CN111394792A - 一种生长金刚石多晶膜用样品托及金刚石多晶膜生长方法 - Google Patents

一种生长金刚石多晶膜用样品托及金刚石多晶膜生长方法 Download PDF

Info

Publication number
CN111394792A
CN111394792A CN202010053354.8A CN202010053354A CN111394792A CN 111394792 A CN111394792 A CN 111394792A CN 202010053354 A CN202010053354 A CN 202010053354A CN 111394792 A CN111394792 A CN 111394792A
Authority
CN
China
Prior art keywords
sample holder
polycrystalline film
growing
hollow
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010053354.8A
Other languages
English (en)
Other versions
CN111394792B (zh
Inventor
丁雄傑
王忠强
王�琦
张国义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan Institute of Opto Electronics Peking University
Original Assignee
Dongguan Institute of Opto Electronics Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan Institute of Opto Electronics Peking University filed Critical Dongguan Institute of Opto Electronics Peking University
Priority to CN202010053354.8A priority Critical patent/CN111394792B/zh
Publication of CN111394792A publication Critical patent/CN111394792A/zh
Application granted granted Critical
Publication of CN111394792B publication Critical patent/CN111394792B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/12Production of homogeneous polycrystalline material with defined structure directly from the gas state
    • C30B28/14Production of homogeneous polycrystalline material with defined structure directly from the gas state by chemical reaction of reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/64Flat crystals, e.g. plates, strips or discs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及晶体合成技术领域,具体涉及一种生长金刚石多晶膜用样品托及金刚石多晶膜生长方法,本发明的样品托顶部开设有用于放置衬底的容置槽,样品托底部设有由若干个同心圆环间隔分布形成的花纹,若干个同心圆环包括有实心圆环带和空心圆环带,本发明的样品托采用非对称式底部花纹,利用非均匀的底部散热来补偿由于等离子体球倾斜或偏移所导致的金刚石生长衬底的受热不均匀,可实现大面积金刚石多晶膜的高质量均匀生长;本发明的生长方法,采用上述结构的样品托进行生长,工艺简单,容易生长,可实现大面积金刚石多晶膜的高质量均匀生长。

Description

一种生长金刚石多晶膜用样品托及金刚石多晶膜生长方法
技术领域
本发明涉及晶体合成技术领域,特别是涉及一种生长金刚石多晶膜用样品托及金刚石多晶膜生长方法。
背景技术
金刚石具有高硬度、高热导率、耐酸碱腐蚀和超宽禁带等优异的物理、化学及电学性能,在机械、半导体和饰品等领域均有重要的应用价值。天然金刚石在自然界中储量小,价格昂贵,且具有质量不均匀、尺寸小等问题,因此,为了获得大面积、稳定、均匀、低成本、高质量的金刚石,必须发展金刚石的人工合成技术。目前人工合成金刚石的方法主要有高温高压(HPHT)法和化学气相沉积(CVD)法,在各种CVD金刚石制备方法中,微波等离子体化学气相沉积(MPCVD)法以其具有等离子体功率密度高、无电极放电污染和性能稳定等特性,成为制备高品质金刚石的首选方法。
除了外延高质量单晶金刚石外,MPCVD设备亦被应用于异质衬底上的大面积金刚石多晶膜外延,目前市面上采用2.45GHz微波源的MPCVD设备用于外延最大2英寸金刚石多晶膜,采用915MHz微波源的MPCVD设备则可外延4~6英寸金刚石多晶膜。大面积金刚石多晶膜的均匀性很大程度取决于等离子体球的准直性,而后者受微波场的分布、混合生长气体的扰动和样品台、腔体结构等多种因素所影响,所以质量再好的MPCVD设备也很难避免等离子体球的倾斜和偏移,由此会引起样品各位置的温度不均匀,此现象在大面积衬底上尤为严重。温度的差异不仅会导致生长速率和厚度不均匀,而且还会引起不同位置金刚石晶向的差异,更为严重的是在衬底比较薄的情况下受热温度较高的边缘容易形变翘曲,该部位因脱离与样品托的接触而热传导变差,使温度急剧上升,最终导致金刚石晶体石墨化,严重制约了大面积金刚石多晶膜的高质量均匀生长。
鉴于上述技术问题,有必要提供一款新的生长金刚石多晶膜用样品托及金刚石多晶膜生长方法,以更好地解决上述技术问题。
发明内容
为解决上述问题,本发明提供一种生长金刚石多晶膜用样品托及金刚石多晶膜生长方法,本发明的样品托,其结构简单,设计合理,能有效补偿因等离子体球的分布不均匀而带来的表面温差;本发明的生长方法,其工艺简单,操作方便,便于金刚石多晶膜制备。
本发明采用的技术方案是:
一种生长金刚石多晶膜用样品托,样品托顶部开设有用于放置衬底的容置槽,样品托底部设有由若干个同心圆环间隔分布形成的花纹,若干个同心圆环包括有实心圆环带和空心圆环带。
进一步地,单个圆环由实心环带和空心环带组成,实心环带由相同材质制成,空心环带由若干个空心图形串联形成。
进一步地,若干个空心图形串联时接触连接。
进一步地,空心图形为规则图形或不规则图形。
进一步地,规则图形为圆形、矩形、正多边形和三角形中的任一种。
进一步地,单个圆环中,实心环带所围成的弧形角度为Y,空心环带所围成的弧形角度为X,Y和X的变化范围分别为0~360°,且X+Y=360°。
进一步地,实心环带和空心环带设为相互接触或相互间断。
进一步地,若干个同心圆环间隔均匀分布或非均匀间隔分布。
一种使用如上述任一项所述的样品托生长金刚石多晶膜的方法,包括如下步骤:
步骤一:对应等离子体球的分布,设置非均匀散热样品托;
步骤二:将异质衬底放入样品托,使用MPCVD法生长多晶金刚石;
步骤三:生长到设定厚度后,即得金刚石多晶膜。
进一步地,步骤一中,通过改变样品托底部同心圆环的数量、间隔宽度、实心圆环带、空心圆环带宽度、容置槽深度和空心图形的形状大小,实现对应于等离子体球能量分布的非均匀散热。
本发明的有益效果如下:
1、本发明的样品托顶部开设有用于放置衬底的容置槽,样品托底部设有由若干个同心圆环间隔分布形成的花纹,若干个同心圆环包括有实心圆环带和空心圆环带,本发明结构简单,设计合理,与现有技术相比,本发明的样品托采用非对称式底部花纹,将本发明用于生长大面积金刚石多晶膜时,利用非均匀的底部散热来补偿由于等离子体球倾斜或偏移所导致的金刚石生长衬底的受热不均匀,以改善微波等离子体化学气相沉积设备外延金刚石多晶薄膜的厚度和晶向的均匀性,可实现大面积金刚石多晶膜的高质量均匀生长。
2、本发明的生长方法,通过采用非对称式底部花纹的样品托实现非均匀的底部散热,可补偿由于等离子体球倾斜或偏移所导致的金刚石生长衬底的受热不均匀,保持整个异质外延金刚石多晶生长面的温度均匀,改善微波等离子体化学气相沉积设备外延金刚石多晶薄膜的厚度和晶向的均匀性,实现大面积金刚石多晶膜的高质量均匀生长。
附图说明
图1为本发明的结构示意图;
图2为本发明底部结构示意图;
图3为采用本发明样品托生长的金刚石多晶膜产品图;
图4为图3样品中的位置1的拉曼光谱图的截图;
图5为图3样品中的位置2的拉曼光谱图的截图;
图6为图3样品中的位置3的拉曼光谱图的截图;
图7为图3样品中的位置4的拉曼光谱图的截图;
图8为图3样品中的位置5的拉曼光谱图的截图;
图9为图3样品中的位置6的拉曼光谱图的截图;
附图标记说明:1.样品托、2.实心环带、3.空心环带、4.容置槽。
具体实施方式
下面将结合附图对本发明作进一步的说明。
如图1~图2所示,本实施例所述的用于MPCVD法生长金刚石多晶膜的样品托1,样品托1顶部开设有用于放置衬底的容置槽4,样品托1底部设有由若干个同心圆环间隔分布形成的花纹,若干个同心圆环包括有实心圆环带和空心圆环带,本实施例的若干个同心圆环由实心圆环带和空心圆环带两部分围成整个圆环,其效果作用于样品托1的底部时,在不同方向或位置具有不同的热传导能力,根据不同MPCVD设备等离子体球的倾斜和偏移情况,调整实心圆环带和空心圆环带的组合比例和位置,利用此对应的非均匀的底部散热来补偿样品托1上方金刚石异质外延衬底的非均匀受热,从而实现大面积金刚石多晶膜在均匀温度上外延生长,具体地,在本实施例中,采用一个2英寸钼制的样品托1,样品托1顶部设有存放异质衬底的容置槽4,容置槽4的直径为2英寸,深度为1mm,样品托1的整体厚度为8mm,在样品托1的底部加工有三个同心圆环,每个圆环之间的间隔为4mm凹槽,槽深1mm,每个圆环由两部分组成,第一部分是实心且材质均匀的实心环带2,实心环带2的宽度为4mm,第二部分是由空心圆形串联而成的空心环带3,空心圆图形的外径和内径分别为4mm和3.5mm,空心圆图形的圆心设有深度为1mm的凹槽,每个空心圆图形紧密连接,空心环带3和实心环带2之间非接触连接,三个同心圆环所对应的空心圆带3和实心环带2分别所围成弧度角度为X和Y,且X=180°和Y=180°,此实施例只是根据使用需求选择性设置的一个具体实施例,在其它实施例中,可根据不同使用需求,改变同心圆环的数量、间隔宽度、环带宽度、槽深、空心图形的形状大小以及X和Y的角度大小等。将此实例中的非均匀散热样品托1用于CornesSeki SDS 6350 MPCVD设备中,在直径2英寸和厚度3mm的<100>单晶硅衬底上异质外延生长金刚石多晶膜,经过50小时外延生长后,在所得样品上随机抽取6个位置,位置如图3所示,测试其拉曼光谱和厚度均匀性,其中拉曼光谱测试中,采用的激光波长为532nm,测试范围为1000~1800/cm-1,测试结果如图4-9和表1所示,此6个位置上的金刚石多晶膜的一阶拉曼位移FWHM均为2.6cm-1,由此说明此金刚石多晶膜的品质非常好,且不同位置的金刚石品质一致,各位置所生长的厚度偏差在±3%内,说明在异质外延过程中,金刚石的沉积速率在大面积衬底各个位置上基本是一致的,这间接地说明生长过程中衬底各位置的温度是基本是均匀的,上述结果表明,采用本发明的非均匀散热样品托1能有效补偿因等离子体球的分布不均匀而带来的表面温差,保证异质外延大面积金刚石多晶薄膜的品质和厚度的均匀性。
在一些具体实施例中,单个圆环由实心环带2和空心环带3组成,实心环带2由相同材质制成,空心环带3由若干个空心图形串联形成,具体地,空心图形为规则图形或不规则图形,更具体地,规则图形为圆形、矩形、正多边形和三角形中的任一种,在本实施例中,实心环带2由相同材质制成,空心环带3则由规则或不规则图形组成,并具体示出了几种规则图形的形状,在实际使用过程中,根据不同MPCVD设备等离子体球的倾斜和偏移情况,调整空心环带3的组合方式,更好地发挥非均匀的底部散热,由此补偿样品托1上方金刚石异质外延衬底的非均匀受热,从而实现大面积金刚石多晶膜在均匀温度上外延生长。
一些具体实施例中,单个圆环中,实心圆带2所围成的弧度角度为Y,空心环带3所围成的弧度角度为X,Y和X的变化范围分别为0~360°,且X+Y=360°,具体地,在本实施例中,不同同心圆环之间X和Y的大小组合可以相同,也可以不同,位置分布可以相同,也可以不同,本实施例通过这种具体设置,将本发明用于不同MPCVD设备时,根据不同MPCVD设备等离子体球的倾斜和偏移情况,调整实心环带2和空心环带3的组合比例和位置,利用此对应的非均匀的底部散热来补偿样品托1上方金刚石异质外延衬底的非均匀受热,从而实现大面积金刚石多晶膜在均匀温度上外延生长。
另一具体实施例中,若干个空心图形串联时接触连接,实心环带2和空心环带3接触设置和断开设置,在本实施例中,空心图形串联而成的空心环带3中的每个空心图形必须连接接触,而空心环带3和实心环带2之间可根据使用需求选择连接或断开,本实施例这样的设置,将本发明用于不同MPCVD设备时,根据不同MPCVD设备等离子体球的倾斜和偏移情况,可以采用多种方式进行调节,从而实现通过非均匀散热样品托1,有效补偿因等离子体球的分布不均匀而带来的表面温差,保证异质外延大面积金刚石多晶薄膜的品质和厚度的均匀性。
在一些可选具体实施例中,若干个同心圆环间隔均匀分布或非均匀间隔分布,本实施例这样的设置,将本发明用于不同MPCVD设备时,根据不同MPCVD设备等离子体球的倾斜和偏移情况,可以采用多种方式进行调节,从而实现通过非均匀散热样品托1,有效补偿因等离子体球的分布不均匀而带来的表面温差,保证异质外延大面积金刚石多晶薄膜的品质和厚度的均匀性。
表1 硅基金刚石多晶薄膜不同位置的品质与厚度均匀性
Figure BDA0002371987090000061
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种生长金刚石多晶膜用样品托,样品托顶部开设有用于放置衬底的容置槽,其特征在于,样品托底部设有由若干个同心圆环间隔分布形成的花纹,若干个同心圆环包括有实心圆环带和空心圆环带。
2.根据权利要求1所述的一种生长金刚石多晶膜用样品托,其特征在于,单个圆环由实心环带和空心环带组成,实心环带由相同材质制成,空心环带由若干个空心图形串联形成。
3.根据权利要求2所述的一种生长金刚石多晶膜用样品托,其特征在于,若干个空心图形串联时接触连接。
4.根据权利要求2所述的一种生长金刚石多晶膜用样品托,其特征在于,空心图形为规则图形或不规则图形。
5.根据权利要求4所述的一种生长金刚石多晶膜用样品托,其特征在于,规则图形为圆形、矩形、正多边形和三角形中的任一种。
6.根据权利要求2所述的一种生长金刚石多晶膜用样品托,其特征在于,单个圆环中,实心环带所围成的弧形角度为Y,空心环带所围成的弧形角度为X,Y和X的变化范围分别为0~360°,且X+Y=360°。
7.根据权利要求2所述的一种生长金刚石多晶膜用样品托,其特征在于,实心环带和空心环带设为相互接触或相互间断。
8.根据权利要求1所述的一种生长金刚石多晶膜用样品托,其特征在于,若干个同心圆环间隔均匀分布或非均匀间隔分布。
9.一种使用如权利要求1-8任一项所述的样品托生长金刚石多晶膜的方法,其特征在于,包括如下步骤:
步骤一:对应等离子体球的分布,设置非均匀散热样品托;
步骤二:将异质衬底放入样品托,使用MPCVD法生长多晶金刚石;
步骤三:生长到设定厚度后,即得金刚石多晶膜。
10.根据权利要求9所述的一种金刚石多晶膜生长方法,其特征在于,步骤一中,通过改变样品托底部同心圆环的数量、间隔宽度、实心圆环带、空心圆环带宽度、容置槽深度和空心图形的形状大小,实现对应于等离子体球能量分布的非均匀散热。
CN202010053354.8A 2020-01-17 2020-01-17 一种生长金刚石多晶膜用样品托及金刚石多晶膜生长方法 Active CN111394792B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010053354.8A CN111394792B (zh) 2020-01-17 2020-01-17 一种生长金刚石多晶膜用样品托及金刚石多晶膜生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010053354.8A CN111394792B (zh) 2020-01-17 2020-01-17 一种生长金刚石多晶膜用样品托及金刚石多晶膜生长方法

Publications (2)

Publication Number Publication Date
CN111394792A true CN111394792A (zh) 2020-07-10
CN111394792B CN111394792B (zh) 2023-10-24

Family

ID=71427074

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010053354.8A Active CN111394792B (zh) 2020-01-17 2020-01-17 一种生长金刚石多晶膜用样品托及金刚石多晶膜生长方法

Country Status (1)

Country Link
CN (1) CN111394792B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113862781A (zh) * 2021-09-22 2021-12-31 东莞市天域半导体科技有限公司 一种碳化硅外延晶片生长用样品托上的复合涂层制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030084839A1 (en) * 2001-11-07 2003-05-08 Hemley Russell J. Apparatus and method for diamond production
CN101037793A (zh) * 2007-02-07 2007-09-19 吉林大学 高速生长金刚石单晶的装置和方法
CN103824796A (zh) * 2014-01-07 2014-05-28 苏州新纳晶光电有限公司 用于led外延制程的石墨承载盘及其配套衬底
CN107059120A (zh) * 2017-05-09 2017-08-18 中国电子科技集团公司第四十六研究所 一种利用方形槽镶嵌式衬底托抑制多晶金刚石生长的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030084839A1 (en) * 2001-11-07 2003-05-08 Hemley Russell J. Apparatus and method for diamond production
CN101037793A (zh) * 2007-02-07 2007-09-19 吉林大学 高速生长金刚石单晶的装置和方法
CN103824796A (zh) * 2014-01-07 2014-05-28 苏州新纳晶光电有限公司 用于led外延制程的石墨承载盘及其配套衬底
CN107059120A (zh) * 2017-05-09 2017-08-18 中国电子科技集团公司第四十六研究所 一种利用方形槽镶嵌式衬底托抑制多晶金刚石生长的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113862781A (zh) * 2021-09-22 2021-12-31 东莞市天域半导体科技有限公司 一种碳化硅外延晶片生长用样品托上的复合涂层制备方法

Also Published As

Publication number Publication date
CN111394792B (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
US6805745B2 (en) Large size single crystal seed crystal fabrication by intergrowth of tiled seed crystals
JP2002371361A (ja) 気相成長装置及び気相成長方法
GB2497880A (en) Boron-doped single crystal diamond
CN103476975A (zh) 碳化硅衬底、碳化硅锭以及制造碳化硅衬底和碳化硅锭的方法
CN215976143U (zh) 组合式衬底托盘
CN111183248A (zh) 一种用于基板上生长薄膜的承载盘、生长装置和生长方法
JP2002110564A (ja) 気相成長装置及び気相成長方法
CN111394792A (zh) 一种生长金刚石多晶膜用样品托及金刚石多晶膜生长方法
US7399358B2 (en) Synthesis of large homoepitaxial monocrystalline diamond
CN211921746U (zh) 一种生长金刚石多晶膜用样品托及其装置
CN105280534A (zh) 承载盘
CN114561698A (zh) 一种mpcvd法批量生产金刚石单晶的方法、钼质基片台
JP2013060328A (ja) 炭化珪素結晶の製造方法
US20140230721A1 (en) Apparatus for fabricating ingot, method for providing material, and method for fabricating ingot
CN111868310B (zh) 碳化硅单晶的制造方法
EP3072995B1 (en) Method for producing silicon carbide crystals from vapour phase
JP2015198213A (ja) エピタキシャル炭化珪素ウェハの製造方法及びそれに用いる炭化珪素単結晶基板のホルダー
CN216919482U (zh) 一种石墨盘及反应装置
CN211546717U (zh) 一种生长金刚石单晶用样品托及其装置
CN113699586B (zh) 一种带空气桥结构的托盘及外延生长方法
CN105568371A (zh) 一种改善硅基氮化物各圈波长均值的石墨盘
CN212293841U (zh) 一种生长金刚石用散热装置
CN114016005A (zh) 一种单晶金刚石多片共同生长的制备方法
CN203513831U (zh) 碳化硅外延炉兼容小盘基座
KR101721166B1 (ko) 웨이퍼 제조장치의 서셉터

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant