JPH104023A - ボンド型永久磁石の製造方法 - Google Patents

ボンド型永久磁石の製造方法

Info

Publication number
JPH104023A
JPH104023A JP15419196A JP15419196A JPH104023A JP H104023 A JPH104023 A JP H104023A JP 15419196 A JP15419196 A JP 15419196A JP 15419196 A JP15419196 A JP 15419196A JP H104023 A JPH104023 A JP H104023A
Authority
JP
Japan
Prior art keywords
powder
molding
mold
magnetic
compression molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15419196A
Other languages
English (en)
Inventor
Yoshiyuki Hashimasa
好行 橋正
Masakazu Okita
雅一 大北
Naoyuki Ishigaki
尚幸 石垣
Nobutsugu Mino
修嗣 三野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Sumitomo Special Metals Co Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP15419196A priority Critical patent/JPH104023A/ja
Publication of JPH104023A publication Critical patent/JPH104023A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Abstract

(57)【要約】 【課題】 熱硬化性樹脂で被覆した磁石粉末を圧縮成形
するボンド型永久磁石の製造において、圧縮成形時に金
型を加熱せずに磁石粉末を加熱する手段により、長尺の
磁石でも高密度かつ均一に圧縮成形する。 【解決手段】 圧縮成形前に、成形機のパンチまたは金
型に周波数10〜40 kHz、振幅100 μm以下の超音波振動
を0.5 秒間以上付与して成形用粉末を超音波振動させて
粉末を加熱して、好ましくは樹脂を溶融させる。この超
音波振動の付与時に金型内の粉末の充填密度をその自然
充填時の見掛け密度の1.02〜2.0 倍にする。それによ
り、充填密度によって粉末の加熱温度を制御できる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、圧縮成形により磁
気特性に優れたボンド型永久磁石を製造する方法に関す
る。より詳しくは、L/S比 (Lは高さ、Sは断面積)
が1を超える長尺のボンド磁石でも均一かつ高密度のボ
ンド型永久磁石を製造することができる方法に関する。
【0002】
【従来の技術】ボンド型永久磁石(以下、ボンド磁石と
いう)は、ハードフェライトや希土類合金などの永久磁
石(硬磁性)材料の粉末(以下、磁粉という)を、樹脂
をバインダーとして結合し賦形した磁石である。
【0003】粉末冶金の手法により磁粉を焼結した焼結
磁石に比べ、ボンド磁石は、磁性を発現しない樹脂分を
含むため磁気特性はいくらか劣るが、焼結による収縮が
ないため寸法精度が良く、種々の形状の磁石が樹脂の成
形法を適用して簡単に製造できるという特徴がある。そ
のため、一般家庭の各種電気製品から大型コンピュータ
ーの周辺端末機器に至るまで広く応用されており、特に
スピンドルモーター、ステッピングモーター等の小型モ
ーターに近年多く用いられている。
【0004】このボンド磁石の成形方法としては、射出
成形、押出成形、圧縮成形などが可能である。射出成形
と押出成形では、バインダーにポリアミド樹脂、ポリプ
ロピレン樹脂などの熱可塑性樹脂を用いる。磁粉を加熱
溶融した樹脂と混練し、ペレット化した後、ペレットを
射出成形機または押出成形機に供給して成形を行う。成
形温度は樹脂種により異なるが、ポリプロピレン樹脂の
場合で 200〜250 ℃、ポリアミド樹脂では 250〜300 ℃
である。
【0005】射出成形や押出成形では、磁粉と樹脂との
混合物が成形温度で流動する必要があるため、一般に磁
粉の混合割合が圧縮成形に比べて少なく、製品の磁気特
性が低くなるという欠点がある。
【0006】圧縮成形(プレス成形ともいう)では、バ
インダーにエポキシ樹脂、フェノール樹脂、ポリエステ
ル樹脂などの熱硬化性樹脂を用いる。磁粉をバインダー
の熱硬化性樹脂で被覆した「コンパウンド」と呼ばれる
成形用粉末を作製し、これを金型に充填し、上下のパン
チ(片パンチのこともある)で加圧 (プレス) して賦形
する。得られた成形体を別の加熱設備で加熱して熱硬化
性樹脂を硬化させると、ボンド磁石が得られる。樹脂を
最終的に熱硬化させて製品強度を確保するので、プレス
後の成形体の強度は、加熱設備への搬送に必要なハンド
リングが可能な程度であればよい。そのため、圧縮成形
の温度は通常は室温である。
【0007】圧縮成形では、成形時の流動性が必要ない
ため、射出成形や押出成形に比べて、磁粉の充填率を大
きくすることができ、より高い磁気特性を得ることが可
能である。圧縮成形に対しては、磁粉の充填率の増大に
よる磁気特性のさらなる向上を目的として種々の改良が
加えられてきた。
【0008】例えば、11 ton/cm2以上の高い加圧力で圧
縮成形する高圧プレス法 (特開昭60−207302号公報) 、
磁粉の表面を潤滑剤でコーティングする等の手法で潤滑
剤を適用して圧縮成形中の磁粉間および磁粉と樹脂間の
摩擦を低減させる方法 (特開昭60−220920号、特開昭62
−264602号、特開平3−74810 号各公報) 、常温で液状
の熱硬化性樹脂を用いる方法 (特開平2−262303号公
報) 、常温で固体の熱硬化性樹脂を用い、金型を予め加
熱しておいて樹脂を溶融させ、潤滑性を高めた状態で圧
縮成形する温間圧縮成形法 (特開昭60−194509号、特開
平4−80901 号各公報) 、磁粉と樹脂粉末との粉体混合
物を超音波振動を印加しながら加圧する方法 (特開昭63
−229707号公報) などが提案されている。
【0009】また、磁粉の磁気特性向上についても近年
盛んに研究され、Sm2Co17 系やNd−Fe−B系などの希土
類合金系の磁粉では、どの方向に磁化しても同じ磁気特
性を発現する従来の等方性磁粉より優れた磁気特性を示
す、磁気異方性の磁粉 (以下、異方性磁粉という) が開
発されている。
【0010】この異方性磁粉は、ある決まった特定方向
(磁化容易方向) の磁気特性が極めて高いので、成形時
に磁場を印加し、磁粉の磁化容易方向が磁場の磁束線の
方向に揃うように磁粉を配向させ、磁気異方性の磁石と
する。磁場の印加は、金型の周囲に磁場コイルを配置し
て行うのが普通である。磁気異方性の磁石では、異方性
磁粉の配向度が高くなるほど磁気特性が向上する。
【0011】
【発明が解決しようとする課題】圧縮成形では、パンチ
により金型内の成形用粉末(樹脂被覆した磁粉) に圧力
を加える。しかし、金型壁面での摩擦や粉末間の摩擦に
より圧力伝達が低下するため、パンチから離れるほど成
形用粉末(従って、磁粉)の充填率が低下する傾向があ
る。そのため、特にL/S比が1を超える長尺の磁石を
成形する場合には、磁石密度の不均一や成形割れを生ず
ることがある。
【0012】前述した従来の充填率改善策では、温間圧
縮成形法を除いてこの問題を十分には解決できない。ま
た、これらの従来法は、次に説明するように、いずれも
工業的には許容しえない問題点を含んでいる。
【0013】例えば、11 ton/cm2以上の高い加圧力で圧
縮成形する方法は、圧縮成形機の大型化が避けられず、
コスト高になる上、高い加圧力によりパンチやダイの摩
耗、損傷が著しくなる。また、パンチなどの強度から加
圧力の著しい増大には困難がある。さらに、磁粉の種類
によっては、加圧力を高くすると磁粉が損傷し、磁気特
性が低下する。これは、特に熱処理により磁気異方性を
発現させた異方性磁粉に顕著に見られる。
【0014】潤滑剤の適用は磁気特性の改善効果はいく
らかあるものの、樹脂による結合力が弱まるためボンド
磁石の機械的強度が低下し、成形後の保形性も低下す
る。
【0015】常温で液状の熱硬化性樹脂を用いる方法
は、この樹脂と磁粉との混練物の流動性が乏しい (磁粉
がくっつき易い) ため、金型への充填が再現性よく行え
ず、密度分布にばらつきがあり、成形後の保形性が良く
ない。
【0016】金型を磁粉の被覆樹脂の軟化温度より高温
に加熱して圧縮成形を行う温間圧縮成形法は、樹脂が成
形中に流動して磁粉間の空隙を埋め、かつ溶融状態の樹
脂が潤滑作用も発揮するため、磁石密度の均一化や充填
率の向上には大きな効果があるが、次に説明するよう
に、生産性が極端に低下するという問題がある。
【0017】即ち、温間圧縮成形法では、金型を加熱し
て成形を行った後、直ちに次回の成形用粉末を金型に供
給しても、金型がまだ熱いため樹脂が軟化して金型に付
着するので、金型内に均一に充填できない。そのため、
金型の加熱と冷却が1回の成形作業ごとに不可欠であ
り、1回の成形に要する時間 (プレスサイクルタイム)
が著しく長くなり、単位時間当たりの生産個数が大幅に
減少する。
【0018】また、L/S比が例えば3以上と成形体が
さらに長尺になると、加熱する金型が大型になるため、
金型自体に温度分布が生じ易く、金型の加熱冷却も簡便
には実施できなくなる。また、金型内部の成形用粉末は
伝熱により加熱されるので、成形体の断面積が大きくな
ると金型内部の粉末の加熱に長時間を要し、その均一加
熱も難しくなる。
【0019】この対策として、予め加熱された複数の金
型を順次交換していくロータリープレス方式がある。こ
の方式は、磁場コイルが不要な等方性磁粉の場合には、
金型構造が簡単なため工業生産に適用できるが、金型に
磁場コイルを付設して磁場中で成型を行う異方性磁粉で
は、金型構造が複雑になるため工業生産には適用が困難
である。また、いずれにしても特殊な圧縮成形設備が必
要であり、コストまたは設備上の制約から実施しにくい
ことが多い。
【0020】磁粉と樹脂粉末との混合物を金型に装入
し、超音波振動を印加しながら加圧する特開昭63−2297
07号公報に記載の方法では、大きな加圧力を加えないと
超音波振動の印加中に比重の異なる磁粉と樹脂粉末とが
分離してしまい、均一な成形体が得られない。この公報
の実施例には成形が冷間加圧成形と記載されていて、こ
の方法で磁粉が加熱されることは示唆されていない。圧
縮成形中に超音波振動を印加するため、磁粉の振動によ
る粉末間の摩擦発熱がおこりにくいためと考えられる。
従って、この方法では、超音波振動による磁粉の充填率
の向上に基づく磁気特性の改善は得られるが、温間圧縮
成形法のような磁粉の加熱に基づく磁粉充填率の向上効
果は期待できない。さらに、加圧時に超音波振動を印加
することは、振動子に過大な負荷をかける。
【0021】本発明の目的は、磁石が長尺であっても、
特殊または大型の圧縮成形装置を必要とせずに、比較的
低い加圧力で、均一かつ高い充填密度の成形体を得るこ
とができ、それにより磁石密度の不均一や成形割れが確
実に防止される、圧縮成形によるボンド磁石の製造方法
を提供することである。
【0022】具体的には、金型の加熱を行わずに金型内
の成形用粉末のみを均一に樹脂の溶融温度以上に加熱で
きる手段により、前述した温間圧縮成形法の問題点を伴
わずにその効果を得ることができる成形方法を確立する
ことが本発明の課題である。
【0023】
【課題を解決するための手段】本発明者らは、熱硬化性
樹脂で被覆された磁粉を圧縮成形するボンド磁石の製造
過程において、圧縮成形前に超音波振動を金型またはパ
ンチに付与すると、金型を加熱しなくても粉末の振動に
よる摩擦熱で磁粉を加熱することができ、場合によって
はこの加熱で磁粉を被覆している熱硬化性樹脂を溶融さ
せることができるので、温間圧縮成形法と同様に磁粉を
金型内に均一かつ高密度に充填できることを究明した。
【0024】そこで、超音波振動の付与によって効率よ
く磁粉を加熱するための条件について検討した結果、超
音波振動の特性に加えて、超音波振動を付与する時の磁
粉の充填密度が大きく影響し、これらの条件を適切に選
択することにより粉末の加熱温度を制御することができ
ることを見出した。
【0025】ここに、本発明は、磁粉を熱硬化性樹脂で
被覆した成形用粉末を圧縮成形機の金型に充填して圧縮
成形し、得られた成形体を加熱して熱硬化性樹脂を硬化
させることからなるボンド型永久磁石の製造方法であっ
て、圧縮成形前に、金型内の成形用粉末と接触している
少なくとも1つの圧縮成形機の部材に周波数10〜40 kH
z、振幅100 μm以下の超音波振動を0.5 秒間以上付与
して成形用粉末を超音波振動させることにより該粉末を
加熱し、この超音波振動の付与時の成形用粉末の金型内
での充填密度が成形用粉末の自然充填時の見掛け密度の
1.02〜2.0 倍であることを特徴とする、ボンド型永久磁
石の製造方法である。
【0026】本発明において、成形用粉末の自然充填時
の見掛け密度(以下、単に見掛け密度をいう)とは、こ
の粉末を自然状態 (即ち、無加圧、無振動) で容器内に
充填した時のかさ密度であり、体積既知の容器内に成形
用粉末を自然状態で容器一杯に充填した時の質量を容器
体積で除した値である。
【0027】一方、充填密度とは、金型に充填した成形
用粉末のかさ密度、即ち、充填した粉末の質量を粉末が
占める体積で除した値である。この充填密度が見掛け密
度の1.02〜2.0 倍ということは、何らかの作用で自然状
態より密に成形用粉末が充填されていることを意味す
る。例えば、金型内の成形用粉末をパンチによる圧下力
で上記の充填密度に調整した時には、充填した成形用粉
末の質量をパンチと金型で規定される体積 (図1の金型
室6内の体積) で除した値が充填密度になる。
【0028】好適態様にあっては、磁粉を被覆する熱硬
化性樹脂が常温で固形のものであり、超音波振動の付与
により熱硬化性樹脂の軟化温度以上で硬化開始温度未満
の温度に成形用粉末を加熱する。また、成形体がL/S
比1を越える長尺成形体である場合に本発明は特に顕著
な効果を発揮する。
【0029】
【発明の実施の形態】本発明で圧縮成形に用いる粉末
は、従来の圧縮成形で製造したボンド磁石と同様に、磁
粉を熱硬化性樹脂で被覆したものである。この樹脂被覆
した磁粉を、本発明では成形用粉末という。
【0030】磁粉を構成する磁石材料の種類は特に制限
されず、従来よりボンド磁石に用いられてきたハードフ
ェライトや、Sm−Co系やNd−Fe−B系などの希土類系合
金の粉末が使用できる。磁気異方性についてもその有無
は問わない。磁気異方性の磁粉を用いた場合、本発明方
法では圧縮成形中の超音波振動の付与により磁粉の回転
が容易となり、配向度が向上するため、磁気特性が改善
される。また、金型の加熱を必要としないので、磁場中
圧縮成形を容易に実施できる。
【0031】さらに、本発明方法は、従来の冷間圧縮成
形、さらには温間圧縮成形法に比べても、より低い加圧
力で成形できるので、磁粉の強度が比較的低く、圧縮成
形時の磁粉の損傷・破壊により磁気特性が低下し易い、
磁気異方性の希土類合金系磁粉に対して特に有効であ
る。
【0032】磁粉の粒度も広範囲に適用可能であるが、
平均粒径 0.5〜350 μm、特に1〜200 μmの範囲内が
好適である。0.5 μm未満では加熱に時間を要し、生産
性が悪くなる。350 μmを越えると、磁石中の空孔サイ
ズが大きくなるので、表面処理 (ボンド磁石を必要によ
り塗装および/またはメッキする処理) に問題を生ず
る。
【0033】バインダーとして用いる熱硬化性樹脂は特
に制限されず、従来よりボンド磁石に使用されてきたエ
ポキシ樹脂、フェノール樹脂、ポリエステル樹脂などが
使用できる。樹脂の常温での性状は液状でも固形でもよ
いが、金型への投入のし易さからは固形が方が好まし
い。さらに、固形樹脂の融点 (または軟化温度) が45〜
90℃の範囲であることが特に好ましい。融点が45℃未満
であると、超音波で加熱された成形用粉末からの伝熱に
よる金型表面温度の上昇がある程度避けられないため、
金型への投入時に成形用粉末が金型に付着して投入しに
くくなることがある。逆に、融点が95℃を越えると、超
音波による加熱に時間を要するため、生産速度の低下が
大きくなる。
【0034】熱硬化性樹脂による磁粉の被覆 (即ち、成
形用粉末の調製) は、押出機等を用いた溶融混練法や、
溶液法等の慣用の方法が適用できる。磁粉に対する樹脂
の混合比率は1〜20wt%とするのが好ましい。この混合
比率が1wt%未満では、成形されたボンド磁石内の磁粉
の結合が不十分となり、成形性が悪く、得られた成形体
および最終的に得られるボンド磁石の機械的強度が著し
く低下する。一方、樹脂の混合比率が20wt%を越える
と、磁粉の割合が低すぎ、磁気特性の低下が著しくな
る。樹脂の混合比率はより好ましくは2〜10wt%であ
り、最も好ましくは2〜5wt%である。
【0035】成形用粉末には、熱硬化性樹脂と磁粉の他
に、必要に応じて、カップリング剤、潤滑剤などの従来
より用いられてきた各種の添加剤を少量であれば添加し
てもよい。
【0036】本発明の方法によれば、成形用粉末を圧縮
成形機の金型に充填した後、パンチにより加圧して圧縮
成形する前に、圧縮成形機の部材を介して成形用粉末を
超音波振動させる。それにより、粉末間の摩擦熱や被覆
樹脂の内部摩擦熱によって、金型を加熱することなく、
成形用粉末が加熱される。
【0037】超音波としては、周波数10〜40 kHz、振幅
1〜100 μmのものが適用できる。周波数が10 kHz未満
か、40 kHzを越える超音波、または振幅1μm未満の超
音波では、超音波振動による成形用粉末の加熱に時間を
要しすぎる。振幅が100 μmを越える超音波では、超音
波振動により誘発される磁粉の破壊が著しくなり、ボン
ド磁石の磁気特性が低下する。好ましくは、周波数が15
〜35 kHz、振幅が5〜50μmの超音波を適用する。
【0038】超音波振動の付与時間は0.5 秒以上とす
る。0.5 秒より短い時間では、所定の発振条件への立上
がりが急激となり、超音波発振の制御が困難で実際的で
はない。この付与時間は、成形用粉末のバインダー樹脂
が固形樹脂である場合には、これを溶融させるのに必要
な時間とすることが好ましい。生産性を考慮すると、超
音波振動の付与時間は10秒以下、特に5秒以下が好まし
いので、この範囲の超音波付与時間で熱硬化性樹脂が所
望の温度まで加熱されるように超音波の周波数、振幅を
選択することが好ましい。
【0039】超音波振動は、金型内の成形用粉末と接触
している圧縮成形機の少なくとも1つの部材、例えば、
上下パンチで加圧する方式の圧縮成形機の場合には、上
パンチ、下パンチ、金型の少なくとも1つに付与する。
具体的には、その部材に超音波ホーンを取り付けること
により超音波振動させることができる。リング形状のボ
ンド磁石では、コア (リング状磁石の中空部に相当する
位置に配置した円柱状の部材で、リング状の下パンチの
中央にある) を超音波振動させてもよい。
【0040】超音波振動の付与時に、金型内に充填した
成形用粉末の充填密度の見掛け密度に対する比 (以下、
充填密度比という) が1.02〜2.0 の範囲になるようにす
る。この比が2を越えるように密に成形用粉末を充填し
た状態で超音波振動を付与すると、振動中の磁粉の破壊
による磁気特性の低下が生じやすく、また粉末自体の振
動が極度に制限されるため、成形用粉末の加熱効率が低
下し、充填率の向上効果もやや小さくなる。一方、充填
密度比が1.02未満、即ち、ほぼ見掛け密度と等しいと、
粉末の振動は制限されないが、粉末間の空隙が大きくな
り、粉末間の摩擦熱の発生量が少なくなるため、やはり
加熱効率が低下する。
【0041】成形用粉末の充填密度比が1.02〜2.0 の範
囲であると、粉末の振動の制限は小さく、かつ粉末間の
空隙も摩擦熱発生が低下するほどには大きくないので、
加熱効率が高く、振動中の磁粉の損傷も少ない。つま
り、加熱効率には粉末間の空隙の大きさが影響し、本発
明ではこの空隙の大きさを、見掛け密度に対する充填密
度の比で規定しているのである。
【0042】成形用粉末の充填密度比が上記範囲である
場合、図2に示すように、充填密度が増すほど加熱効率
は低下することが判明した。従って、充填密度によって
加熱効率 (即ち、加熱温度) を制御できる。つまり、加
熱温度は、前述した超音波振動自体のパラメータに加え
て、粉末の充填密度によっても制御できる。
【0043】成形用粉末の充填密度の調整は、金型内の
成形用粉末をパンチで軽く加圧することにより行うのが
簡便である。この場合、充填密度比は、加圧前の粉末の
体積に対する加圧後の粉末の体積 (即ち、金型とパンチ
で規定される体積) の比で規定されるので、調整も容易
である。しかし、金型に充填した成形用粉末を揺動させ
るといった他の手段で充填密度を上記範囲内に調整して
もよい。
【0044】充填密度の調整は、成形用粉末が超音波振
動する前または振動の開始と同時に行うことが好まし
い。例えば、金型内の成形用粉末を予めパンチで上記の
ように軽く圧下してから、圧縮成形機のパンチまたは金
型への超音波振動の付与を開始して、成形用粉末を超音
波振動させることができる。或いは、超音波振動を付与
した上パンチで金型内の成形用粉末を軽く圧下してもよ
い。この場合には、充填密度の調整と成形用粉末の超音
波振動とがほぼ同時に起こる。
【0045】超音波振動を付与する間に成形用粉末の充
填密度は増大する。この増大によって充填密度比が2.0
を超えることがある。その場合でも加熱効果はあるが、
加熱効率が低下するので、超音波振動付与後の充填密度
比が2.0 を超えないようにすることが好ましい。逆に、
超音波付与開始時の成形用粉末の充填密度比1.02未満で
あっても、付与中に充填密度が増大して充填密度比が1.
02以上になることがある。この場合も、充填密度比が1.
02以上になってから超音波振動が0.5 秒以上付与されて
いればよいが、やはり全体の加熱効率は低下する。加熱
効率を考慮すると、超音波振動の付与時の充填密度比は
1.02〜1.8 、特に1.04〜1.3 の範囲内と低めに調整する
ことが好ましい。
【0046】上パンチに超音波振動を付与する場合に
は、超音波振動の付与中に成形用粉末の充填密度が増大
して、粉末の高さが減少していくので、粉末と接触する
ように上パンチを下げていく必要がある。その場合、上
パンチを過度に下げすぎると、充填密度が必要以上に増
大し、加熱効率が低下するので、超音波振動による高さ
の減少に見合う速度で上パンチを下げることが好まし
い。
【0047】上記のように超音波振動を付与した後、超
音波振動を停止し、成形用粉末をパンチにより加圧して
圧縮成形を行う。この時の加圧力は、加熱設備までのハ
ンドリングに必要な強度を持った成形体が得られるよう
に選択すればよく、特に制限されない。本発明によれ
ば、超音波振動の付与により成形用粉末の充填密度が増
大し、また好ましくは樹脂が溶融しているため、従来の
冷間圧縮成形、さらには温間圧縮成形成形に比べても、
より低い加圧力で賦形することができる。具体的には、
長尺成形体であっても3ton/cm2 以下、好ましくは2.0
ton/cm2 以下の加圧力で、十分な強度の成形体を得るこ
とができる。
【0048】磁粉が磁気異方性を有する粉末である場
合、従来と同様に、磁場コイルなどを付設した金型を用
いて、圧縮成形中に金型内の成形用粉末に所定の横磁場
または縦磁場を印加し、磁粉の磁化容易方向が揃うよう
に成形用粉末を回転させる。この磁場の印加は、超音波
振動の付与中も行うことが好ましい。超音波振動の付与
中に磁場を成形用粉末に印加することで、磁粉が容易に
磁化容易方向に揃い、配向度、従って、磁気特性が向上
する。
【0049】圧縮成形した成形体を加熱設備に移して、
好ましくは不活性ガス雰囲気中で加熱して熱硬化性樹脂
を硬化させると、ボンド磁石が得られる。加熱条件は熱
硬化性樹脂の種類や磁石の寸法に応じて当業者が適当に
選択することができる。得られたボンド磁石には、必要
により、常法に従って塗装やメッキなどの表面処理を施
す。
【0050】本発明の方法によれば、圧縮成形する前
に、一定の充填密度に充填した金型内の成形用粉末を、
圧縮成形機の部材を介して超音波振動させることによ
り、金型を加熱せずに、成形用粉末のみを高い加熱効率
で均一に加熱することができる。この加熱により磁粉を
被覆している熱硬化性樹脂が溶融あるいは粘度低下する
ので、従来の温間圧縮成形法と同様の潤滑性向上と磁粉
充填率の向上の効果を得ることができる。
【0051】また、加熱した金型からの伝熱により成形
用粉末を加熱する従来の温間圧縮成形法に比べて、一般
に加熱時間が短時間ですみ、超音波振動を付与する際の
粉末の充填密度によって成形用粉末の加熱温度を制御す
ることが可能であるので、必要以上に加熱せずに上記の
効果を得ることができる。さらに、超音波振動の付与中
に粉末の充填密度が向上し、粉末の回転が起こるので、
従来の温間圧縮成形法よりさらに低い加圧力で成形可能
となり、異方性磁粉の磁場中圧縮成形では配向度が向上
して磁気特性が改善される。
【0052】金型は、成形用粉末からの伝熱による多少
の表面温度の上昇は起こるものの、樹脂の溶融を生ずる
ほどには昇温しないので、通常は次回の成形までに冷却
を行う必要はない。従って、ロータリープレスを使用し
なくてすむので、異方性磁粉の場合の磁界中成形にも容
易に適用できる。必要であれば、後述するように金型に
温度調節装置を付設してもよい。
【0053】前述したように、圧縮成形では加圧パンチ
面からの距離が増すにつれ加圧力の圧力伝達が低下する
ので、成形高さが大きくなるにつれ、中心部の成形体密
度が低下する。そのため、長尺成形体では成形体密度の
低下やバラツキが起こり易く、成形体強度や保形性が低
下する。
【0054】また、従来の金型加熱による温間圧縮成形
法では、長尺成形体の場合、大型の金型の加熱冷却に時
間がかかり生産性が著しく低くなる。しかも、大型の金
型を均一に加熱することや、金型からの伝熱で粉末を内
部まで均一に加熱することも困難であるため、粉末の温
度分布が不均一になり易い。その結果、潤滑性や充填率
の向上効果が部位により変動し、磁石密度のバラツキが
一層大きくなる。
【0055】本発明によれば、上記のような欠点が解消
される。即ち、付与した超音波振動のエネルギー吸収効
率は、成形体粉末の量が多いほど高くなる (吸収されず
に粉末を通過するエネルギーが低減する) ので、長尺成
形体でも、長尺ではない成形体と実質的に同程度に成形
体粉末を加熱することができ、また成形体の寸法によら
ず内部まで均一に加熱することができる。さらに、機械
的な振動による粉末充填率の向上効果も得られるので、
成形高さが高くなった場合でも、密度の低下やバラツキ
のない成形体が得られる。つまり、成形高さにかかわら
ず、密度が比較的一定かつ均一で、しかも高い成形体を
得ることができ、成形体強度と保形性が向上する。
【0056】また、長尺成形品を短いプレスサイクルタ
イムで量産する場合でも、必要に応じて簡単な温度調節
装置を金型に付設し、金型を樹脂の融点以下に保ってお
けば十分である。この温度調節装置としてはファンなど
による空冷式装置を付与しても良く、また、冷媒等を含
む配管を付設してもよい。
【0057】
【実施例】以下、実施例により本発明の効果を例証す
る。実施例中、%および部は特に指定のない限り重量%
および重量部である。
【0058】磁粉の調製 原子分率で13%のNd、12%のCo、1%のGa、6%のB、
残部がFeとなるNd−Fe−B合金を 970〜1170Kの水素ガ
ス中に保持して、Nd水素介在物、Fe2B、Feに分解した。
次に、この温度領域で水素圧を下げ、Nd水素化物から水
素を解離させ、磁気異方性の微細なNd2Fe14B結晶体の磁
粉を得た。この磁粉をさらに機械的に粉砕して得た、平
均粒径150 μmの磁気異方性Nd合金系 (以下、Nd異方性
と記す)の磁粉を使用した。
【0059】成形用粉末の作製 熱硬化性樹脂として、常温で固体のエポキシ化合物 (ク
レゾールノボラック型エポキシ樹脂) に硬化剤としてポ
リアミン系化合物を配合した熱硬化性エポキシ樹脂 (融
点57℃、硬化開始温度140 ℃) を用いた。
【0060】この熱硬化性エポキシ樹脂をメチルエチル
ケトンに溶解して樹脂液を調製し、得られた樹脂液と上
記のNd異方性磁粉とを混合した後、メチルエチルケトン
を蒸発させ、次いで乳鉢で解砕して成形用粉末を得た。
配合割合は、磁粉100 部に対して樹脂 (固形分) 3部の
割合とした。
【0061】圧縮成形は、図1に示す磁場中圧縮成形機
を用いて、断面積10mm×10mmの正方形の成形体を得るよ
うに行った。この圧縮成形機では、図1からわかるよう
に、超音波振動子2からブースター3、ホーン4を介し
て上パンチ5に超音波振動を付与でき、また金型9内の
成形用粉末6に対しては、磁化コイル7から圧下方向に
垂直な横磁場を印加できる。金型9には温度調節用配管
10が取り付けられており、金型温度を一定に保つことが
できるようになっている。
【0062】表1に示すL/S比の成形体を生ずる量の
上記成形用粉末を、金型 (温度調節の有無は表1に表
示) 内に投入した後、13 kOeの横磁場中で、表1に示し
た周波数と振幅の超音波振動を付与した上パンチを下降
させて、表1に示す充填密度比になるまで圧下した。従
って、表1に示す充填密度比は、実質的に粉末の超音波
振動開始時の値である。
【0063】超音波振動は、圧下時から計測して表1に
示す時間が過ぎた時点で停止した。その間、上パンチが
粉末と接触するように必要により上パンチを下げた。超
音波停止の直後の成形用粉末の温度と金型温度 (温度調
節していない場合のみ) を測定した。その後、横磁場を
保持しながら、直ちに表1に示す加圧力で圧縮成形を行
った。加圧力の保持時間は3秒間であった。
【0064】従来例として、超音波振動を付与せずに、
従来の常温プレス法または温間圧縮成形法 (金型温度を
80℃に温度調節して成形用粉末を加熱) により上記の成
形用粉末を圧縮成形した。圧縮成形は、上記と同じ横磁
場中で表1に示す加圧力で行った。成形体の断面寸法も
上記と同じであった。加圧力の保持時間はいずれの場合
も3秒間であった。
【0065】圧縮成形で得られた成形体は、脱型後、Ar
ガス雰囲気中で150 ℃に60分間加熱して、バインダーの
エポキシ樹脂を硬化させ、ボンド磁石を得た。得られた
ボンド磁石の磁気特性および密度を下記の方法で測定し
た結果を表1に併せて示す。
【0066】磁気特性 ボンド磁石の残留磁束密度(Br)、保磁力(iHc) ならびに
最大エネルギー積 (BHmax)をBHトレーサーを用いて測定
した。磁石密度 ボンド磁石の重量と体積を測定し、その密度を算出し
た。
【0067】
【表1】
【0068】表1から明らかなように、本発明によれ
ば、圧縮成形前にパンチに超音波振動を付与すること
で、金型をさほど昇温させずに、金型内の成形用粉末を
加熱することができる。その結果、成形体が長尺である
場合にも、超音波振動付与時の金型内コンパウンド密
度、周波数、振幅を本発明の範囲に制限した場合には、
3秒以下というごく短時間の超音波振動の付与によって
磁粉を被覆している熱硬化性樹脂を融解させることが可
能となり、圧縮成形と加熱硬化後に、高密度で、磁気特
性に優れたボンド磁石を得ることができた。試験No.6の
ように樹脂が溶融しない場合でも本発明の効果はある
が、樹脂が溶融した方が磁気特性と磁石密度のいずれも
改善効果が大きかった。また、1ton/cm2 という低い加
圧力で圧縮成形することができた。
【0069】本発明の方法において金型内の成形用粉末
を比較的高温に加熱する場合、試験No.7に示すように、
金型に温度調節装置を付設すれば、金型の温度を上昇さ
せることなく成形用粉末のみを急速に加熱できるので、
超音波振動を利用して高密度の成形体を短いプレスサイ
クルタイムで生産できる。
【0070】比較例に示すように、超音波振動を付与し
ても、その時の充填密度比や超音波の周波数が本発明の
範囲外であると、加熱効率が低いため、短時間の超音波
付与では、低い加圧力での圧縮成形により磁気特性や磁
石密度の改善効果を得ることができなかった。また、超
音波の振幅が大きすぎると、磁粉の破壊が激しく、磁気
特性、特に保磁力が著しく低下した。
【0071】従来例では、冷間圧縮成形と温間圧縮成形
のいずれの場合も、L/S比が増大する、即ち、長尺に
なるほど、磁石密度が大きく低下し、それに伴って磁気
特性も低下した。即ち、L/S比が1.0 未満の薄型の磁
石では磁気特性がある程度高いものが製造できても、磁
気特性が高い長尺磁石の製造は不可能である。
【0072】これに対し、本発明に従って超音波振動を
利用して加熱すると、粉末全体を均一加熱できるので、
L/S比が増大しても磁石密度の低下は小さく、長尺磁
石における密度低下と磁気特性の低下が避けられる。そ
の結果、L/S比が5.0 というような長尺磁石でも、従
来の温間圧縮成形法の薄型磁石より優れた磁気特性を持
つものが製造できる。
【0073】別に、表1の試験No.7と同じ条件で、充填
密度比のみを変化させて圧縮成形試験を実施した。超音
波停止直後の成形用粉末の温度を測定した結果を図2に
示す。図2から、充填密度比が大きくなるにつれて粉末
温度が低くなり、充填密度比によって超音波振動付与に
よる粉末の加熱温度を制御できることがわかる。
【0074】また、表1の試験No.5の本発明例のボンド
磁石と、試験No.20 の従来例 (温間圧縮成形法) のボン
ド磁石 (いずれもL/S比は5.0)の中央部と端部からそ
れぞれ5mm幅を切り出し、密度を測定した。端部の密度
と中央部の密度の差 (中央部の方が低密度) は、本発明
例である試験No.5では0.1 g/cm3 であるのに対し、従来
例である試験No.20 では0.3 g/m2と著しく大きかった。
即ち、本発明の方法では、密度が均一な長尺磁石を製造
することができる。
【0075】なお、Nd異方性の磁粉としてはNd2Fe14B合
金を後方押出することにより得られる、例えばゼネラル
モーターズ社から市販されているMQ-3磁粉を使用するこ
ともできる。このような磁気異方性の希土類・鉄系合金
からなる磁粉に適用した場合に本発明の磁気特性の改善
効果は最も顕著に現れるが、既に説明したように、磁粉
はこれに限られるものではない。
【0076】
【発明の効果】本発明により、下記の効果を得ることが
できる。 (1) 従来の温間圧縮成形法と同じ潤滑性向上による磁気
特性の向上効果を、金型を加熱せずに得ることができる
ので、必要に応じて金型に温度調節手段を付設すれば、
金型の冷却時間をとる必要がない。従って、生産効率と
設備的制約のため従来は困難であったボンド磁石の磁場
中温間圧縮成形が工業的に可能となる。
【0077】(2) 上記の効果が長尺成形体でも同様に得
られ、短いプレスサイクルタイムで生産性よく長尺のボ
ンド磁石を製造できる。
【0078】(3) 伝熱加熱ではないので、長尺または大
型の磁石でも、短時間で成形用粉末を加熱できる。
【0079】(4) 超音波振動付与時の成形用粉末の充填
密度によって粉末の加熱温度を制御できる。熱硬化性樹
脂が常温で固形の樹脂である場合、加熱温度をこの樹脂
の融点以上で、かつ硬化開始温度未満の温度に容易に制
御でき、上記(1) の効果を確実に得ることができる。
【0080】(5) 上記の潤滑性向上効果に、機械的振動
による充填率の向上効果が加わって、成形高さに関係な
く成形用粉末の充填密度が増大し、かつ均一になる。そ
の結果、長尺成形体でも均一かつ高密度に圧縮でき、磁
気特性が高く、かつ均一なボンド磁石が製造できる。
【0081】(6) 磁粉が磁気異方性である場合、磁場中
で超音波振動させることにより配向度が向上するので、
磁気特性は一層向上する。
【図面の簡単な説明】
【図1】本発明に用いた磁場中圧縮成形機の略式断面図
である。
【図2】成形用粉末に超音波振動を付与して粉末を加熱
する際の粉末の充填密度比と加熱温度との関係を示すグ
ラフである。
【符号の説明】
1:プレス用ラム 2:振動子 3:ブースター 4:ホーン 5:上パンチ 6:成形用粉末 (金型室) 7:磁化コイル 8:下パンチ 9:金型 10:温度調節用配管
───────────────────────────────────────────────────── フロントページの続き (72)発明者 石垣 尚幸 大阪府三島郡島本町江川2丁目15番17号 住友特殊金属株式会社山崎製作所内 (72)発明者 三野 修嗣 大阪府三島郡島本町江川2丁目15番17号 住友特殊金属株式会社山崎製作所内

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】 磁石粉末を熱硬化性樹脂で被覆した成形
    用粉末を圧縮成形機の金型に充填して圧縮成形し、得ら
    れた成形体を加熱して熱硬化性樹脂を硬化させることか
    らなるボンド型永久磁石の製造方法であって、 圧縮成形前に、金型内の成形用粉末と接触している少な
    くとも1つの圧縮成形機の部材に周波数10〜40 kHz、振
    幅100 μm以下の超音波振動を0.5 秒間以上付与して成
    形用粉末を超音波振動させることにより該粉末を加熱
    し、この超音波振動の付与時の成形用粉末の金型内での
    充填密度が成形用粉末の自然充填時の見掛け密度の1.02
    〜2.0 倍であることを特徴とする、ボンド型永久磁石の
    製造方法。
  2. 【請求項2】 熱硬化性樹脂が常温で固形のものであ
    り、前記超音波振動の付与により熱硬化性樹脂の軟化温
    度以上で硬化開始温度未満に成形用粉末を加熱する、請
    求項1記載のボンド磁石の製造方法。
  3. 【請求項3】 成形体が、L/S比 (Lは高さ、Sは断
    面積) が1を越える長尺成形体である、請求項1または
    2記載のボンド型永久磁石の製造方法。
JP15419196A 1996-06-14 1996-06-14 ボンド型永久磁石の製造方法 Pending JPH104023A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15419196A JPH104023A (ja) 1996-06-14 1996-06-14 ボンド型永久磁石の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15419196A JPH104023A (ja) 1996-06-14 1996-06-14 ボンド型永久磁石の製造方法

Publications (1)

Publication Number Publication Date
JPH104023A true JPH104023A (ja) 1998-01-06

Family

ID=15578833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15419196A Pending JPH104023A (ja) 1996-06-14 1996-06-14 ボンド型永久磁石の製造方法

Country Status (1)

Country Link
JP (1) JPH104023A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423386B2 (en) 1998-04-06 2002-07-23 Hitachi Metals, Ltd. Magnet powder-resin compound particles, method for producing such compound particles and resin-bonded rare earth magnets formed therefrom
US7572388B2 (en) 2005-08-02 2009-08-11 Ricoh Company, Ltd. Magnet compound material to be compression molded, a molded elongate magnetic, a magnet roller, a developing agent-carrying body, a developing apparatus and an image-forming apparatus
JP2011011224A (ja) * 2009-06-30 2011-01-20 Kao Corp 固形粉末成型体の製造方法
CN113871179A (zh) * 2021-09-07 2021-12-31 中国科学院宁波材料技术与工程研究所 一种超声波增强磁粉芯压制成型方法及压粉磁芯

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423386B2 (en) 1998-04-06 2002-07-23 Hitachi Metals, Ltd. Magnet powder-resin compound particles, method for producing such compound particles and resin-bonded rare earth magnets formed therefrom
USRE40524E1 (en) * 1998-04-06 2008-09-30 Hitachi Metals, Ltd. Magnet powder-resin compound particles, method for producing such compound particles and resin-bonded rare earth magnets formed therefrom
US7572388B2 (en) 2005-08-02 2009-08-11 Ricoh Company, Ltd. Magnet compound material to be compression molded, a molded elongate magnetic, a magnet roller, a developing agent-carrying body, a developing apparatus and an image-forming apparatus
JP2011011224A (ja) * 2009-06-30 2011-01-20 Kao Corp 固形粉末成型体の製造方法
CN113871179A (zh) * 2021-09-07 2021-12-31 中国科学院宁波材料技术与工程研究所 一种超声波增强磁粉芯压制成型方法及压粉磁芯

Similar Documents

Publication Publication Date Title
JP2816668B2 (ja) 磁気異方性樹脂結合型磁石の製造方法
US7230514B2 (en) Inductive component and method for producing same
CN100528420C (zh) 稀土类合金粉末的压制成型方法以及稀土类合金烧结体的制造方法
JP3060104B2 (ja) ラジアル配向した磁気異方性樹脂結合型磁石及びその製造方法
US6007757A (en) Method of producing an anisotropic bonded magnet
JPH11176682A (ja) ボンド(登録商標)磁石の製造方法
JPH104023A (ja) ボンド型永久磁石の製造方法
JP3883138B2 (ja) 樹脂ボンド磁石の製造方法
JP2004002998A (ja) 希土類合金粉末のプレス成形方法および希土類合金焼結体の製造方法
JP2003203818A (ja) 永久磁石の製造方法およびプレス装置
JP2004349337A (ja) ボンド磁石の製造方法
JPH0831677A (ja) 磁気異方性樹脂結合型磁石の製造方法および磁気異方性樹脂結合型磁石
JP2002237406A (ja) 磁気異方性樹脂結合型磁石の製造方法
JPH09186012A (ja) 磁気異方性樹脂結合型磁石
JP3151604B2 (ja) ラジアル異方性ボンド磁石の製造方法およびボンド磁石
WO2003056583A1 (fr) Presse et procede de production d'aimant permanent
JPH1167567A (ja) ボンド磁石の製造方法
JPH0774012A (ja) ボンド型永久磁石の製造方法と原料粉末
JP2003193107A (ja) 希土類合金粉末のプレス成形方法および希土類合金焼結体の製造方法
WO2024028989A1 (ja) 予成形体、予成形方法および圧縮ボンド磁石の製造方法
JPH09148165A (ja) ラジアル異方性ボンド磁石の製造方法およびボンド磁石
JPH1012472A (ja) 希土類ボンド磁石の製造方法
JPH10199717A (ja) 異方性磁石ならびにその製造方法
JPH1167568A (ja) ボンド磁石の製造方法
JPH06302418A (ja) ボンド型永久磁石およびその製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050201