CN113831139A - 航天发动机燃气舵用C/SiC复合材料及其制备方法 - Google Patents

航天发动机燃气舵用C/SiC复合材料及其制备方法 Download PDF

Info

Publication number
CN113831139A
CN113831139A CN202111154011.1A CN202111154011A CN113831139A CN 113831139 A CN113831139 A CN 113831139A CN 202111154011 A CN202111154011 A CN 202111154011A CN 113831139 A CN113831139 A CN 113831139A
Authority
CN
China
Prior art keywords
preparation
composite material
porous body
sic composite
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111154011.1A
Other languages
English (en)
Other versions
CN113831139B (zh
Inventor
罗瑞盈
罗浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Ruiyu Kongtian High Tech Co ltd
Original Assignee
Hubei Ruiyu Kongtian High Tech Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei Ruiyu Kongtian High Tech Co ltd filed Critical Hubei Ruiyu Kongtian High Tech Co ltd
Priority to CN202111154011.1A priority Critical patent/CN113831139B/zh
Publication of CN113831139A publication Critical patent/CN113831139A/zh
Application granted granted Critical
Publication of CN113831139B publication Critical patent/CN113831139B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/26Guiding or controlling apparatus, e.g. for attitude control using jets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9615Linear firing shrinkage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Remote Sensing (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

一种航天发动机燃气舵用C/SiC复合材料及其制备方法,所述C/SiC复合材料是将三维正交预制体经化学气相渗积(CVI),料浆浸渍(SI)石墨片(Graphite Sheet,GS),原位生长碳线(Carbon Wire,CW)以及熔融反应渗硅(RMI)法致密化至密度为2.0~2.20 g/cm3,属于陶瓷基复合材料制备技术领域。具体制备方法为:首先采用三维正交的方法制备碳纤维预制体,之后采用CVI法制备低密度碳/碳(C/C)多孔体,经过高温热处理后采用SI法引入石墨片制备得到C/C‑GS多孔体,然后采用化学气相沉积法(CVD)原位制备碳线得到C/C‑GS‑CW多孔体,最后采用RMI法制得轻质耐烧蚀航天发动机燃气舵用C/SiC复合材料。本发明所制备的航天发动机燃气舵用C/SiC复合材料,具有密度小,耐超高温,抗烧蚀,热膨胀系数小,不发生灾难性破坏等显著优点。

Description

航天发动机燃气舵用C/SiC复合材料及其制备方法
技术领域
本发明属于陶瓷基复合材料制备技术领域,具体涉及一种航天发动机燃气舵用复合材料及其制备方法。
背景技术
燃气舵安装于航天发动机喷管出口处,通过控制燃气舵的偏转可以控制喷流的方向,进而控制航天飞行器的飞行姿态。燃气舵在整个工作过程中均处于超高温超声速燃气流当中,且喷流气体中通常夹杂有固体颗粒,故燃气舵所用材料需具有优异的抗烧蚀性能以及超高温力学性能。目前燃气舵常用的材料为钨铜或钨钼等高温合金材料,这些材料虽然烧蚀率较低,但其密度过大(钨渗铜材料密度>10g/cm3),极大地降低了发动机的推重比,使武器装备无法实现快速、远程和精确打击的战略要求。而且在高温燃气作用下,高温合金材料易发生二次烧结,造成燃气舵表面产生微小裂纹,严重影响发动机工作的可靠性。因此为了解决航天发动机存在的这一重大问题,在保证航天发动机可靠性的同时提高其工作效率,亟需一种轻质、耐烧蚀材料和高可靠性的超高温材料替代现有的钨铜或钨钼等高温合金材料制备航天发动机燃气舵及其他部件,实现航天发动机抗烧蚀材料的升级换代。碳纤维增强陶瓷基复合材料具有密度小(2.0~2.5g/cm3)、耐超高温(可达3000度以上)、抗烧蚀、热膨胀系数小、不易发生灾难性破坏等显著优点,采用该材料替代现有的钨铜或钨钼等高温合金材料制备航天发动机燃气舵及其他部件是目前国际上研究与产业化发展的方向。但C/SiC复合材料基体中存在残余Si,一方面残余Si在冷却过程中会产生体积膨胀,在Si-SiC界面处产生裂纹,使制备的 C/SiC复合材料室温力学性能降低,另一方面残余Si会制约C/SiC复合材料在1350℃以上的力学性能,限制C/SiC复合材料在高温下长时间服役,阻碍了C/SiC复合材料的进一步发展应用。
发明内容
针对现有技术缺陷,本发明的目的是提供一种航天发动机燃气舵用C/SiC复合材料的制备方法,采用该材料制备的燃气舵密度低,耐高温,抗烧蚀性能优异且制备周期短,成本低,基体中不含残余Si,室温及高温力学性能优异。
为解决上述问题,本发明提供了一种航天发动机燃气舵用C/SiC复合材料的制备方法,其技术方案包括六部分:预制体的制备,高温热处理,C/C多孔体的制备,C/C-GS多孔体制备,C/C-GS-CW多孔体制备,RMI陶瓷化。具体步骤如下:
(1)碳纤维预制体的制备
根据燃气舵结构承力特点,设计X、Y方向采用连续碳纤维软编铺层,碳纤维层为0°/90°铺层,Z向有碳纤维双向编织制成密度为0.8-0.9g/cm3的正交三向整体织物形成碳纤维预制体 (间距行距2.4×2.4mm),碳纤维牌号优选T700级;
(2)高温热处理
将碳纤维预制体在高温炉中进行2300-2400℃的高温热处理,清除碳纤维内的非碳杂质,提高碳纤维的石墨化度。氩气惰性气体保护气氛,升温速率为150-200℃/h,压力为1000~5000Pa,处理时间为1.5~2.5h;
(3)C/C多孔体的制备
采用快速CVI法对碳纤维预制体进行热解碳增密,制得密度为1.40-1.55g/cm3的C/C多孔体。其中化学气相渗积的碳源气体为单一天然气,具有使用成本低,扩散性能好,易于控制等优点,渗积时间为80~200h,渗积温度为1030-1120℃,压力为1.0~12.0KPa,滞留时间为1~2s,多孔体密度根据RMI过程中理论消耗碳基体的含量进行计算得到;
(4)C/C-GS多孔体制备
将聚乙烯醇缩丁醛酯加入到乙醇溶液中配置成1.0-2.5wt.%的混合溶液,将0.6-1.5wt.%的石墨片加入到混合溶液中后球磨24~48h得到石墨片料浆,之后将C/C多孔体放入真空环境下排出孔隙内的空气,随后注入搅拌均匀的石墨片料浆真空浸渍1~2h后通入压缩空气至 1.2~3.0MPa开始压力浸渍0.5~1h,取出后放入烘箱80~120℃烘干1~2h,在600℃的高温下真空热处理1h后制备得到C/C-GS多孔体;石墨片根据C/C多孔体的孔径尺寸优选为2-50um,浸渍过程中石墨片由于尺寸限制只能进入到多孔体的大孔中,石墨片之间相互交叉形成良好的三维网状结构,起到分割孔隙的作用。
(5)C/C-GS-CW多孔体制备
将Ni(NO3)2·6H2O溶于乙醇中配置成0.15mol/L的催化剂溶液,将C/C-GS多孔体置于催化剂溶液中在室温下浸泡2h后取出晾干,之后放入沉积炉中在氮气气氛下升温至400℃保温 2h将Ni(NO3)2·6H2O转变为NiO,恒温结束后在氢气气氛下升温至980℃,将NiO还原为 Ni,在丙烷和氩气按照体积比1:12,滞留时间0.15s,压力1.5KPa条件下原位生长碳线2h,制备得到C/C-GS-CW多孔体。原位生长的碳线均匀分布在孔隙侧壁和石墨片表面,相互交织,形成良好的三维网格结构,进一步分割孔隙,提高多孔体孔隙分布均匀性。
(6)RMI陶瓷化
将C/C-GS-CW多孔体置于装有硅粉的石墨坩埚中,在高温炉中进行熔融渗硅,通过熔 Si与基体C、石墨片和碳线原位反应生成SiC填充多孔体孔隙,最终得到航天发动机燃气舵用C/SiC复合材料。航天发动机燃气舵用C/SiC复合材料简称C/SiC复合材料。具体地通过C/SiC复合材料的预期密度和C/C-GS-CW多孔体密度之差计算出熔融渗硅过程中放置Si粉量,将低密度C/C-GS-CW多孔体掩埋于Si粉中,高温炉内采用真空环境,硅粉纯度大于99%,粒度为100~300目,熔融渗硅条件为1550~1750℃下保温1.5~3.5h。
采用上述技术方案的发动机活塞用碳陶双基复合材料的制造方法,其优点和积极效果充分体现在:
(1)采用本发明制备的C/SiC复合材料密度为2.0-2.2g/cm3,仅为钨铜合金的1/8-1/10;
(2)采用本发明制备的C/SiC复合材料基体中不含残余Si,室温弯曲强度为480MPa,弯曲模量为62GPa,拉伸强度为270MPa,拉伸模量为85GPa,1200℃导热系数13.4W/(m·K), RT-1200℃热膨胀系数3.06×10-6/K;
(3)采用本发明制备的C/SiC复合材料在1500℃下热处理10h后弯曲强度保持率为96.82%,弯曲模量保持率为94.52%;
(4)采用本发明制备的C/SiC复合材料在2400℃下的线烧蚀率为0.00132mm/s。
附图说明
图1是本发明的制备方法流程图;
图2是石墨片的微观形貌图;
图3是碳线的微观形貌;
图4为本发明制备的C/SiC复合材料SEM图;
图5为本发明制备的C/SiC复合材料XRD图谱。
具体实施方式
下面结合附图和实施例对本发明做进一步说明。
图1中,本发明采用CVI+SI+CVD+RMI相结合的方式进行复合材料的制备,即化学气相渗积(CVI),料浆浸渍(SI)石墨片(Graphite Sheet,GS),原位生长碳线(Carbon Wire,CW)以及熔融反应渗硅(RMI)法。本发明的航天发动机燃气舵用轻质抗烧蚀C/SiC复合材料的制备方法,包括以下几步:预制体的制备、高温热处理,C/C多孔体的制备,孔隙调控,RMI陶瓷化。
实施例一:
(1)采用三维正交方法制备得到密度为0.8g/cm3的T700碳纤维预制体;
(2)将碳纤维预制体在高温炉中进行2350℃的高温热处理,氩气惰性气体保护气氛,升温速率为150℃/h,压力为5000Pa,处理时间为2h;
(3)采用快速CVI法对碳纤维预制体进行热解碳增密,制得密度为1.42g/cm3的C/C多孔体。其中化学气相渗积的碳源气体为天然气,渗积时间为130h,渗积温度为1100℃,压力为 5.0KPa,滞留时间为1.0s;
(4)将0.6wt.%的石墨片加入到1.75wt.%的PVB乙醇溶液中球磨24h得到石墨片料浆,之后将C/C多孔体放入真空环境后注入搅拌均匀的石墨片料浆真空浸渍1h后通入压缩空气至 1.2MPa开始压力浸渍1h,取出后放入烘箱120℃烘干2h,在600℃的高温下真空热处理1h 后制备得到C/C-GS多孔体。
(5)将Ni(NO3)2·6H2O溶于乙醇中配置成0.15mol/L的催化剂溶液,将C/C-GS多孔体置于催化剂溶液中在室温下浸泡2h后取出晾干,之后放入沉积炉中在氮气气氛下升温至400℃保温2h,恒温结束后在氢气气氛下升温至980℃,在丙烷和氩气按照体积比1:12,滞留时间0.15s,压力1.5KPa条件下原位生长碳线2h,制备得到C/C-GS-CW多孔体。
(6)将C/C-GS-CW多孔体置于装有硅粉的石墨坩埚中,在1550℃真空气氛下熔融渗硅 2h,其中通过C/SiC复合材料的预期密度和C/C-GS-CW多孔体密度之差计算出熔融渗硅过程中放置Si粉量,硅粉纯度大于99%,粒度为100~300目。
实施例二:
(1)采用三维正交方法制备得到密度为0.9g/cm3的T700碳纤维预制体;
(2)将碳纤维预制体在高温炉中进行2400℃的高温热处理,氩气惰性气体保护气氛,升温速率为200℃/h,压力为1000Pa,处理时间为2.5h;
(3)采用快速CVI法对碳纤维预制体进行热解碳增密,制得密度为1.52g/cm3的C/C多孔体。其中化学气相渗积的碳源气体为天然气,渗积时间为200h,渗积温度为1030℃,压力为 1.0KPa,滞留时间为2.0s;
(4)将1.5wt.%的石墨片加入到1.0wt.%的PVB乙醇溶液中球磨48h得到石墨片料浆,之后将C/C多孔体放入真空环境后注入搅拌均匀的石墨片料浆真空浸渍1h后通入压缩空气至 1.2MPa开始压力浸渍1h,取出后放入烘箱120℃烘干2h,在600℃的高温下真空热处理1h 后制备得到C/C-GS多孔体。
(5)将Ni(NO3)2·6H2O溶于乙醇中配置成0.15mol/L的催化剂溶液,将C/C-GS多孔体置于催化剂溶液中在室温下浸泡2h后取出晾干,之后放入沉积炉中在氮气气氛下升温至400℃保温2h,恒温结束后在氢气气氛下升温至980℃,在丙烷和氩气按照体积比1:12,滞留时间0.15s,压力1.5KPa条件下原位生长碳线2h,制备得到C/C-GS-CW多孔体。
(6)将C/C-GS-CW多孔体置于装有硅粉的石墨坩埚中,在1550℃真空气氛下熔融渗硅 2h,其中通过C/SiC复合材料的预期密度和C/C-GS-CW多孔体密度之差计算出熔融渗硅过程中放置Si粉量,硅粉纯度大于99%,粒度为100~300目。
图2是石墨片的微观形貌图,石墨片片径为7-10um,厚度<100nm,微观形貌表现为多层叠加结构,外观上看碳片层形貌为平整的片状,没有发现明显的褶皱起伏,同时能够观察到表面有尺寸不一的碳片重叠在一起,数量较多。由EDS能谱分析可知石墨片由96.70wt.%的C原子组成,另外包括3.30wt.%的氧原子杂质。图3是碳线的微观形貌,碳线的直径约1.5um,外形均匀呈直立状,由EDS能谱分析可知碳线完全由碳元素组成,没有检测到其他元素杂质。图4为本发明制备的C/SiC复合材料SEM图,由图可知复合材料微观结构中存在着三种不同颜色区域:纤维周围基体中黑色区域A,黑色区域相邻的深灰色区域B,深灰色区域中间的灰白色区域C。EDS能谱分析表明黑色区域为C相,深灰色区域为SiC相,灰白色区域为 Sirich-SiC相(Si与C的原子比约为2:1),没有观察到Si相。图5为本发明制备的C/SiC复合材料XRD图谱,主要得到β相SiC和C,没有检测到Si相。

Claims (6)

1.一种航天发动机燃气舵用C/SiC复合材料的制备方法,其特征在于:包括以下步骤:
(1) 碳纤维预制体的制备
碳纤维预制体为根据燃气舵结构采用三维正交方法形成的正交三向整体织物;
(2) 高温热处理
将碳纤维预制体在高温炉中进行2300-2400℃的高温热处理,氩气惰性气体保护气氛,升温速率为150-200℃/h,压力为1000~5000Pa,处理时间为1.5~2.5h;
(3) C/C多孔体的制备
采用化学气相渗积法对碳纤维预制体进行热解碳增密,制得密度为1.40-1.55g/cm3的C/C多孔体;
其中化学气相渗积的碳源气体为天然气,渗积时间为80~200h,渗积温度为1030-1120℃,压力为1.0~12.0KPa,滞留时间为1~2s;
(4) C/C-GS多孔体制备
将聚乙烯醇缩丁醛酯加入到乙醇溶液中配置成1.0-2.5wt.%的混合溶液,将0.6-1.5wt.%的石墨片加入到混合溶液中后球磨24~48h得到石墨片料浆,之后将C/C多孔体放入真空环境下排出孔隙内的空气,随后注入搅拌均匀的石墨片料浆真空浸渍1~2h后通入压缩空气至1.2~3.0MPa开始压力浸渍0.5~1h,取出后放入烘箱80~120℃烘干1~2h,在600℃的高温下真空热处理1h后制备得到C/C-GS多孔体;
(5) C/C-GS-CW多孔体制备
将Ni(NO3)2•6H2O溶于乙醇中配置成0.15mol/L的催化剂溶液,将C/C-GS多孔体置于催化剂溶液中在室温下浸泡2h后取出晾干,之后放入沉积炉中在氮气气氛下升温至400℃保温2h将Ni(NO3)2•6H2O转变为NiO,恒温结束后在氢气气氛下升温至980℃,将NiO还原为Ni,在丙烷和氩气按照体积比1:12,滞留时间0.15s,压力1.5KPa条件下原位生长碳线2h,制备得到C/C-GS-CW多孔体;
(6) RMI陶瓷化
将C/C-GS-CW多孔体置于装有硅粉的石墨坩埚中,在高温炉中进行熔融渗硅,通过熔Si与基体C、石墨片和碳线原位反应生成SiC填充多孔体孔隙,得到航天发动机燃气舵用C/SiC复合材料。
2.根据权利要求1所述的航天发动机燃气舵用C/SiC复合材料的制备方法,其特征在于:所述步骤(1)中,设计X、Y方向采用连续碳纤维软编铺层,碳纤维层为0°/90°铺层,Z向有碳纤维双向编织制成密度为0.8-0.9g/cm3的正交三向整体织物。
3.根据权利要求1所述的航天发动机燃气舵用C/SiC复合材料的制备方法,其特征在于:所述步骤(4)中,石墨片尺寸为2-50um,浸渍过程中石墨片由于尺寸限制只能进入到C/C多孔体的大孔中,石墨片之间相互交叉形成良好的三维网状结构。
4.根据权利要求1所述的航天发动机燃气舵用C/SiC复合材料的制备方法,其特征在于:所述步骤(5)中,在C/C-GS-CW多孔体孔隙侧壁和石墨片表面均匀分布原位生长的碳线,相互交织,形成三维网格结构。
5.根据权利要求1所述的航天发动机燃气舵用C/SiC复合材料的制备方法,其特征在于:所述步骤(6)中,通过C/SiC复合材料的预期密度和C/C-GS-CW多孔体密度之差计算出熔融渗硅过程中放置硅粉量,将C/C-GS-CW多孔体掩埋于硅粉中,高温炉内采用真空环境,硅粉纯度大于99%,粒度为100~300目,熔融渗硅条件为1550~1750℃下保温1.5~3.5h。
6.一种权利要求1-5任一权利要求所述的航天发动机燃气舵用C/SiC复合材料的制备方法制备的航天发动机燃气舵用C/SiC复合材料。
CN202111154011.1A 2021-09-29 2021-09-29 航天发动机燃气舵用C/SiC复合材料及其制备方法 Active CN113831139B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111154011.1A CN113831139B (zh) 2021-09-29 2021-09-29 航天发动机燃气舵用C/SiC复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111154011.1A CN113831139B (zh) 2021-09-29 2021-09-29 航天发动机燃气舵用C/SiC复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113831139A true CN113831139A (zh) 2021-12-24
CN113831139B CN113831139B (zh) 2022-09-30

Family

ID=78967542

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111154011.1A Active CN113831139B (zh) 2021-09-29 2021-09-29 航天发动机燃气舵用C/SiC复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113831139B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114540725A (zh) * 2022-01-07 2022-05-27 北京电子工程总体研究所 一种燃气舵及其工艺成型方法、火箭
CN114685176A (zh) * 2022-03-22 2022-07-01 潍柴动力股份有限公司 一种多层界面改性碳陶复合材料的制备方法及发动机活塞
CN116040626A (zh) * 2023-01-17 2023-05-02 哈尔滨工程大学 一种减压碱熔石墨纯化方法
CN117964380A (zh) * 2024-04-01 2024-05-03 西北工业大学宁波研究院 一种纤维增韧陶瓷基复合材料的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106507877B (zh) * 2009-05-07 2012-04-04 西北工业大学 一种碳/碳化硅飞机刹车材料的制造方法
CN103724043A (zh) * 2013-12-06 2014-04-16 中南大学 一种高导热c/c复合材料及制备方法
CN106966731A (zh) * 2016-06-03 2017-07-21 北京航空航天大学 碳纤维表面原位生长碳纳米管界面改性碳‑碳化硅双基体复合材料的制备方法
CN108794040A (zh) * 2018-06-29 2018-11-13 航天材料及工艺研究所 一种基于熔融渗硅工艺的复合材料、碳/碳多孔体及其制备方法
CN109133963A (zh) * 2018-08-20 2019-01-04 广州晶石碳纤新材料有限公司 一种碳纤维增强碳-碳化硅梯度复合材料、其制备方法及应用
CN109534836A (zh) * 2018-12-26 2019-03-29 深圳市智雅墨族科技有限公司 QICC纳米碳-碳SiC纳米冗余复合材料刹车盘及制备方法
CN109627032A (zh) * 2019-01-29 2019-04-16 西北工业大学 一种内含三维有序石墨烯的高导热导电陶瓷基复合材料的制备方法
CN112110743A (zh) * 2020-08-31 2020-12-22 常州翊翔炭材科技有限公司 一种制备碳/碳陶复合材料刹车盘的cvi、pip和rmi联合工艺
CN113246556A (zh) * 2021-06-16 2021-08-13 中南大学 一种超轻质隔热耐冲刷的功能一体化复合材料及制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106507877B (zh) * 2009-05-07 2012-04-04 西北工业大学 一种碳/碳化硅飞机刹车材料的制造方法
CN103724043A (zh) * 2013-12-06 2014-04-16 中南大学 一种高导热c/c复合材料及制备方法
CN106966731A (zh) * 2016-06-03 2017-07-21 北京航空航天大学 碳纤维表面原位生长碳纳米管界面改性碳‑碳化硅双基体复合材料的制备方法
CN108794040A (zh) * 2018-06-29 2018-11-13 航天材料及工艺研究所 一种基于熔融渗硅工艺的复合材料、碳/碳多孔体及其制备方法
CN109133963A (zh) * 2018-08-20 2019-01-04 广州晶石碳纤新材料有限公司 一种碳纤维增强碳-碳化硅梯度复合材料、其制备方法及应用
CN109534836A (zh) * 2018-12-26 2019-03-29 深圳市智雅墨族科技有限公司 QICC纳米碳-碳SiC纳米冗余复合材料刹车盘及制备方法
CN109627032A (zh) * 2019-01-29 2019-04-16 西北工业大学 一种内含三维有序石墨烯的高导热导电陶瓷基复合材料的制备方法
CN112110743A (zh) * 2020-08-31 2020-12-22 常州翊翔炭材科技有限公司 一种制备碳/碳陶复合材料刹车盘的cvi、pip和rmi联合工艺
CN113246556A (zh) * 2021-06-16 2021-08-13 中南大学 一种超轻质隔热耐冲刷的功能一体化复合材料及制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114540725A (zh) * 2022-01-07 2022-05-27 北京电子工程总体研究所 一种燃气舵及其工艺成型方法、火箭
CN114685176A (zh) * 2022-03-22 2022-07-01 潍柴动力股份有限公司 一种多层界面改性碳陶复合材料的制备方法及发动机活塞
CN116040626A (zh) * 2023-01-17 2023-05-02 哈尔滨工程大学 一种减压碱熔石墨纯化方法
CN116040626B (zh) * 2023-01-17 2024-05-28 哈尔滨工程大学 一种减压碱熔石墨纯化方法
CN117964380A (zh) * 2024-04-01 2024-05-03 西北工业大学宁波研究院 一种纤维增韧陶瓷基复合材料的制备方法

Also Published As

Publication number Publication date
CN113831139B (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
CN113831139B (zh) 航天发动机燃气舵用C/SiC复合材料及其制备方法
CN111099911B (zh) 一种碳纤维增强碳-碳化硅-碳化锆复合材料及其制备方法
KR101494116B1 (ko) SiC 세라믹 재료 및 SiC 세라믹 구조체 및 그 제조 방법
CN108585906B (zh) 一种Cf/ZrC-SiC超高温陶瓷基复合材料及其制备方法
CN111217616B (zh) 一种近零膨胀特性的C/SiC结构材料的制备方法
US10793478B2 (en) Single phase fiber reinforced ceramic matrix composites
CN102731119B (zh) 碳/碳/碳化硅复合材料坩埚及制备方法
CN102718535A (zh) 碳/碳/碳化硅复合材料及制备方法
US5300322A (en) Molybdenum enhanced low-temperature deposition of crystalline silicon nitride
CN102718539A (zh) 碳/碳/碳化硅复合材料保温筒及制备方法
CN113045325A (zh) 一种高强度碳/碳-碳化硅复合材料的制备方法
CN112479718A (zh) 一种Ti3SiC2MAX相界面层改性SiC/SiC复合材料及其制备方法
CN115369336B (zh) 一种W-Cu-ZrC-HfC金属陶瓷改性C/C复合材料的制备方法
CN113045326A (zh) 一种改性碳/碳复合材料的制备方法
Lv et al. Novel processing strategy and challenges on whisker-reinforced ceramic matrix composites
CN114988901A (zh) 一种高致密SiC/SiC复合材料的快速制备方法
CN113121253B (zh) 一种超高温C/SiHfBCN陶瓷基复合材料及其制备方法
CN112521156B (zh) 一种混杂基体SiCf/SiC复合材料及其制备方法
US5283089A (en) Non-porous diffusion furnace components
CN116239400A (zh) 一种含纳米复相超高温陶瓷内涂层的C/C-UHTCs复合材料及其制备方法
CN115594520A (zh) 一种热防护材料及其制备方法
CN114455969A (zh) 一种含有氧化铝涂层的高密度C/C-SiC复合材料坩埚
CN114853490A (zh) 兼具优异成型性和良好力学性能的SiC/SiC陶瓷复合材料及制备方法
CN112661526A (zh) 一种用于偏流板的耐热板的制备方法
CN114455970B (zh) 一种含有氧化铝涂层的低密度C/C-SiC复合材料坩埚

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant