CN113871179A - 一种超声波增强磁粉芯压制成型方法及压粉磁芯 - Google Patents

一种超声波增强磁粉芯压制成型方法及压粉磁芯 Download PDF

Info

Publication number
CN113871179A
CN113871179A CN202111042385.4A CN202111042385A CN113871179A CN 113871179 A CN113871179 A CN 113871179A CN 202111042385 A CN202111042385 A CN 202111042385A CN 113871179 A CN113871179 A CN 113871179A
Authority
CN
China
Prior art keywords
ultrasonic
magnetic powder
powder
core
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111042385.4A
Other languages
English (en)
Inventor
张岩
王军强
黄妍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Institute of Material Technology and Engineering of CAS
Priority to CN202111042385.4A priority Critical patent/CN113871179A/zh
Publication of CN113871179A publication Critical patent/CN113871179A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14733Fe-Ni based alloys in the form of particles
    • H01F1/14741Fe-Ni based alloys in the form of particles pressed, sintered or bonded together
    • H01F1/1475Fe-Ni based alloys in the form of particles pressed, sintered or bonded together the particles being insulated
    • H01F1/14758Fe-Ni based alloys in the form of particles pressed, sintered or bonded together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15358Making agglomerates therefrom, e.g. by pressing
    • H01F1/15366Making agglomerates therefrom, e.g. by pressing using a binder
    • H01F1/15375Making agglomerates therefrom, e.g. by pressing using a binder using polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances

Abstract

一种超声波增强磁粉芯压制成型方法及压粉磁芯。本发明公开了一种超声波增强磁粉芯压制成型方法,包括将软磁粉末(包覆后)放置于超声波压型压制成型设备内,设定超声波频率为15–60kHz,振动幅度为70–90%,同时启动气动系统加压,压力为0.3–0.9MPa,压制时间为0.1–10s,保压时间为3–5s,完成磁粉芯的压制成型。该方法/工艺所需压力小、完成时间短、粉末成型致密度高,具有简单高效的优势。本发明还公开了利用超声波增强磁粉芯压制成型方法制备的磁粉芯,该磁粉芯具有较高的饱和磁感应强度、低铁损和高初始磁导率,其磁导率显示良好的高频稳定性。

Description

一种超声波增强磁粉芯压制成型方法及压粉磁芯
技术领域
本发明属于压制成型领域,具体为一种超声波增强磁粉芯压制成型方法及压粉磁芯。
背景技术
磁粉芯是高频工况下构成电感、滤波器、变压器等电子电力元器件的关键部分。磁粉芯是由软磁粉末与绝缘物质混合压制而成的一种复合材料(压制成型体)。磁粉和绝缘物质的压制密度、分布情况、绝缘膜厚直接影响着磁粉芯的磁学和电学性能。为了抑制随频率提高的激增的涡流损耗,需要提高磁粉芯的电阻率,绝缘物质对磁粉的包覆是至关重要的。
而压制成型过程中,磁粉颗粒间及磁粉和绝缘物质之间会存在气隙。非磁性绝缘物质和气隙的大量存在,会降低磁粉颗粒的体积分数,降低饱和磁感应强度;加剧磁粉间软磁耦合的钉扎现象,引起磁导率降低和矫顽力增加,导致磁滞损耗的提升;而绝缘物质和气隙的非均匀分布引起使磁粉芯的磁通路发生偏斜,导致有效磁导率降低。
传统的压制成型方式主要包括:冷压(Cold Press)、热压(Hot Press)、放电等离子烧结法(Spark Plasma Sintering,SPS)。现有冷压技术和热压技术的压力范围多为300–2000MPa,压制速度为2–30m/s,在此条件下压头对参与压制成型物质进行压制/锤击。
冷压成型工艺统通过压力提高粉末压坯的密度。该方法压制压力主要来自于垂直方向,粉末颗粒水平方向运动不足,压坯中的软磁粉末及其它添加物的分布均匀性有限;该方法获得压坯密度虽高,但是应用局限在大尺寸部件,对于小尺寸精细零件则较难加工;此外,锤头产生的超高能量冲击可能破坏粉末外观形貌,造成磁粉的球形度变差甚至出现尖角,局部刺破绝缘包覆层会导致涡流损耗的大幅度增加;其高能冲击亦可能造成局部粉末受到很大的应力,甚至是引起软磁材料本身的微观结构变得不均匀,最终导致宏观软磁性能变差。
热压工艺是一种通过改进传统的粉末压制成型方式,采用特制的粉末加热、传输和模具加热系统,将混有热压专用润滑剂和粘结剂的混合粉末和模具加热到特定温度80–150℃进行压制,以制备高密度、低成本粉末冶金零件的新技术,具有脱模力低、压坯密度分布均匀等优点,不过目前还主要局限于结构材料。一般,应用于磁粉芯制备时,在相同的压力条件下,热压成型工艺的压坯密度高于冷压成型工艺,而密度的增大有利于提高磁粉芯的磁学性能。但是该方法使用的润滑剂和粘结剂一般为无磁性物质,主体软磁粉末受高含量润滑剂添加的影响,不利于饱和磁感应强度的提高,粉末颗粒之间软磁性耦合效果比较低,很难应用于高功率密度低损耗电子器件的制备;同时,加入润滑剂使烧结密度降低,样品力学性能变差,样品内部润滑剂的残留反而阻碍烧结效果。
放电等离子烧结工艺是将粉末装入模具内利用上下模冲及通电电极将特定烧结电源和压制压力施加于烧结粉末进而达到粉末成型效果。SPS技术可以提高磁粉芯的压制成型致密度,但是磁粉和绝缘物质在压制时运动和分布有限。其压实效果主要依靠高压力和局部放电所产生的焊接效果。但是磁粉颗粒的局部放电会导致绝缘物质被击穿,降低压坯的局部乃至宏观电阻率,引起涡流损耗的提升。SPS技术亦会引起压坯的分层及梯度现象,导致压坯的局部致密度及电阻率控制的问题难以解决。另外,SPS工艺制备成本偏高,批量生产的推广有待考察。
发明内容
本发明公开了一种超声波增强磁粉芯压制成型方法,该方法简单,高效,易于批量生产,利用该方法制备的磁粉芯具有较高的饱和磁感应强度和初始磁导率,较低的矫顽力,有效降低磁致损耗。
一种超声波增强磁粉芯压制成型方法,包括:
(1)组建磁粉芯的压制成型设备,所述压制成型设备包括超声波底座;
超声波模具,设置在所述超声波底座上;
超声波振动机构,位于所述超声波模具上方;
气动系统,与所述超声波振动机构连接,用于驱动超声波振动机构;
(2)将混合粉末放置于超声波模具内,设定超声波振动机构的超声波频率为15–60kHz,振动幅度为70–90%,同时启动气动系统加压,完成磁粉芯的压制成型。
本发明通过超声振动,辅助一定压力,使得磁粉颗粒间高速运动摩擦产生热能从而完成压制,通过超声振动能够促进磁粉颗粒的运动与重排,提高压坯的致密度,提高参与压制成型粉末的体积分数,能够有助于提高磁粉芯的饱和磁感应强度;软磁粉末和绝缘物质的相对运动有助于绝缘层的均匀分布,保证绝缘效果基础上少量绝缘物质的添加有助于极薄绝缘层的控制,有利于磁粉颗粒间软磁耦合效果的提升,减少非磁性物质和气隙所引起的钉扎现象,提高初始磁导率和降低矫顽力,有效降低磁致损耗;绝缘物质的均匀分布,有利于改善磁粉芯的宏观电阻率,有效抑制随频率提升而引起的涡流损耗的增加;
步骤(1)中,所述的超声波振动机构包括:
超声波压头,位于所述超声波模具上方;
超声波增幅器,与所述压头连接,位于压头上方;
超声波换能器,与所述超声波增幅器连接,位于超声波增幅器上方,与超声波发生器连接;
所述超声波发生器接收50/60Hz的电流,将所述电流转换成高频电能输出至超声波换能器,超声波换能器产生同等频率的机械振动,并将所述的机械振动通过超声波增幅器传递到超声波压头。
通过超声波发生器将50/60赫兹电流转换成高频电能输出给换能器的压电陶瓷使换能器产生同等频率的机械振动,随后机械运动通过一套可以改变振幅的变幅杆装置,即超声波增幅器传递到压头。压头将接收到的振动能量传递到待压制金属粉末的接合部,在该区域,振动能量被通过摩擦方式转换成热能,将金属粉末进行压制。
步骤(1)中,所述的混合粉末的制备方法为:先通过绝缘材料将软磁原粉进行包覆得到包覆粉,然后将包覆粉进行混合得到混合粉末,所述的绝缘材料与所述的软磁原粉的质量比为0.6–3:100。
所述的混合粉末为软磁原粉。
所述的软磁原粉为金属或合金软磁粉末,所述的绝缘材料为绝缘粘接材料,所述的合金软磁粉末为非晶纳米软磁粉末或结晶软磁粉末。
所述的金属软磁粉末为羰基铁粉,所述的合金软磁粉末为Fe-Si-Al合金粉、Ni-Fe合金粉、Fe-Si-B-P合金粉或Fe-Si-B-C-Cr合金粉中的任意一种及多种。
进一步的,所述的绝缘材料为有机硅树脂、环氧树脂等其他类型绝缘粘接材料。
进一步优选的,所述绝缘材料与所述合金软磁粉末的质量比为0.6–1:100,所述合金粉末为Ni-Fe粉、Fe-Si-B-C-Cr粉和Fe-Si-Al粉,绝缘材料为有机硅树脂和环氧树脂。
步骤(2)中,所述的加压条件为:压力为0.3–0.9MPa,压制时间为0.1–10s,保压时间为1–5s。所述压制时间为超声作用时间,保压时间为超声作用后冲头在模具中停留时间。
合适的压力条件有助于保持软磁粉末的球形度,尽可能地避免磁粉的集肤效应和尖端放电,保证初始磁导率的高频稳定性。
进一步的,所述的压力为0.6MPa,压制时间为0.5s,保压时间为5s,超声波频率为15–60kHz,振动幅度为70–80%。
本发明还提供了所述的超声波增强磁粉芯压制成型方法制备得到的压粉磁芯。
所述的超声波增强磁粉芯压制成型方法所用到的原料包括软磁粉末和绝缘材料,所述软磁粉末为所述合金粉末为Ni-Fe粉、Fe-Si-B-C-Cr粉和Fe-Si-Al粉,所述绝缘材料为有机硅树脂和环氧树脂。
所述的超声波增强磁粉芯压制成型方法制备得到的压粉磁芯的饱和磁感应强度(Bs)大于0.9T,初始磁导率为40–60,铁损W0.1/100K时低于660mW/cm3
与现有技术相比,本发明的有益效果为:
(1)本发明利用超声波高频振动促进了软磁粉末颗粒的运动与重排,与一般压制成型方式例如冷压、热压、SPS法等压制成型工艺相比软磁粉末分散均匀性大大提高,同时软磁粉末的填充比例增加,非磁性物质的填充比例减少,使得磁粉芯的初始磁导率提高,矫顽力降低,磁滞损耗降低,饱和磁感应强度提高。以上效果有利于高频工况下高功率密度电子器件的小型化和轻量化发展。
(2)本发明提供的压制成型方法,通过超声振动促进软磁粉末颗粒间的运动与重排,降低粉末颗粒与模壁之间的摩擦,从而有效降低压力沿轴向的损失,提高压坯的致密度;有效提高软磁粉末的填充比例,提高粉末和绝缘物质分布的均匀性,减少非必要绝缘物质的添加,降低颗粒间的孔隙率,提高磁粉芯的饱和磁感应强度。
(3)本发明提供的压制成型方法中的绝缘层厚降低亦可提高磁粉芯的软磁耦合效果,减少非磁性物质和气隙所引起的钉扎现象,提高初始磁导率和降低矫顽力,有效降低磁致损耗。
(4)本发明提供的压制成型方法制备得到的磁粉芯中绝缘物质的均匀分布,有助于改善磁粉芯的宏观电阻率,有效抑制随频率提升而引起的涡流损耗的增加。
(5)本发明提供的压制成型方法仅需要较低的压力(低于0.9MPa),有助于保证磁粉的球形度,尽量避免磁粉的集肤效应,保证初始磁导率的高频稳定性。
(6)本发明提供的压制成型方法,压制时间短,制备周期短,有助于实现磁粉芯的批量生产,满足量产需求。
附图说明
图1为磁粉芯压制成型设备示意图;
图2为实施例1参与压制成型的软磁粉末的扫描电子显微镜(SEM)外观形貌图;
图3为实施例1压制成型的磁粉芯的磁学及电学性能数据图,a为磁滞回线图,b为铁损图,c为随频率变化的初始磁导率数据图;
图4为实施例2参与压制成型的软磁粉末的SEM外观形貌图;
图5为实施例2压制成型的磁粉芯的磁学及电学性能数据图,a为磁滞回线图,b为铁损图,c为随频率变化的初始磁导率数据图;
图6为实施例3参与压制成型的软磁粉末的SEM外观形貌图;
图7为实施例3压制成型的磁粉芯的磁学及电学性能数据图,a为磁滞回线图,b为铁损图,c为随频率变化的初始磁导率数据图;
图8为对比例1压制成型的磁粉芯的磁学及电学性能数据图,a为磁滞回线图,b为铁损图,c为随频率变化的初始磁导率数据图。
具体实施方式
1.本发明提供的磁粉芯压制成型设备,如图1所示,包括:
超声波底座;
超声波模具,设置在所述超声波底座上;
超声波振动机构,位于所述超声波模具上方;
气动系统,与所述超声波振动机构连接,用于驱动超声波振动机构。
2.上述中的超声波振动机构包括:
超声波压头,位于所述超声波模具上方,所述超声波压头内部设有超声波发生器;
超声波增幅器,与所述压头连接,位于压头上方;
超声波换能器,与所述超声波增幅器连接,位于超声波增幅器上方,与超声波发生器连接,并与压力传感器连接,压力传感器与施压直行器连接,施压直行器施加压力使得磁粉芯压制成型设备获得压力。
所述超声波发生器接收50/60Hz电流,将所述电流转换成电能输出至超声波换能器,超声波换能器产生同等频率的机械振动,并将所述的机械振动通过超声波增幅器传递到超声波压头。
本发明的下述实施例中均采用超声波增强磁粉芯压制成型设备。
实施例1
在本实施例中,所用软磁粉末材料为Ni-Fe粉,绝缘材料为有机硅树脂,其中,有机硅树脂与软磁粉末的质量比为1.5:100,将有机硅树脂溶解在丙酮中,加入磁性材料后搅拌至丙酮挥发完全后取出混合粉末,干燥后放入到超声波模具中进行压制。如图2所示,绝缘材料与软磁粉末分布均匀。
设置气动系统的压力为0.6MPa,压制时间为0.5s,保压时间为5s,超声波发生器的超声波频率为15kHz,超声波增幅器的振动幅度为80%,同时启动气动系统和超声波发生器,经压制成型后得到磁粉芯。
采用振动样品磁强计测量磁粉芯的磁学性能,如图3(a)所示,测得饱和磁感应强度(Bs)为1.0T;
采用湖南联众公司的2335A型宽频能量分析仪测量磁粉芯的铁损,如图3(c)所示,测定铁损W0.1/100k低于566.9mW/cm3
采用北京冠测精电仪器设备公司的体积表面积电阻测定仪测量磁粉芯的电学性能,测定其宏观电阻率为2.23×109Ω·mm3
采用安捷伦4294A精密阻抗分析仪测量磁粉芯的磁学性能,如图3(b)所示,测定初始磁导率为49并稳定在兆赫兹以内。
实施例2
与实施例1不同的是所用软磁粉末材料为Fe-Si-B-C-Cr非晶粉末,其中,有机硅树脂与非晶软磁粉末的质量比为1.5:100,将有机硅树脂溶解在丙酮中,加入磁性材料后搅拌至丙酮挥发完全后取出混合粉末,干燥后放入到超声波模具中进行压制,超声时间为0.5s,保压时间为5s;如图4所示,绝缘材料与软磁粉末分布均匀。
采用振动样品磁强计测量磁粉芯的磁学性能,如图5(a)所示,测得Bs为0.92T。
采用湖南联众公司的2335A型宽频能量分析仪测量磁粉芯的铁损,如图5(c)所示,测定铁损为W0.1/100k低于620mW/cm3
采用北京冠测精电仪器设备公司的体积表面积电阻测定仪测量磁粉芯的电学性能,其宏观电阻率为1.63×109Ω·mm3
采用安捷伦4294A精密阻抗分析仪测量磁粉芯的磁学性能,如图3(b)所示,测定初始磁导率为49并稳定在兆赫兹以内;
采用安捷伦4294A精密阻抗分析仪测量磁粉芯的磁学性能,如图5(b)所示,测定初始磁导率为52并稳定在兆赫兹以内。
实施例3
与实施例1不同的是所用软磁粉末材料为Fe-Si-Al粉末,绝缘物质为环氧树脂,环氧树脂与软磁粉末的质量比为2:100,将环氧树脂溶解在丙酮中,加入软磁粉末后搅拌至丙酮挥发完全后取出混合粉末,干燥后放入到超声波模具中进行压制,超声时间为0.5s,保压时间为5s;如图6所示,绝缘材料与软磁粉末分布均匀。
采用振动样品磁强计测量磁粉芯的磁学性能,如图7(a)所示,测得Bs为0.99T;
采用湖南联众公司的2335A型宽频能量分析仪测量磁粉芯的铁损,如图7(c)所示,测定铁损W0.1/100k低于659.4mW/cm3
采用北京冠测精电仪器设备公司的体积表面积电阻测定仪测量磁粉芯的电学性能,其宏观电阻率为6.54×109Ω·mm3
采用安捷伦4294A精密阻抗分析仪测量压制磁粉芯的磁学性能,如图7(b)所示,测定初始磁导率为48并稳定在兆赫兹以内。
对比例1
现有压制成型工艺的压制时间长,压力需求大,以及其磁学性能较差等。目前冷压工艺是应用较为广泛的磁粉芯压制成型技术,压制步骤如下:将磁性粉末材料装入模具中并放入压机上下压板中心位置,启动液压系统,设置压制参数并进行压制,结束后进行脱模。一个完整的压制过程需要3–5min,压力从600–1800MPa,初始磁导率为38–45并稳定在兆赫兹以内。
对比例1所用软磁粉末为Fe-Si-B-C-Cr非晶粉末,绝缘物质为有机硅树脂,有机硅树脂与非晶软磁粉末的质量比为1.5:100。将有机硅树脂溶解在丙酮中,加入软磁粉末后搅拌至丙酮挥发完全后取出混合粉末,干燥后放入到传统冷压成型模具中进行压制,压力为1500MPa。
采用振动样品磁强计测量磁粉芯的磁学性能,如图8(a)所示,测得Bs为0.78T;
采用湖南联众公司的2335A型宽频能量分析仪测量磁粉芯的铁损,如图8(c)所示,测定铁损W0.1/100k低于941.5mW/cm3
采用北京冠测精电仪器设备公司的体积表面积电阻测定仪测量磁粉芯的电学性能,其宏观电阻率为1.32×109Ω·mm3
采用安捷伦4294A精密阻抗分析仪测量磁粉芯的磁学性能,如图8(b)所示,测定初始磁导率为39并可以稳定在兆赫兹以内。

Claims (10)

1.一种超声波增强磁粉芯压制成型方法,其特征在于,包括:
将混合粉末放置于磁粉芯压制成型设备内,设定超声波频率为15–60kHz,振动幅度为70–90%,同时启动气动系统加压,完成磁粉芯的压制成型。
2.根据权利要求1所述的超声波增强磁粉芯压制成型方法,其特征在于,所述磁粉芯压制成型设备包括:
超声波底座;
超声波模具,设置在所述超声波底座上,所述的混合粉末位于所述超声波模具内;
超声波振动机构,位于所述超声波模具上方;
气动系统,与所述超声波振动机构连接,用于驱动所述超声波振动机构。
3.根据权利要求2所述的超声波增强磁粉芯压制成型方法,其特征在于,所述的超声波振动机构包括:
超声波压头,位于所述超声波模具上方;
超声波增幅器,与所述超声波压头连接,且位于所述超声波压头上方;
超声波换能器,分别与所述超声波增幅器和超声波发生器连接,且位于超声波增幅器上方;
所述超声波发生器将电流转换成高频电能输出至超声波换能器,超声波换能器产生同等频率的机械振动,并将所述的机械振动通过超声波增幅器传递到超声波压头。
4.根据权利要求1所述的超声波增强磁粉芯压制成型方法,其特征在于,所述的混合粉末的制备方法为:先通过绝缘材料将软磁原粉进行包覆得到包覆粉,然后将包覆粉进行混合得到混合粉末,所述的绝缘材料与所述的软磁原粉的质量比为0.6–3:100。
5.根据权利要求1所述的超声波增强磁粉芯压制成型方法,其特征在于,所述的混合粉末为软磁原粉。
6.根据权利要求4所述的超声波增强磁粉芯压制成型方法,其特征在于,所述的软磁原粉为金属或合金软磁粉末,所述的合金软磁粉末为非晶纳米软磁粉末或结晶软磁粉末,所述的绝缘材料为绝缘粘接材料。
7.根据权利要求5或6所述的超声波增强磁粉芯压制成型方法,其特征在于,所述的金属软磁粉末为羰基铁粉,所述的合金软磁粉末为Fe-Si-Al合金粉、Ni-Fe合金粉、Fe-Si-B-P合金粉或Fe-Si-B-C-Cr合金粉中的任意一种或多种。
8.根据权利要求6所述的超声波增强磁粉芯压制成型方法,其特征在于,所述的绝缘粘接材料为有机硅树脂或环氧树脂绝缘粘结材料。
9.根据权利要求1所述的超声波增强磁粉芯压制成型方法,其特征在于,所述的加压条件为:压力为0.3–0.9MPa,压制时间为0.1–10s,保压时间为1–5s。
10.根据权利要求1–9任一项所述的超声波增强磁粉芯压制成型方法制备得到的压粉磁芯。
CN202111042385.4A 2021-09-07 2021-09-07 一种超声波增强磁粉芯压制成型方法及压粉磁芯 Pending CN113871179A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111042385.4A CN113871179A (zh) 2021-09-07 2021-09-07 一种超声波增强磁粉芯压制成型方法及压粉磁芯

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111042385.4A CN113871179A (zh) 2021-09-07 2021-09-07 一种超声波增强磁粉芯压制成型方法及压粉磁芯

Publications (1)

Publication Number Publication Date
CN113871179A true CN113871179A (zh) 2021-12-31

Family

ID=78989826

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111042385.4A Pending CN113871179A (zh) 2021-09-07 2021-09-07 一种超声波增强磁粉芯压制成型方法及压粉磁芯

Country Status (1)

Country Link
CN (1) CN113871179A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114446628A (zh) * 2022-01-28 2022-05-06 中国第一汽车股份有限公司 一种软磁复合材料及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH104023A (ja) * 1996-06-14 1998-01-06 Sumitomo Metal Ind Ltd ボンド型永久磁石の製造方法
CN1274933A (zh) * 1999-05-19 2000-11-29 东芝株式会社 粘结磁铁、粘结磁铁的制造方法及使用该磁铁的传动装置
US20040052674A1 (en) * 2002-09-12 2004-03-18 Eicher Ronald M. Ultrasonic powdered metal compaction
JP2011011224A (ja) * 2009-06-30 2011-01-20 Kao Corp 固形粉末成型体の製造方法
JP2012117125A (ja) * 2010-12-02 2012-06-21 Institute Of National Colleges Of Technology Japan 粉末焼結体の製造方法および製造装置
CN104269262A (zh) * 2014-09-12 2015-01-07 广东工业大学 一种超声辅助压制一体成型电感的装置及方法
WO2020106125A1 (ko) * 2018-11-23 2020-05-28 한국생산기술연구원 초음파 진동을 이용한 연자성체 제조장치, 제조방법 및 이를 이용하여 제조되는 연자성체
CN112397295A (zh) * 2020-09-25 2021-02-23 宁波中科毕普拉斯新材料科技有限公司 一种一体成型电感的制造方法
CN112908604A (zh) * 2021-01-21 2021-06-04 广东省科学院材料与加工研究所 一种铁基非晶复合磁粉芯及其制备方法
CN113077953A (zh) * 2021-03-26 2021-07-06 安徽工业大学 一种基于磁交换长度提升铁基磁粉芯导磁性的方法及产品

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH104023A (ja) * 1996-06-14 1998-01-06 Sumitomo Metal Ind Ltd ボンド型永久磁石の製造方法
CN1274933A (zh) * 1999-05-19 2000-11-29 东芝株式会社 粘结磁铁、粘结磁铁的制造方法及使用该磁铁的传动装置
US20040052674A1 (en) * 2002-09-12 2004-03-18 Eicher Ronald M. Ultrasonic powdered metal compaction
JP2011011224A (ja) * 2009-06-30 2011-01-20 Kao Corp 固形粉末成型体の製造方法
JP2012117125A (ja) * 2010-12-02 2012-06-21 Institute Of National Colleges Of Technology Japan 粉末焼結体の製造方法および製造装置
CN104269262A (zh) * 2014-09-12 2015-01-07 广东工业大学 一种超声辅助压制一体成型电感的装置及方法
WO2020106125A1 (ko) * 2018-11-23 2020-05-28 한국생산기술연구원 초음파 진동을 이용한 연자성체 제조장치, 제조방법 및 이를 이용하여 제조되는 연자성체
CN112397295A (zh) * 2020-09-25 2021-02-23 宁波中科毕普拉斯新材料科技有限公司 一种一体成型电感的制造方法
CN112908604A (zh) * 2021-01-21 2021-06-04 广东省科学院材料与加工研究所 一种铁基非晶复合磁粉芯及其制备方法
CN113077953A (zh) * 2021-03-26 2021-07-06 安徽工业大学 一种基于磁交换长度提升铁基磁粉芯导磁性的方法及产品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114446628A (zh) * 2022-01-28 2022-05-06 中国第一汽车股份有限公司 一种软磁复合材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN104036906B (zh) 一种金属软磁复合材料的流延温等静压复合成型制备方法
CN101684520B (zh) 超声辅助致密化装置
CN108558398B (zh) 一种脉冲放电室温闪速烧结纳米陶瓷材料的方法
CN104036907A (zh) 一种温压成型制备金属软磁复合材料的方法
JP6303356B2 (ja) RFeB系磁石の製造方法
CN103666364B (zh) 金属软磁复合材料用有机绝缘粘结剂及制备金属软磁复合材料方法
CN101503297B (zh) 旋转磁场中梯度材料的流延成型制备方法
CN103730225A (zh) 一种非晶软磁磁粉芯的制备方法
CN106409492A (zh) 一种电感温压成型方法及利用该方法制备的电感
CN113871179A (zh) 一种超声波增强磁粉芯压制成型方法及压粉磁芯
CN1915626B (zh) 脉冲磁场中强磁-弱磁梯度材料流延成型制备方法
CN111640552B (zh) 一种永磁体压制成型方法及装置
CN106890999B (zh) 一种非晶或纳米晶软磁磁粉芯的制备方法
CN113724994B (zh) 一种高密度合金磁芯及其制备方法
CN113555178A (zh) 一种双主相软磁复合材料及其制备方法
CN104084586B (zh) 一种软磁复合材料的压滤制备方法
CN113077953A (zh) 一种基于磁交换长度提升铁基磁粉芯导磁性的方法及产品
CN101823146B (zh) 一种金属粉末的高速冲击压制方法
CN115064344A (zh) 一种浇注式功率电感及其制备方法
CN108329021A (zh) 低频电流传感器磁芯材料及其制备方法
JP6174954B2 (ja) 圧粉成形体の製造方法
CN108878127A (zh) 一种高致密度软磁复合铁芯及其制备方法
Meng et al. Effects of processing parameters on density and electric properties of electric ceramic compacted by low-voltage electromagnetic compaction
CN117464004A (zh) 一种非晶合金的制备方法及非晶合金的制备设备
CN116631761A (zh) 一种基于超声的软磁粉材压制成型方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination