CN113862781A - 一种碳化硅外延晶片生长用样品托上的复合涂层制备方法 - Google Patents

一种碳化硅外延晶片生长用样品托上的复合涂层制备方法 Download PDF

Info

Publication number
CN113862781A
CN113862781A CN202111107336.4A CN202111107336A CN113862781A CN 113862781 A CN113862781 A CN 113862781A CN 202111107336 A CN202111107336 A CN 202111107336A CN 113862781 A CN113862781 A CN 113862781A
Authority
CN
China
Prior art keywords
silicon carbide
coating
sic
sample holder
nano particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111107336.4A
Other languages
English (en)
Other versions
CN113862781B (zh
Inventor
丁雄傑
韩景瑞
杨旭腾
种涞源
李锡光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Tianyu Semiconductor Co ltd
Original Assignee
Dongguan Tianyu Semiconductor Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan Tianyu Semiconductor Technology Co ltd filed Critical Dongguan Tianyu Semiconductor Technology Co ltd
Priority to CN202111107336.4A priority Critical patent/CN113862781B/zh
Publication of CN113862781A publication Critical patent/CN113862781A/zh
Application granted granted Critical
Publication of CN113862781B publication Critical patent/CN113862781B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/12Production of homogeneous polycrystalline material with defined structure directly from the gas state
    • C30B28/14Production of homogeneous polycrystalline material with defined structure directly from the gas state by chemical reaction of reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种碳化硅外延晶片生长用样品托上的复合涂层制备方法,包括步骤:S1、采用射频线圈加热型CVD设备,在石墨材质样品托上沉积一层SiC涂层;S2、采用羊毛毡吸附旋转打磨的方式,在SiC涂层上镶嵌金刚石微纳颗粒;S3、在金刚石微纳颗粒上方异质外延一层金刚石多晶薄膜;S4、采用自动磨抛设备,对金刚石多晶膜表面进行研磨抛光;S5、采用步骤S1的相同方法,在金刚石多晶膜的表面沉积一层SiC涂层;S6、重复步骤S2至S5,获得具有多个周期性结构的复合涂层。该方法可以在样品托本体上实现具有高热导率和非均匀散热特性的复合涂层结构,可降低碳化硅外延过程中热应力型BPD位错的形成概率。

Description

一种碳化硅外延晶片生长用样品托上的复合涂层制备方法
技术领域
本发明涉及晶体合成技术,特别涉及一种碳化硅外延晶片生长用样品托上的复合涂层制备方法。
背景技术
碳化硅单晶材料具有高热导率、高击穿场强、高饱和电子漂移速率和高键合能等优点,可很好地满足现代电子技术找高温、高功率、高电压、高频率及高辐射等恶劣条件的应用要求。与传统的硅材料器件不同,碳化硅器件不能直接制作在碳化硅单晶材料上,必须在单晶衬底上生长高质量的外延层,然后在外延层上制造各类结构的器件。
在各种碳化硅外延层制备方法中,化学气相沉积(CVD)最为常用,其结合台阶流的生长模式能实现一定厚度和掺杂浓度的碳化硅外延材料,可满足产业化量产的基本要求。在当前CVD法生长碳化硅外延材料的工艺过程中,普遍采用均匀石墨材质托盘来承载或支撑生长用的碳化硅单晶衬底。为了避免在高温环境下石墨托盘体材料中的杂质元素被析出而污染设备腔体和影响外延生长质量,通常会在石墨托表面沉积碳化钽(TaC)、碳化硅(SiC)等耐高温涂层。相比于TaC,SiC与石墨托盘本体的结合更加牢固,且SiC涂层可以在现成的碳化硅CVD外延设备上进行制备。最表面覆盖有SiC涂层样的品托,可减少由于样品托材质与SiC衬底晶片不一致而造成沉积过程中微观动力学的差异,有利于降低因边缘效应导致晶片边缘和中心之间的掺杂浓度和厚度等参数差异。
在生长过程中,炉腔和加热结构的构造及反应气体在流动方向的耗尽模式会引起衬底晶片表面温度分布不均匀,典型情况是中心温度高于边缘。温度分布不均匀所导致的热应力是对称成对出现型的基平面位错(BPD)的主要产生原因,BPD会对双极型器件稳定性产生严重影响,是制约目前碳化硅双极型器件不能商业化的主要原因。
衬底晶片的背面直接与样品托表面接触,因此它们之间的热传导效率也会极大影响晶片的生长温度均匀性。由于石墨体材料本身具有比较低导热系数(150w/m·k),而SiC涂层的热导率只有80w/m·k,衬底晶片表面的温度不均匀将无法通过高效的热传导来进行缓解。上述由温度不均匀引起的问题严重影响碳化硅外延晶片的产品质量和生产成本。
发明内容
为了克服现有技术中存在的缺点和不足,本发明的目的在于提供一种碳化硅外延晶片生长用样品托上的复合涂层制备方法。应用在承载碳化硅衬底晶片的样品托上,以减少在碳化硅外延生长中衬底晶片表面的温度分布不均匀的程度,从而降低对称成对出现型的BPD位错概率,同时有利于外延层的掺杂浓度和厚度均匀性控制。
本发明的目的通过下述技术方案实现:一种碳化硅外延晶片生长用样品托上的复合涂层制备方法,包括以下步骤:
S1)最底层碳化硅(SiC)涂层的沉积:将样品托本体放入到射频线圈加热型的化学气相沉积设备的腔体内,通入反应气体,在样品托本体表面发生反应沉积、并形成一层碳化硅(SiC)涂层;
S2)金刚石微纳颗粒的镶嵌:采用羊毛毡吸附旋转打磨的方式,在碳化硅(SiC)涂层上镶嵌金刚石微纳颗粒;
S3)金刚石多晶膜的异质外延生长:将步骤S2所获得的表面覆盖嵌有金刚石微纳颗粒和碳化硅(SiC)涂层的样品托放入到微波等离子化学气相沉积(MPCVD)设备腔体内,通入反应气体,以嵌在碳化硅(SiC)涂层的金刚石微纳颗粒为初始成核点,在碳化硅(SiC)涂层上异质外延生长、形成一层金刚石多晶薄膜;
S4)金刚石多晶膜的研磨抛光:采用自动磨抛设备对步骤S3所获得的金刚石多晶膜表面进行研磨抛光;
S5)上层碳化硅(SiC)涂层的沉积:采用步骤S1的相同方法,在金刚石多晶膜的表面沉积一层上层碳化硅(SiC)涂层。
作为本发明碳化硅外延晶片生长用样品托上的复合涂层制备方法的一种改进,还包括步骤S6)多个周期结构复合涂层的制备:重复步骤S2)至步骤S5)的次数n+1(n为非负整数),实现具有多个周期性结构的复合涂层。
作为本发明碳化硅外延晶片生长用样品托上的复合涂层制备方法的一种改进,步骤S2所述的羊毛毡吸附旋转打磨的方式是把金刚石微纳颗粒沾上去离子水和无水乙醇等溶剂,吸附到半径小于样品托容置槽开口的圆形羊毛毡的表面后,将羊毛毡沾满金刚石微纳颗粒的那一面贴合在碳化硅(SiC)涂层上,使羊毛毡同时自转和公转,并在羊毛毡背面施加一个指向碳化硅(SiC)涂层的压强,以此方式对碳化硅(SiC)涂层表面进行打磨,在碳化硅(SiC)涂层上实现一圈嵌有金刚石微纳颗粒的圆环带,不断调整圆环带的半径,使整个碳化硅(SiC)涂层表面都嵌有一定分布规律的金刚石微纳颗粒,在此期间需要不断给羊毛毡表面补充金刚石微纳颗。
作为本发明碳化硅外延晶片生长用样品托上的复合涂层制备方法的一种改进,在所述不同半径的圆环带上的金刚石微纳颗粒打磨过程中,采用不同的圆形羊毛毡自转、公转转速和施加不同的压力,控制在此半径圆环带上嵌入的金刚石微纳颗粒的密度;在羊毛毡上吸附不同粒径大小的金刚石微纳颗粒,以控制在此半径圆环带上嵌入金刚石微纳颗粒的粒径大小。
作为本发明碳化硅外延晶片生长用样品托上的复合涂层制备方法的一种改进,所述圆形羊毛毡的自转转速为60~600rpm;羊毛毡公转速率为6~60R/min(R是圆形羊毛毡的半径);羊毛毡所受到的压强为30~300kPa;圆形羊毛毡上吸附的金刚石微纳颗粒粒径为10nm~50um。
作为本发明碳化硅外延晶片生长用样品托上的复合涂层制备方法的一种改进,在步骤S1和步骤S5沉积碳化硅(SiC)涂层的过程中,射频线圈加热型CVD设备的温度和腔压分别为:在步骤S1中,温度为1300~1549℃,腔压为60~150mbar;在步骤S5中,温度为1751~2000℃,腔压为60~150mbar。
作为本发明碳化硅外延晶片生长用样品托上的复合涂层制备方法的一种改进,所述在步骤S1和步骤S5沉积碳化硅(SiC)涂层的过程中,通入的反应气体为一定比例的氢气、乙烯和三氯氢硅。
作为本发明碳化硅外延晶片生长用样品托上的复合涂层制备方法的一种改进,所述步骤S3的微波等离子化学气相沉积(MPCVD)设备腔体内通入的反应气体为一定比例的氢气、甲烷、氧气和氮气。
作为本发明碳化硅外延晶片生长用样品托上的复合涂层制备方法的一种改进,所述步骤S3在嵌有金刚石微纳颗粒的碳化硅(SiC)涂层上异质外延金刚石多晶膜的过程中,微波等离子化学气相沉积(MPCVD)设备温度和压强分别为800~1250℃,腔压为80~150torr。
作为本发明碳化硅外延晶片生长用样品托上的复合涂层制备方法的一种改进,所述步骤S4的自动磨抛设备对金刚石多晶膜层的表面进行研磨抛光的表面粗糙度Ra<500nm。
本发明的有益效果在于:通过采用羊毛毡吸附打磨的方式在样品托涂层中镶嵌金刚石微纳颗粒,以提高纵向热传输性能;采用MPCVD法在金刚石微纳颗粒的空隙间和表面上异质外延生长一层金刚石多晶薄膜以提高横向热传输性能;通过调节吸附金刚石打磨过程中,羊毛毡的自转转速、公转速率、施加压强、吸附金刚石粒径等参数,控制金刚石微纳颗粒在径向上的分布密度或颗粒大小,以实现样品托在纵向上的非均匀散热。最终实现高效的非均匀性散热,以补偿由炉腔构造及反应气体在流动方向的耗尽模式所引起的衬底晶片受热不均匀,降低由热应力所引起的BPD位错的形成概率,并提高对外延层的掺杂浓度和厚度均匀性控制能力。
附图说明
图1是本发明的流程图;
图2是一个周期结构复合涂层的碳化硅外延晶片生长用样品托;
图3是两个周期结构复合涂层的碳化硅外延晶片生长用样品托;
图4是圆形羊毛毡吸附金刚石微纳颗粒打磨碳化硅(SiC)涂层的打磨示意图。
附图标记为:101、样品托本体;102、容置槽;201、底层碳化硅涂层;202、中层碳化硅涂层;203、上层碳化硅涂层;301、第一层金刚石微纳颗粒;302、第二层金刚石微纳颗粒;401、第一层金刚石多晶膜层;402、第二层金刚石多晶膜层;502、圆环带;601、自转方向;602、公转方向;
具体实施方式
下面将结合本发明实施例中的附图对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本发明中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围内。
实施例一:
如图1、图2和图4所示,一种碳化硅外延晶片生长用样品托上的复合涂层制备方法,具体步骤包括:
S1)最底层碳化硅(SiC)涂层的沉积:将一个材质为石墨、外直径Φ为160mm、容置槽102开口直径Φ为150mm、开口深度为2mm的样品托本体101放入到意大利LPE公司PE 1O6型射频线圈CVD设备的腔体内,通以比例为氢气99.76%、乙烯0.08%和三氯氢硅0.16%的反应气体,在1500℃的生长温度和100mbar腔压下,在样品托本体101表面发生反应沉积形成一层20um的底层碳化硅(SiC)涂层201。
S2)第一层金刚石微纳颗粒301的镶嵌:把第一层金刚石微纳颗粒301沾上去离子水和无水乙醇等溶剂后,吸附在直径为25mm的圆形羊毛毡表面。将圆形羊毛毡沾满金刚石微纳颗粒的那一面贴合在步骤S1形成的碳化硅(SiC)涂层上,使圆形羊毛毡在样品托径向(0,25mm)、(25mm,50mm)和(50mm,75mm)这三个圆环带上同时自转和公转,并在圆形羊毛毡背面施加一个指向SiC涂层的压强,以此方式对碳化硅(SiC)涂层表面进行打磨,使整个碳化硅(SiC)涂层表面都嵌有一定分布规律的第一层金刚石微纳颗粒301,在此期间需要不断给圆形羊毛毡表面补充金刚石微纳颗粒。
优选地,在(0,25mm)的圆环带502上,圆形羊毛毡的自转601转速为60rpm,公转602速率为150mm/min,圆形羊毛毡受到的压强为300kPa,圆形羊毛毡吸附的金刚石微纳颗粒301粒径为5um;在(25,50mm)的圆环带上,圆形羊毛毡自转转速为330rpm,公转速率为825mm/min,圆形羊毛毡受到的压强为165kPa,圆形羊毛毡吸附的第一层金刚石微纳颗粒301粒径为2.5um;在(50,75mm)的圆环带上,圆形羊毛毡自转转速为600rpm,公转速率为1500mm/min,圆形羊毛毡受到的压强为30kPa,圆形羊毛毡吸附的第一层金刚石微纳颗粒301粒径为500nm。
S3)第一层金刚石多晶膜401的异质外延生长:将步骤S2所获得的表面覆盖嵌有第一层金刚石微纳颗粒301的碳化硅(SiC)涂层的样品托本体101放入到日本Seki公司SDS6500X型MPCVD设备腔体内,通以比例为氢气95.54%、甲烷4.00%、氧气0.40%和氮气0.06%的反应气体,在950℃的生长温度和120torr的腔压下,以嵌在碳化硅(SiC)涂层的金刚石微纳颗粒301为初始成核点,在第一层金刚石微纳颗粒301与颗粒之间的空隙间和表面上异质外延生长形成一层20um的第一层金刚石多晶薄膜401;
S4)金刚石多晶膜401的研磨抛光:采用自动磨抛设备对步骤S3所获得的第一层金刚石多晶膜401表面进行研磨抛光,使其表面粗糙度Ra<500nm;
S5)碳化硅(SiC)涂层的沉积:采用步骤S1的相同方法,生长温度为1800℃和腔压为100mbar,在第一层金刚石多晶膜401的表面沉积一层5um的中层碳化硅(SiC)涂层202。
至此,已经完成了具有一个周期结构复合涂层的碳化硅外延晶片生长用样品托的涂层制备。
实施例二:
如图3所示:为了提高复合涂层的耐用度,可以在实施例一的基础上重复步骤S2至步骤S5的步骤,以获得如图3所示的具有两个周期性结构的复合涂层,具体步骤包括:
在步骤S1-步骤S5的基础上增加步骤S6)重复步骤S2相同步骤后,形成第二层金刚石微纳颗粒302,以S3步骤的相同条件异质外延生长一层5um的第二层金刚石多晶膜402,在经过步骤S4抛光至Ra<500nm,在以步骤S5的相同条件在第二层金刚石多晶膜402上外延一层10um的上层碳化硅(SiC)涂层203。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和结构的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同范围限定。

Claims (10)

1.一种碳化硅外延晶片生长用样品托上的复合涂层制备方法,其特征在于,包括以下步骤:
S1)最底层碳化硅(SiC)涂层的沉积:将样品托本体放入到射频线圈加热型的化学气相沉积设备的腔体内,通入反应气体,在样品托本体表面发生反应沉积、并形成一层碳化硅(SiC)涂层;
S2)金刚石微纳颗粒的镶嵌:采用羊毛毡吸附旋转打磨的方式,在碳化硅(SiC)涂层上镶嵌金刚石微纳颗粒;
S3)金刚石多晶膜的异质外延生长:将步骤S2所获得的表面覆盖嵌有金刚石微纳颗粒和碳化硅(SiC)涂层的样品托放入到微波等离子化学气相沉积(MPCVD)设备腔体内,通入反应气体,以嵌在碳化硅(SiC)涂层的金刚石微纳颗粒为初始成核点,在碳化硅(SiC)涂层上异质外延生长、形成一层金刚石多晶薄膜;
S4)金刚石多晶膜的研磨抛光:采用自动磨抛设备对步骤S3所获得的金刚石多晶膜表面进行研磨抛光;
S5)上层碳化硅(SiC)涂层的沉积:采用步骤S1的相同方法,在金刚石多晶膜的表面沉积一层上层碳化硅(SiC)涂层。
2.根据权利要求1所述的碳化硅外延晶片生长用样品托上的复合涂层制备方法,其特征在于,还包括步骤S6)多个周期结构复合涂层的制备:重复步骤S2)至步骤S5)的次数n+1(n为非负整数),实现具有多个周期性结构的复合涂层。
3.根据权利要求1所述的碳化硅外延晶片生长用样品托上的复合涂层制备方法,其特征在于,步骤S2所述的羊毛毡吸附旋转打磨的方式是把金刚石微纳颗粒沾上去离子水和无水乙醇等溶剂,吸附到半径小于样品托容置槽开口的圆形羊毛毡的表面后,将羊毛毡沾满金刚石微纳颗粒的那一面贴合在碳化硅(SiC)涂层上,使羊毛毡同时自转和公转,并在羊毛毡背面施加一个指向碳化硅(SiC)涂层的压强,以此方式对碳化硅(SiC)涂层表面进行打磨,在碳化硅(SiC)涂层上实现一圈嵌有金刚石微纳颗粒的圆环带,不断调整圆环带的半径,使整个碳化硅(SiC)涂层表面都嵌有一定分布规律的金刚石微纳颗粒。
4.根据权利要求3所述的碳化硅外延晶片生长用样品托上的复合涂层制备方法,其特征在于,在所述不同半径的圆环带上的金刚石微纳颗粒打磨过程中,采用不同的圆形羊毛毡自转、公转转速和施加不同的压力,控制在此半径圆环带上嵌入的金刚石微纳颗粒的密度;在羊毛毡上吸附不同粒径大小的金刚石微纳颗粒,以控制在此半径圆环带上嵌入金刚石微纳颗粒的粒径大小。
5.根据权利要求4所述的碳化硅外延晶片生长用样品托上的复合涂层制备方法,其特征在于,所述圆形羊毛毡的自转转速为60~600rpm;羊毛毡公转速率为6~60R/min(R是圆形羊毛毡的半径);羊毛毡所受到的压强为30~300kPa;圆形羊毛毡上吸附的金刚石微纳颗粒粒径为10nm~50um。
6.根据权利要求1所述的碳化硅外延晶片生长用样品托上的复合涂层制备方法,其特征在于,在步骤S1和步骤S5沉积碳化硅(SiC)涂层的过程中,射频线圈加热型CVD设备的温度和腔压分别为:在步骤S1中,温度为1300~1549℃,腔压为60~150mbar;在步骤S5中,温度为1751~2000℃,腔压为60~150mbar。
7.根据权利要求1所述的碳化硅外延晶片生长用样品托上的复合涂层制备方法,其特征在于,所述在步骤S1和步骤S5沉积碳化硅(SiC)涂层的过程中,通入的反应气体为一定比例的氢气、乙烯和三氯氢硅。
8.根据权利要求1所述的碳化硅外延晶片生长用样品托上的复合涂层制备方法,其特征在于,所述步骤S3的微波等离子化学气相沉积(MPCVD)设备腔体内通入的反应气体为一定比例的氢气、甲烷、氧气和氮气。
9.根据权利要求1所述的碳化硅外延晶片生长用样品托上的复合涂层制备方法,其特征在于,所述步骤S3在嵌有金刚石微纳颗粒的碳化硅(SiC)涂层上异质外延金刚石多晶膜的过程中,微波等离子化学气相沉积(MPCVD)设备温度和压强分别为800~1250℃,腔压为80~150torr。
10.根据权利要求1所述的碳化硅外延晶片生长用样品托上的复合涂层制备方法,其特征在于,所述步骤S4的自动磨抛设备对金刚石多晶膜层的表面进行研磨抛光的表面粗糙度Ra<500nm。
CN202111107336.4A 2021-09-22 2021-09-22 一种碳化硅外延晶片生长用样品托上的复合涂层制备方法 Active CN113862781B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111107336.4A CN113862781B (zh) 2021-09-22 2021-09-22 一种碳化硅外延晶片生长用样品托上的复合涂层制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111107336.4A CN113862781B (zh) 2021-09-22 2021-09-22 一种碳化硅外延晶片生长用样品托上的复合涂层制备方法

Publications (2)

Publication Number Publication Date
CN113862781A true CN113862781A (zh) 2021-12-31
CN113862781B CN113862781B (zh) 2022-12-20

Family

ID=78993003

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111107336.4A Active CN113862781B (zh) 2021-09-22 2021-09-22 一种碳化硅外延晶片生长用样品托上的复合涂层制备方法

Country Status (1)

Country Link
CN (1) CN113862781B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068883A (en) * 1996-06-12 2000-05-30 Matushita Electric Industrial Co., Ltd. Process for forming diamond films by nucleation
US20140159055A1 (en) * 2012-12-12 2014-06-12 Element Six Limited Substrates for semiconductor devices
US20140209014A1 (en) * 2013-01-25 2014-07-31 National Chiao Tung University Method of growing diamond thin film
US20140332934A1 (en) * 2011-12-16 2014-11-13 Element Six Limited Substrates for semiconductor devices
US20140339684A1 (en) * 2011-12-16 2014-11-20 Element Six Technologies Limited Synthetic diamond coated compound semiconductor substrates
CN106835064A (zh) * 2016-12-16 2017-06-13 中国科学院深圳先进技术研究院 一种具有金刚石/碳化硅复合涂层的工具及其制备方法
US20180151404A1 (en) * 2015-05-14 2018-05-31 Rfhic Corporation Method of fabricating diamond-semiconductor composite substrates
CN109742026A (zh) * 2019-02-25 2019-05-10 哈尔滨工业大学 直接生长法制备金刚石辅助散热碳化硅基底GaN-HEMTs的方法
CN111394792A (zh) * 2020-01-17 2020-07-10 北京大学东莞光电研究院 一种生长金刚石多晶膜用样品托及金刚石多晶膜生长方法
CN112142440A (zh) * 2020-09-15 2020-12-29 江汉大学 一种金刚石膜散热片及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068883A (en) * 1996-06-12 2000-05-30 Matushita Electric Industrial Co., Ltd. Process for forming diamond films by nucleation
US20140332934A1 (en) * 2011-12-16 2014-11-13 Element Six Limited Substrates for semiconductor devices
US20140339684A1 (en) * 2011-12-16 2014-11-20 Element Six Technologies Limited Synthetic diamond coated compound semiconductor substrates
US20140159055A1 (en) * 2012-12-12 2014-06-12 Element Six Limited Substrates for semiconductor devices
US20140209014A1 (en) * 2013-01-25 2014-07-31 National Chiao Tung University Method of growing diamond thin film
US20180151404A1 (en) * 2015-05-14 2018-05-31 Rfhic Corporation Method of fabricating diamond-semiconductor composite substrates
CN106835064A (zh) * 2016-12-16 2017-06-13 中国科学院深圳先进技术研究院 一种具有金刚石/碳化硅复合涂层的工具及其制备方法
CN109742026A (zh) * 2019-02-25 2019-05-10 哈尔滨工业大学 直接生长法制备金刚石辅助散热碳化硅基底GaN-HEMTs的方法
CN111394792A (zh) * 2020-01-17 2020-07-10 北京大学东莞光电研究院 一种生长金刚石多晶膜用样品托及金刚石多晶膜生长方法
CN112142440A (zh) * 2020-09-15 2020-12-29 江汉大学 一种金刚石膜散热片及其制备方法

Also Published As

Publication number Publication date
CN113862781B (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
JP6097681B2 (ja) SiCエピタキシャルウェハの製造装置およびSiCエピタキシャルウェハの製造方法
KR101632947B1 (ko) Sic 에피택셜 필름을 갖는 sic 기판
US10930492B2 (en) Method for producing SiC epitaxial wafer and apparatus for producing SiC epitaxial wafer
KR101897062B1 (ko) 탄화규소 에피 웨이퍼 및 이의 제조 방법
US20130255578A1 (en) Chemical vapor deposition apparatus having susceptor
CN109896515B (zh) 覆碳化钽的碳材料和其制造方法、半导体单晶制造装置用构件
JP2021138597A (ja) ウエハ、エピタキシャルウエハ及びその製造方法
JP2018108916A (ja) 炭化珪素エピタキシャル基板の製造方法
CN113862781B (zh) 一种碳化硅外延晶片生长用样品托上的复合涂层制备方法
JP6723416B2 (ja) SiCエピタキシャルウェハの製造方法
WO2018078944A1 (ja) 炭化珪素エピタキシャル基板の製造方法
KR101926694B1 (ko) 탄화규소 에피 웨이퍼 및 이의 제조 방법
JPS6090894A (ja) 気相成長装置
JP7392417B2 (ja) SiCエピタキシャルウェハの製造方法
JP2021015896A (ja) 炭化珪素エピタキシャル成長装置及び炭化珪素エピタキシャルウエハの製造方法
JP7255473B2 (ja) 炭化ケイ素多結晶基板の製造方法
JP2017017084A (ja) 炭化珪素エピタキシャル基板の製造方法およびエピタキシャル成長装置
KR101926678B1 (ko) 탄화규소 에피 웨이퍼 및 이의 제조 방법
CN217922428U (zh) 一种具有复合涂层的碳化硅外延晶片生长用样品托
KR101882330B1 (ko) 증착 장치
JP7392526B2 (ja) 炭化ケイ素単結晶基板の製造方法
JP6748549B2 (ja) SiCエピタキシャルウェハの製造方法及びSiCエピタキシャルウェハの製造装置
JP2022067843A (ja) 炭化珪素単結晶基板およびその製造方法
JP2021187697A (ja) 炭化珪素単結晶基板の製造方法
WO2019188248A1 (ja) 成膜装置及び成膜方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 523000 second floor office building, No.5, Gongye North 1st Road, Hubei Industrial City, Songshan, Dongguan City, Guangdong Province

Patentee after: Guangdong Tianyu Semiconductor Co.,Ltd.

Address before: 523000 second floor office building, No.5, Gongye North 1st Road, Hubei Industrial City, Songshan, Dongguan City, Guangdong Province

Patentee before: DONGGUAN TIANYU SEMICONDUCTOR TECHNOLOGY Co.,Ltd.

CP01 Change in the name or title of a patent holder