状过渡金属氧化物中掺杂钾离子,提高了钠离子电池正极材料的循环稳定性。所述的嵌钠层状过渡金属氧化物可为本领域常规的嵌钠层状过渡金属氧化物,其包括层状过渡金属氧化物,所述的层状过渡金属氧化物的层间嵌有钠离子。在充放电时,所述的钠离子可以脱出和嵌入。
其中,所述的钾离子与所述嵌钠层状过渡金属氧化物中的钠离子的摩尔比可为0.3-5.0:100;优选地,所述的钾离子与所述嵌钠层状过渡金属氧化物中的钠离子的摩尔比为0.7-3.8:100;更优选地,所述的钾离子与所述嵌钠层状过渡金属氧化物中的钠离子的摩尔比为1.9-2.7:100,例如2.0-2.6:100。最优选地,所述的钾离子与所述嵌钠层状过渡金属氧化物中的钠离子的摩尔比为2.3∶100。
其中,所述的嵌钠层状过渡金属氧化物中的层状过渡金属氧化物可为本领域常规的层状过渡金属氧化物,例如铜、镁、铬、钛、锡、钒、锌、钴、镍、铁和锰元素中至少一种或多种的氧化物,优选为镍、铁和锰元素中至少一种的层状氧化物,其中,镍、锰和铁元素的摩尔比可为x:y:z,其中,x+y+z=3,x≥0,y≥0,且z≥0,更优选为镍、铁和锰元素的复合层状氧化物。
其中,所述的嵌钠层状过渡金属氧化物中钠离子和氧元素的摩尔比可为本领域嵌钠层状过渡金属氧化物中的常规的钠离子和氧元素的摩尔比,例如0.8-1.1:2,例如1:2。
其中,当所述的嵌钠层状过渡金属氧化物中的层状过渡金属氧化物为镍、铁和锰元素的复合层状氧化物时,所述的镍、铁和锰元素的复合层状氧化物中镍、锰和铁元素的摩尔比优选为1:1:1。
其中,当所述的嵌钠层状过渡金属氧化物中的层状过渡金属氧化物为镍、铁和锰元素的复合层状氧化物时,所述嵌钠层状过渡金属氧化物中的钠离子与所述镍元素的摩尔比为1.25-6:1,例如2-4:1,又例如3:1。
其中,所述的钠离子电池正极材料的平均粒径为1-15微米,例如4-12微米。
本发明还提供了上述的钠离子电池正极材料的制备方法,其包括:将前驱体、钠源和钾源的混合物进行煅烧,得到钠离子电池正极材料;其中,所述的前驱体为过渡金属元素的氢氧化物、过渡金属元素的碳酸盐、单一过渡金属元素的氧化物或两种以上单一过渡金属元素的氧化物的混合物。
本发明中,所述的钠源可为本领域中掺杂钠所用的常规钠源,优选碳酸钠或氢氧化钠。所述的钾源可为本领域中掺杂钾所用的常规钾源,优选碳酸钾或氢氧化钾。所述的过渡金属氢氧化物可为本领域常规的过渡金属氢氧化物,只要其煅烧后可形成层状过渡金属氧化物即可。例如当所述的前驱体为过渡金属元素的氢氧化物时,所述的过渡金属元素的氢氧化物为铜、镁、铬、钛、锡、钒、锌、钴、镍、铁和锰元素中的一种的氢氧化物或其中两种以上的复合氢氧化物,例如镍、铁和锰元素中的一种的氢氧化物或其中两种以上的复合氢氧化物,又例如镍(二价)、亚锰(二价)和亚铁(二价)中的一种的氢氧化物或两种以上的复合氢氧化物,又例如镍(二价)、亚锰(二价)和亚铁(二价)的复合氢氧化物。所述的过渡金属碳酸盐可为本领域常规的过渡金属碳酸盐,只要其煅烧后可形成层状过渡金属氧化物即可,例如当所述的前驱体为过渡金属元素的碳酸盐时,所述的过渡金属元素的碳酸盐为铜、镁、铬、钛、锡、钒、锌、钴、镍、铁和锰元素中的一种的碳酸盐或其中两种以上的复合碳酸盐,例如镍、铁和锰元素中的一种的碳酸盐或其中两种以上的复合碳酸盐,又例如镍(二价)、亚锰(二价)和亚铁(二价)中的一种的碳酸盐或两种以上的复合碳酸盐,又例如镍(二价)、亚锰(二价)和亚铁(二价)的复合碳酸盐。当所述的前驱体为单一过渡金属元素的氧化物时,所述的过渡金属元素的氧化物优选为铜、镁、铬、钛、锡、钒、锌、钴、镍、铁和锰元素中的一种的氧化物。当所述的前驱体为两种以上单一过渡金属元素的氧化物的混合物时,所述的两种以上单一过渡金属元素的氧化物的混合物优选为铜元素的氧化物、镁元素的氧化物、铬元素的氧化物、钛元素的氧化物、锡元素的氧化物、钒元素的氧化物、锌元素的氧化物、钴元素的氧化物、镍元素的氧化物、铁元素的氧化物和锰元素的氧化物中的两种以上的混合物,例如镍元素的氧化物、铁元素的氧化物和锰元素的氧化物中的两种以上的混合物,又例如镍(二价)的氧化物、亚铁(二价)的氧化物、亚锰(二价)的氧化物中的两种以上的混合物,又例如镍(二价)的氧化物、亚铁(二价)的氧化物和亚锰(二价)的氧化物的混合物。
其中,所述的钠源(以钠计)和钾源(以钾计)的质量比为1:0.005-0.08,优选1:0.01-1:0.07,更优选1:0.03-1:0.05,例如1:0.034-1:0.044,最优选1:0.039;
其中,所述的前驱体中的过渡金属元素的总摩尔数与以钠计的钠源的摩尔数的比例为1:0.8-1.1,例如1:0.95-1.05,又例如1:0.95-1.03,又例如1:0.98、1:1或1:1.02。
其中,所述的煅烧温度为800-1000℃,例如850-890℃,又例如870℃。
其中,所述的煅烧时间可为本领域进行煅烧的常规时间,例如15-30小时,又例如24小时。
其中,所述的煅烧在空气气氛中进行。
其中,所述的煅烧后将产物冷却到室温。
其中,所述的钠离子电池正极材料的制备方法仅采用前驱体、钠源和钾源作为原料。
其中,当所述的前驱体为两种以上单一过渡金属元素的氧化物的混合物时,所述的两种以上单一过渡金属元素的氧化物的混合物的制备方法包括:将分别球磨粉碎的单一过渡金属元素的氧化物混合。
其中,当所述的前驱体为过渡金属元素的氢氧化物时,所述的过渡金属元素的氢氧化物采用共沉淀法制备;优选地,所述的过渡金属元素的氢氧化物的制备方法包括:在水中,在络合剂存在的条件下,将过渡金属元素的盐与沉淀剂进行共沉淀反应,得到过渡金属元素的氢氧化物,所述的沉淀剂为氢氧化钠;更优选地,所述的过渡金属元素的氢氧化物的制备方法包括:在水中,在络合剂存在的条件下,将镍盐(二价)、亚锰盐(二价)和亚铁盐(二价)与沉淀剂进行共沉淀反应,得到镍(二价)、亚锰(二价)和亚铁(二价)的复合氢氧化物;更优选地,所述的过渡金属元素的氢氧化物的制备方法包括:将镍盐(二价)、亚锰盐(二价)和亚铁盐(二价)的混合溶液A、沉淀剂和络合剂的混合溶液B与络合剂水溶液混合,进行共沉淀反应,得到镍(二价)、亚锰(二价)和亚铁(二价)的复合氢氧化物。优选地,所述的镍(二价)、亚锰(二价)和亚铁(二价)的复合氢氧化物中的镍(二价)、亚锰(二价)和亚铁(二价)的摩尔比为x:y:z,其中,x+y+z=3,x≥0,y≥0,且z≥0,例如,为1:1:1。
其中,当所述的前驱体为过渡金属元素的碳酸盐时,所述的过渡金属元素的碳酸盐采用共沉淀法制备;优选地,所述的过渡金属元素的碳酸盐的制备方法包括:在水中,在络合剂存在的条件下,将过渡金属元素的盐与沉淀剂进行共沉淀反应,得到过渡金属元素的碳酸盐,所述的沉淀剂为碳酸钠;更优选地,所述的过渡金属元素的碳酸盐的制备方法包括:在水中,在络合剂存在的条件下,将镍盐(二价)、亚锰盐(二价)和亚铁盐(二价)与沉淀剂进行共沉淀反应,得到镍(二价)、亚锰(二价)和亚铁(二价)的复合碳酸盐;更优选地,所述的过渡金属元素的碳酸盐的制备方法包括:将镍盐(二价)、亚锰盐(二价)和亚铁盐(二价)的混合溶液A、沉淀剂和络合剂的混合溶液B与络合剂水溶液混合,进行共沉淀反应,得到镍(二价)、亚锰(二价)和亚铁(二价)的复合碳酸盐。
其中,所述的络合剂可为本领域中共沉淀反应所用的常规络合剂,优选氢氧化铵或柠檬酸钠。
其中,所述的过渡金属元素的盐可为本领域中进行共沉淀反应所用的常规过渡金属元素的盐或其水合物,例如硫酸盐、硝酸盐、氯盐等。
其中,所述的镍盐可为本领域中进行共沉淀反应所用的常规水溶性镍盐或其水合物,例如硫酸镍、硝酸镍、氯化镍等。
其中,所述的亚锰盐可为本领域中进行共沉淀反应所用的常规水溶性亚锰盐或其水合物,例如硫酸亚锰、硝酸亚锰、氯化亚锰等。
其中,所述的亚铁盐可为本领域中进行共沉淀反应所用的常规水溶性亚铁盐,例如硫酸亚铁、硝酸亚铁、氯化亚铁等。
其中,所述的镍盐(以镍计)、亚锰盐(以亚锰计)和亚铁盐(以亚铁计)的摩尔比为a:b:c,其中,a+b+c=3,a≥0,b≥0,且c≥0,例如,为1:1:1。
其中,所述的镍盐和沉淀剂的摩尔比为1:4-8,又例如1:5-7,又例如1:6。
其中,所述的镍盐和络合剂的摩尔比为1:0.6-2.4,例如1:1.5-2.0,又例如1:1.6-1.9,又例如0.67∶0.48、0.67:0.72、或0.67:1.2。
其中,所述的共沉淀反应的反应体系中,还含有pH调节剂,所述的pH调节剂可为本领域中共沉淀反应所用的常规pH调节剂,例如氢氧化铵或碳酸钠。所述的镍盐和pH调节剂的摩尔比为1:0.6-2.4,例如1∶1.5-2.0,又例如1:1.6-1.9,又例如0.67:0.48、0.67:0.72、或0.67:1.2。
其中,所述的共沉淀反应温度可为本领域进行共沉淀反应的常规温度,例如为10-60℃,又例如50-60℃,又例如50℃。
其中,所述的共沉淀反应时间可为本领域进行共沉淀反应的常规时间,例如为5-10小时,例如500分钟。
其中,所述的共沉淀反应中反应液的pH值可为9.5-11.5,例如11.0。
其中,所述的混合溶液A、混合溶液B以及络合剂水溶液的体积比为1:0.8-1.2:2.5-3.5,例如1:0.9-1.1:2.8-3.2,又例如1:1:3。
其中,所述的混合溶液A中镍盐的浓度为0.3-0.7mol/L,例如0.32-0.34mol/L,又例如0.335mol/L。
其中,所述的混合溶液B中沉淀剂的浓度为1.5-4mol/L,例如1.8-2.2mol/L,又例如2mol/L。
其中,所述的混合溶液B中络合剂的浓度为0.2-0.8mol/L,例如0.2-0.3mol/L,又例如0.24mol/L。
其中,所述的络合剂水溶液的浓度为0.1-0.4mol/L,例如0.12mol/L。
其中,所述的混合溶液A以及混合溶液B在搅拌的情况下以滴加的方式加入到所述的络合剂水溶液中。
其中,所述的混合溶液A以及混合溶液B的滴加速率均为3-5mL/min,例如4mL/min。
其中,所述的共沉淀反应后还包括后处理步骤,所述的后处理步骤可为本领域常规的后处理步骤,优选包括陈化。
其中,所述的陈化时间可为本领域中共沉淀反应后处理使用的常规陈化时间,例如12-28h,又例如24h。
其中,所述的陈化温度可为本领域中共沉淀反应后处理使用的常规陈化温度,优选10-60℃,例如45-55℃,又例如50℃。
其中,所述的后处理还包括:过滤、洗涤、干燥。在一些实施方案中,所述的干燥温度为100-140℃,例如120℃。
其中,所述的干燥时间为20-28h,例如24h。
在不违背本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:
1、本发明通过在合成钠离子正极材料过程中掺入钾离子,提高钠离子电池正极材料的循环稳定性。
2、本发明通过控制钾离子的掺杂量,使得产品可逆比容量保持不变或略微提升,同时材料的循环稳定性得到提升。
3、本发明在无需改变前驱体制备条件的情况下对材料进行钾离子掺杂,所有步骤均有成熟的工业化方案,可进行大规模生产。本发明采用共沉淀法,产生的材料的元素更加均匀,且容量更高。
附图说明
图1为不同样品在100mA/g的电流密度下循环200圈的循环曲线;
图2a为对比例1中样品在100mA/g电流密度下循环10圈和30圈时的交流阻抗谱。
图2b为实施例1中样品在100mA/g电流密度下循环10圈和30圈时的交流阻抗谱。
图2c为实施例2中样品在100mA/g电流密度下循环10圈和30圈时的交流阻抗谱。
图3为实施例1中所得的钠离子电池正极材料的XRD测试结果图;
图4为实施例2中所得的钠离子电池正极材料的XRD测试结果图。
图5为实施例3中所得的钠离子电池正极材料的XRD测试结果图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
如无特殊说明,本发明中的“室温”是指20-30℃,例如25℃。
如无特殊说明,本发明中的粒径采用Malvin公司的Mastersizer2000激光粒度仪测试得到。具体测试方法为用去离子水作为介质,开机预热半小时后开启超声和搅拌测试介质背景,待背景稳定且逐条下降后,加入样品(去离子水分散),并加入分散剂5mL(2wt.%的六偏磷酸钠溶液),待加入样品量达到遮光率为10-20,测试得到样品粒径分布。
如无特殊说明,本发明中的XRD采用荷兰帕纳科公司生产的Empyrean型号的仪器测试得到,测试方法如下:使用高压设备通过Cu靶材产生射线,之后经过单色器过滤后照射在样品表面。设置扫描角度范围10-80°,扫速为每分钟0.5°,每步停留4s。通过接受反射和衍射信号以及布拉格公式变换,可以观察到材料特定角度的特征峰。
实施例1
碳酸钠和碳酸钾质量比为1:0.01
配置体积2L摩尔比为1:1:1的硫酸镍(以镍计)、硫酸亚锰(以亚锰计)和硫酸亚铁(以亚铁计)的混合溶液A(含硫酸镍0.67mol),体积2L氢氧化钠和氢氧化铵混合溶液B(含4mol氢氧化钠和0.48mol氢氧化铵)和6L氢氧化铵水溶液底液(含0.72mol氢氧化铵),在进行充分搅拌的情况下将溶液A和B分别以4mL/min的速率滴入底液中,控制温度在50℃时进行共沉淀反应,反应时间为500分钟,之后在温度在50℃时陈化24小时。然后过滤,用去离子水洗涤3遍,得到镍(二价)、亚锰(二价)和亚铁(二价)的复合氢氧化物前驱体,进行充分干燥(120℃,24小时)。
将所得的镍、亚锰、亚铁的复合氢氧化物前驱体、碳酸钠、碳酸钾以10:5.94:0.06的质量比混合均匀。以上混合物在870℃下的空气气氛中煅烧24h,冷却到室温后取出,得到钠离子电池正极材料,其平均粒径为5-10微米,XRD如图3所示,所述的钠离子电池正极材料为嵌钠镍铁锰复合层状氧化物,所述嵌钠镍铁锰复合层状氧化物中掺杂有钾离子,其中,镍、锰和铁元素的摩尔比为1:1:1,钠离子与镍元素的摩尔比为3:1,钠离子和氧元素的摩尔比为1:2,钠离子与钾离子的摩尔比为100∶0.8。
实施例2
碳酸钠和碳酸钾质量比为1:0.03
配置体积2L摩尔比为1:1:1的硫酸镍(以镍计)、硫酸亚锰(以亚锰计)和硫酸亚铁(以亚铁计)的混合溶液A(含硫酸镍0.67mol),体积2L氢氧化钠和氢氧化铵混合溶液B(含4mol氢氧化钠和0.48mol氢氧化铵)和6L氨水底液(含0.72mol氢氧化铵),在进行充分搅拌的情况下将溶液A和B分别以4mL/min的速率滴入底液中,控制温度在50℃时进行共沉淀反应,反应时间为500分钟,之后在温度在50℃时陈化24小时。然后过滤,用去离子水洗涤3遍,得到镍(二价)、亚锰(二价)和亚铁(二价)的复合氢氧化物前驱体,进行充分干燥(120℃,24小时)。
将所得的镍、亚锰、亚铁的复合氢氧化物前驱体、碳酸钠、碳酸钾以10:5.82:0.18的质量比混合均匀。以上混合物在870℃下的空气气氛中煅烧24h,冷却到室温后取出,得到钠离子电池正极材料,其平均粒径为5-10微米,XRD如图4所示,所述的钠离子电池正极材料为嵌钠镍铁锰复合层状氧化物,所述嵌钠镍铁锰复合层状氧化物中掺杂有钾离子,其中,镍、锰和铁元素的摩尔比为1:1:1,钠离子与镍元素的摩尔比为3:1,钠离子和氧元素的摩尔比为1:2,钠离子与钾离子的摩尔比为100:2.3。
实施例3
碳酸钠和碳酸钾质量比为1:0.05
配置体积2L摩尔比为1:1:1的硫酸镍(以镍计)、硫酸亚锰(以亚锰计)和硫酸亚铁(以亚铁计)的混合溶液A(含硫酸镍0.67mol),体积2L氢氧化钠和氢氧化铵混合溶液B(含4mol氢氧化钠和0.48mol氢氧化铵)和6L氨水底液(含0.72mol氢氧化铵),在进行充分搅拌的情况下将溶液A和B分别以4mL/min的速率滴入底液中,控制温度在50℃时进行共沉淀反应,反应时间为500分钟,之后在温度在50℃时陈化24小时。然后过滤,用去离子水洗涤3遍,得到镍(二价)、亚锰(二价)和亚铁(二价)的复合氢氧化物前驱体,进行充分干燥(120℃,24小时)。
将所得的镍、亚锰、亚铁的复合氢氧化物前驱体、碳酸钠、碳酸钾以10:5.71:0.29的质量比混合均匀。以上混合物在870℃下的空气气氛中煅烧24h,冷却到室温后取出,得到钠离子电池正极材料,其平均粒径为5-10微米,XRD如图5所示,所述的钠离子电池正极材料为嵌钠镍铁锰复合层状氧化物,所述嵌钠镍铁锰复合层状氧化物中掺杂有钾离子,其中,镍、锰和铁元素的摩尔比为1:1:1,钠离子与镍元素的摩尔比为3:1,钠离子和氧元素的摩尔比为1:2,钠离子与钾离子的摩尔比为100:3.8。
对比例1
不加入碳酸钾
配置体积2L摩尔比为1:1∶1的硫酸镍(以镍计)、硫酸亚锰(以锰计)和硫酸亚铁(以铁计)的混合溶液A(含硫酸镍0.67mol),体积2L氢氧化钠和氢氧化铵混合溶液B(含4mol氢氧化钠和0.48mol氢氧化铵)和6L氨水底液(含0.72mol氢氧化铵),在进行充分搅拌的情况下将溶液A和B分别以4mL/min的速率均匀滴入底液中,控制温度在50℃时进行共沉淀反应,反应时间为500分钟,之后在温度在50℃时陈化24小时。然后过滤,用去离子水洗涤3遍,得到镍(二价)、亚锰(二价)和亚铁(二价)的复合氢氧化物前驱体,进行充分干燥(120℃,24小时)。
将所得的镍、亚锰、亚铁的复合氢氧化物前驱体、碳酸钠以10:6的质量比混合均匀。以上混合物在870℃下的空气气氛中煅烧24h,冷却到室温后取出,得到嵌钠层状过渡金属氧化物钠离子电池正极材料,其分子式为NaNi1/3Fe1/3Mn1/3O2
扣式电池制作及电化学性能测试
将对比例1和实施例1-3的钠离子电池正极材料、导电剂(Super P)和粘结剂(PVDF)以8:1:1的质量比混合均匀,涂布于铝箔上,再在真空烘箱中烘干12h制成极片。极片取出后裁成直径12mm的圆片。在手套箱中制作扣式电池,取正极壳,将极片置于正极壳上,滴入电解液(质量浓度为10%的NaPF6电解液),再放入隔膜备用。将金属钠通过切削、擀制和冲制,获得圆形钠片。将镍网置于钠片上,再将钠片放入正极壳中,补加电解液后盖上负极壳,最后冲压定型获得扣式电池。
扣式电池在100mA/g的电流密度下循环200圈以表征其循环性能,并在循环测试中取第10圈和第30圈测试电池交流阻抗谱,交流阻抗测试频率为0.1-5000000Hz,振幅为10mV。
图1显示了不同样品在100mA/g的电流密度下循环200圈的循环曲线。对比例1、实施例1和实施例2中正极材料的初始比容量分别为128mAh/g、127mAh/g和132mAh/g,充放电循环200圈后放电比容量为90mAh/g、94mAh/g和100mAh/g,容量保持率分别为70.3%、74%和76%。由此可见,本发明有效提高了材料的循环性能,同时容量基本保持不变甚至更高。
比容量方面,在100mA/g的电流密度下测得对比例1和实施例1-3的钠离子电池正极材料的首圈放电比容量分别为:128、127、132和115mAh/g。
图2a、2b和2c分别为不同样品在100mA/g电流密度下循环10圈和30圈时的交流阻抗谱。谱图中的半圆直径代表电池的电荷转移阻抗。对比例1中,随着电池循环,电荷转移阻抗明显增大,与之形成鲜明对比的是实施例1和实施例2中,电荷转移阻抗变化很小。这说明了本发明有效提高了材料的循环稳定性。循环稳定性上,在100mA/g的电流密度下循环200圈,对比例1和实施例1-3的钠离子电池正极材料的容量剩余率分别为:70%、74%、76%和79%。
所有掺钾样品在循环性能上均有提升,但当掺钾量提升到5%(即实施例3)时,初始比容量为115mAh/g,相对对照组(即对比例1)下降了10%。而1%、3%掺入量两个实验组(即实施例1和2)的初始比容量与对照组相近,而且实施例2的循环保持性能最佳,因此认为3%的掺杂量是最佳比例。

Claims (10)

1.一种钠离子电池正极材料,其特征在于,包括嵌钠层状过渡金属氧化物,所述嵌钠层状过渡金属氧化物中掺杂有钾离子。
2.如权利要求1所述的钠离子电池正极材料,其特征在于,所述的钾离子与所述嵌钠层状过渡金属氧化物中的钠离子的摩尔比为0.3-5.0:100,优选为0.7-3.8:100,更优选为1.9-2.7:100,例如2.0-2.6:100,最优选为2.3:100;
和/或,所述的嵌钠层状过渡金属氧化物中的层状过渡金属氧化物为铜、镁、铬、钛、锡、钒、锌、钴、镍、铁和锰元素中至少一种或多种的氧化物,优选为镍、铁和锰元素中至少一种的层状氧化物,更优选镍、铁和锰元素的复合层状氧化物;
和/或,所述的钠离子电池正极材料的平均粒径为1-15微米,例如4-12微米;
和/或,所述的嵌钠层状过渡金属氧化物中钠离子和氧元素的摩尔比为0.8-1.1:2,例如1:2。
3.如权利要求2所述的钠离子电池正极材料,其特征在于,当所述的嵌钠层状过渡金属氧化物中的层状过渡金属氧化物为镍、铁和锰元素的复合层状氧化物时,所述的镍、铁和锰元素的复合层状氧化物中镍、锰和铁元素的摩尔比为1:1:1;
和/或,当所述的嵌钠层状过渡金属氧化物中的层状过渡金属氧化物为镍、铁和锰元素的复合层状氧化物时,所述嵌钠层状过渡金属氧化物中的钠离子与所述镍元素的摩尔比为1.25-6:1,例如2-4:1,又例如3:1。
4.权利要求1-3中任一项所述的钠离子电池正极材料的制备方法,其特征在于,包括:将前驱体、钠源和钾源的混合物进行煅烧,得到钠离子电池正极材料;其中,所述的前驱体为过渡金属元素的氢氧化物、过渡金属元素的碳酸盐、单一过渡金属元素的氧化物或两种以上单一过渡金属元素的氧化物的混合物。
5.如权利要求4所述的钠离子电池正极材料的制备方法,其特征在于,所述的钠源为碳酸钠或氢氧化钠;
和/或,所述的钾源为碳酸钾或氢氧化钾;
和/或,所述的前驱体中的过渡金属元素的总摩尔数与以钠计的钠源的摩尔数的比例为1:0.8-1.1,例如1:0.95-1.05;
和/或,以钠计的钠源和以钾计的钾源的质量比为1:0.005-0.08,优选1:0.01-1:0.07,更优选1:0.03-1:0.05,例如1:0.034-1:0.044,最优选1:0.039;
和/或,所述煅烧的煅烧温度为800-1000℃,例如850-890℃;
和/或,所述煅烧的煅烧时间为15-30小时;
和/或,所述的煅烧在空气气氛中进行;
和/或,所述的煅烧后将产物冷却到室温。
6.如权利要求4所述的钠离子电池正极材料的制备方法,其特征在于,当所述的前驱体为过渡金属元素的氢氧化物时,所述的过渡金属元素的氢氧化物为铜、镁、铬、钛、锡、钒、锌、钴、镍、铁和锰元素中的一种的氢氧化物或其中两种以上的复合氢氧化物,例如镍、铁和锰元素中的一种的氢氧化物或其中两种以上的复合氢氧化物,又例如镍、亚锰和亚铁中的一种的氢氧化物或两种以上的复合氢氧化物,又例如镍、亚锰和亚铁的复合氢氧化物;
和/或,当所述的前驱体为过渡金属元素的氢氧化物时,所述的过渡金属元素的氢氧化物采用共沉淀法制备;优选地,所述的过渡金属元素的氢氧化物的制备方法包括:在水中,在络合剂存在的条件下,将过渡金属元素的盐与沉淀剂进行共沉淀反应,得到过渡金属元素的氢氧化物,所述的沉淀剂为氢氧化钠;更优选地,所述的过渡金属元素的氢氧化物的制备方法包括:在水中,在络合剂存在的条件下,将镍盐、亚锰盐和亚铁盐与沉淀剂进行共沉淀反应,得到镍、亚锰和亚铁的复合氢氧化物;更优选地,所述的过渡金属元素的氢氧化物的制备方法包括:将镍盐、亚锰盐和亚铁盐的混合溶液A、沉淀剂和络合剂的混合溶液B与络合剂水溶液混合,进行共沉淀反应,得到镍、亚锰和亚铁的复合氢氧化物。
7.如权利要求4所述的钠离子电池正极材料的制备方法,其特征在于,当所述的前驱体为过渡金属元素的碳酸盐时,所述的过渡金属元素的碳酸盐为铜、镁、铬、钛、锡、钒、锌、钴、镍、铁和锰元素中的一种的碳酸盐或其中两种以上的复合碳酸盐,例如镍、铁和锰元素中的一种的碳酸盐或其中两种以上的复合碳酸盐,又例如镍、亚锰和亚铁中的一种的碳酸盐或两种以上的复合碳酸盐,又例如镍、亚锰和亚铁的复合碳酸盐;
和/或,当所述的前驱体为过渡金属元素的碳酸盐时,所述的过渡金属元素的碳酸盐采用共沉淀法制备;优选地,所述的过渡金属元素的碳酸盐的制备方法包括:在水中,在络合剂存在的条件下,将过渡金属元素的盐与沉淀剂进行共沉淀反应,得到过渡金属元素的碳酸盐,所述的沉淀剂为碳酸钠;更优选地,所述的过渡金属元素的碳酸盐的制备方法包括:在水中,在络合剂存在的条件下,将镍盐、亚锰盐和亚铁盐与沉淀剂进行共沉淀反应,得到镍、亚锰和亚铁的复合碳酸盐;更优选地,所述的过渡金属元素的碳酸盐的制备方法包括:将镍盐、亚锰盐和亚铁盐的混合溶液A、沉淀剂和络合剂的混合溶液B与络合剂水溶液混合,进行共沉淀反应,得到镍、亚锰和亚铁的复合碳酸盐。
8.如权利要求4所述的钠离子电池正极材料的制备方法,其特征在于,当所述的前驱体为单一过渡金属元素的氧化物时,所述的过渡金属元素的氧化物为铜、镁、铬、钛、锡、钒、锌、钴、镍、铁和锰元素中的一种的氧化物。
9.如权利要求4所述的钠离子电池正极材料的制备方法,其特征在于,当所述的前驱体为两种以上单一过渡金属元素的氧化物的混合物时,所述的两种以上单一过渡金属元素的氧化物的混合物为铜元素的氧化物、镁元素的氧化物、铬元素的氧化物、钛元素的氧化物、锡元素的氧化物、钒元素的氧化物、锌元素的氧化物、钴元素的氧化物、镍元素的氧化物、铁元素的氧化物和锰元素的氧化物中的两种以上的混合物,例如镍元素的氧化物、铁元素的氧化物和锰元素的氧化物中的两种以上的混合物,又例如镍的氧化物、亚铁的氧化物、亚锰的氧化物中的两种以上的混合物,又例如镍的氧化物、亚铁的氧化物和亚锰的氧化物的混合物;
和/或,当所述的前驱体为两种以上单一过渡金属元素的氧化物的混合物时,所述的两种以上单一过渡金属元素的氧化物的混合物的制备方法包括:将分别球磨粉碎的单一过渡金属元素的氧化物混合。
10.如权利要求6或7所述的钠离子电池正极材料的制备方法,其特征在于,所述的络合剂为氢氧化铵或柠檬酸钠;
和/或,所述的镍盐为硫酸镍、硝酸镍或氯化镍;
和/或,所述的亚锰盐为硫酸亚锰、硝酸亚锰或氯化亚锰;
和/或,所述的亚铁盐为硫酸亚铁、硝酸亚铁或氯化亚铁;
和/或,所述的镍盐、亚锰盐和亚铁盐的摩尔比为1:1:1;
和/或,所述的镍盐和沉淀剂的摩尔比为1:4-8,又例如1:5-7;
和/或,所述的镍盐和络合剂的摩尔比为1:0.6-2.4,例如1:1.5-2.0,又例如1:1.6-1.9;
和/或,所述的共沉淀反应的反应体系中,还含有pH调节剂,优选地,所述的pH调节剂为氢氧化铵或碳酸钠,优选地,所述的镍盐和pH调节剂的摩尔比为1:0.6-2.4,例如1:1.5-2.0,又例如1:1.6-1.9;
和/或,所述的共沉淀反应温度为10-60℃,又例如50-60℃;
和/或,所述的共沉淀反应时间为5-10小时;
和/或,所述的共沉淀反应中反应液的pH值为9.5-11.5;
和/或,所述的混合溶液A、混合溶液B以及络合剂水溶液的体积比为1:0.8-1.2:2.5-3.5,例如1:0.9-1.1:2.8-3.2;
和/或,所述的混合溶液A中镍盐的浓度为0.3-0.7mol/L,例如0.32-0.34mol/L;
和/或,所述的混合溶液B中沉淀剂的浓度为1.5-4mol/L,例如1.8-2.2mol/L;
和/或,所述的混合溶液B中络合剂的浓度为0.2-0.8mol/L,例如0.2-0.3mol/L;
和/或,所述的络合剂水溶液的浓度为0.1-0.4mol/L;
和/或,所述的混合溶液A以及混合溶液B在搅拌的情况下以滴加的方式加入到所述的络合剂水溶液中;优选地,所述的混合溶液A以及混合溶液B的滴加速率均为3-5mL/min,例如4mL/min;
和/或,所述的共沉淀反应后还包括后处理步骤,所述的后处理步骤包括陈化;优选地,所述的陈化时间为12-28h;优选地,所述的陈化温度为10-60℃,例如45-55℃;优选地,所述的后处理步骤还包括:过滤、洗涤,干燥;优选地,所述的干燥温度为100-140℃;优选地,所述的干燥时间为20-28h。
CN202110040364.2A 2021-01-13 2021-01-13 一种钠离子电池正极材料及其制备方法 Pending CN113889603A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110040364.2A CN113889603A (zh) 2021-01-13 2021-01-13 一种钠离子电池正极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110040364.2A CN113889603A (zh) 2021-01-13 2021-01-13 一种钠离子电池正极材料及其制备方法

Publications (1)

Publication Number Publication Date
CN113889603A true CN113889603A (zh) 2022-01-04

Family

ID=79012908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110040364.2A Pending CN113889603A (zh) 2021-01-13 2021-01-13 一种钠离子电池正极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113889603A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114835173A (zh) * 2022-04-21 2022-08-02 蜂巢能源科技股份有限公司 一种正极材料前驱体及其制备方法和正极材料
CN115196691A (zh) * 2022-07-18 2022-10-18 宿迁市翔鹰新能源科技有限公司 一种钠离子电池用镍铁锰三元前驱体及其制备方法和应用
CN115594233A (zh) * 2022-11-07 2023-01-13 湖州超钠新能源科技有限公司(Cn) 钠离子电池四元正极材料前驱体、其制备方法及应用
CN115872461A (zh) * 2022-12-07 2023-03-31 电子科技大学长三角研究院(湖州) 一种制备钠离子电池正极材料镍铁锰碳酸盐球形前驱体的方法
CN116404145A (zh) * 2023-06-09 2023-07-07 成都特隆美储能技术有限公司 一种氧化铝包覆的层状钠离子正极材料及钠离子电池
WO2024022431A1 (zh) * 2022-07-29 2024-02-01 湖北万润新能源科技股份有限公司 钠离子电池正极材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAI WANG等: ""P2-type Na0.67Mn0.72Ni0.14Co0.14O2 with K+ doping as new high rate performance cathode material for sodium- ion batteries"", 《ELECTROCHIMICA ACTA》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114835173A (zh) * 2022-04-21 2022-08-02 蜂巢能源科技股份有限公司 一种正极材料前驱体及其制备方法和正极材料
CN115196691A (zh) * 2022-07-18 2022-10-18 宿迁市翔鹰新能源科技有限公司 一种钠离子电池用镍铁锰三元前驱体及其制备方法和应用
WO2024022431A1 (zh) * 2022-07-29 2024-02-01 湖北万润新能源科技股份有限公司 钠离子电池正极材料及其制备方法和应用
CN115594233A (zh) * 2022-11-07 2023-01-13 湖州超钠新能源科技有限公司(Cn) 钠离子电池四元正极材料前驱体、其制备方法及应用
CN115872461A (zh) * 2022-12-07 2023-03-31 电子科技大学长三角研究院(湖州) 一种制备钠离子电池正极材料镍铁锰碳酸盐球形前驱体的方法
CN116404145A (zh) * 2023-06-09 2023-07-07 成都特隆美储能技术有限公司 一种氧化铝包覆的层状钠离子正极材料及钠离子电池

Similar Documents

Publication Publication Date Title
CN113889603A (zh) 一种钠离子电池正极材料及其制备方法
CN108123115B (zh) O2构型锂电池正极材料及其制备方法
CN109461928A (zh) 一种高能量密度多元正极材料及其制备方法
CN111170377A (zh) 一种富锂锰基正极材料的制备方法
WO2015039490A1 (zh) 富锂正极材料及其制备方法
CN102244236A (zh) 一种锂离子电池富锂正极材料的制备方法
CN100342568C (zh) 含锂锰复合氧化物的正极多元活性材料的制备方法
JP2015529943A (ja) リチウム過剰正極材料、リチウム電池正極、およびリチウム電池
CN106602024B (zh) 一种表面原位修饰型富锂材料及其制备方法
CN111403729A (zh) 钠离子电池正极材料及其制备方法、钠离子电池
CN112751006B (zh) 一种无钴锂离子电池层状正极材料及其制备方法和应用
CN112047382B (zh) 正极材料及其制备方法和应用
CN107732235A (zh) 一种锂离子电池三元正极材料nca的制备方法
CN104953109B (zh) 一种提升耐高温性能的核壳结构锰酸锂及其合成方法
CN112018335A (zh) 复合型锂离子电池正极材料及锂离子电池正极以及锂电池、电池模组、电池包和车
CN114843469B (zh) 一种MgFe2O4改性的P2/O3型镍基层状钠离子电池正极材料及其制备方法
CN103794782A (zh) 一种富锂锰基材料、其制备方法及锂离子电池
CN110085845A (zh) 一种具有核壳结构的镍基正极材料及其制备方法
CN113517424A (zh) 一种高电压锂离子电池无钴正极材料及其制备方法
CN107204426A (zh) 一种锆掺杂改性的氧化镍钴锰锂/钛酸锂复合正极材料
CN111009654A (zh) Mo掺杂的LiNi0.6Co0.2Mn0.2O2正极材料及其制备方法
CN108807928B (zh) 一种金属氧化物及锂离子电池的合成
CN111370690A (zh) 锂离子电池高镍正极材料、其制备方法及应用
CN103943863A (zh) 阴离子掺杂改性的过锂(5:3:2)型三元锂离子电池正极材料
CN110380037B (zh) 一种反应熔渗改性的锂离子电池正极材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination