CN114685176A - 一种多层界面改性碳陶复合材料的制备方法及发动机活塞 - Google Patents

一种多层界面改性碳陶复合材料的制备方法及发动机活塞 Download PDF

Info

Publication number
CN114685176A
CN114685176A CN202210279269.2A CN202210279269A CN114685176A CN 114685176 A CN114685176 A CN 114685176A CN 202210279269 A CN202210279269 A CN 202210279269A CN 114685176 A CN114685176 A CN 114685176A
Authority
CN
China
Prior art keywords
composite material
preparation
gas
sic
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210279269.2A
Other languages
English (en)
Inventor
郭圣刚
王德成
孙楠楠
张纪元
马飞
郭灵燕
窦站成
庞斌
贾春苹
曾笑笑
李志杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weichai Power Co Ltd
Original Assignee
Weichai Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weichai Power Co Ltd filed Critical Weichai Power Co Ltd
Priority to CN202210279269.2A priority Critical patent/CN114685176A/zh
Publication of CN114685176A publication Critical patent/CN114685176A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及发动机活塞用陶瓷基复合材料领域,具体涉及一种内燃机活塞用多层界面改性炭纤维增强陶瓷基(C/SiC)复合材料的制备方法,其中,C/SiC复合材料是以炭纤维作为增强体,编织成准三维针刺结构预制体后在惰性气体保护气氛下高温热处理,然后经化学气相沉积法在预制体纤维表面依次交替制备BN界面和SiC界面,之后利用化学气相渗积法在预制体孔隙内部制备热解碳基体得到碳纤维增强热解碳基体(C/C),最后采用液硅浸渗法进一步致密化,制备得到内燃机活塞用多层界面改性C/SiC复合材料。本发明所制备的内燃机活塞用C/SiC复合材料,具有增强体炭纤维损伤程度小、密度低、机械强度高和高温力学性能衰减小的高性能碳陶复合材料的制备方法。

Description

一种多层界面改性碳陶复合材料的制备方法及发动机活塞
技术领域
本发明涉及发动机活塞用陶瓷基复合材料的技术领域,更具体而言,涉及一种多层界面改性碳陶复合材料的制备方法及发动机活塞。
背景技术
为提高内燃机热效率,助力实现我国“双碳”目标,当前内燃机的最大爆发压力已经超过25MPa,活塞的使用温度也已超过600℃。而现有的铸铁、钢和铝合金等金属活塞材料存在密度高、承温能力不足、热变形量大等问题,即使采用优化活塞结构和改进材料制造工艺的方式仍不能满足未来活塞发展需求,开发活塞新材料以适应不同工作状态和工作环境是一种新的国内外发展趋势。
采用LSI法制备的碳陶复合材料,是一种以碳纤维作为增强体,陶瓷作为基体的一种新型材料,具有密度低、耐高温、热变形量小等一系列突出优点,且制备周期短、成本低,是满足新一代内燃机活塞需求的理想预选材料。但LSI法制备过程中,高温液硅会腐蚀增强体炭纤维,导致炭纤维“硅化”损伤,劣化材料整体性能,大大限制该材料在发动机活塞领域的进一步应用。
因此有必要开发一种降低液态硅浸法影响的活塞制备工艺。
发明内容
针对现阶段技术中存在的问题,本发明提出一种增强体炭纤维损伤程度小、密度低、机械强度高和高温力学性能衰减小,同时制备周期短、成本低的发动机的内燃机活塞用多层界面改性碳陶复合材料的制备方法。
为实现上述目的,本发明提供的技术方案为:
第一方面,本发明提供了一种多层界面改性碳陶复合材料的制备方法,包括以下步骤:
S1、预制体的制备:单层0°无纬布、网胎、90°无纬布、网胎依次循环叠加,采用接力式针刺的方法在垂直于铺层方向引入炭纤维,制成准三维针刺预制体;
S2、高温热处理:将准三维针刺预制体高温热处理;
S3、(BN+SiC)n多层界面制备:将高温热处理后的预制体采用化学气相沉积法制备(BN/SiC)n复合材界面相;
S4、C/C复合材料制备:采用化学气相渗透法对沉积多层界面的预制体进行热解碳增密,制得C/C复合材料;
S5、LSI后致密化:将C/C复合材料放入装有金属硅粉的石墨坩埚中,在高温炉中进行液硅浸渗,最终得到多层界面改性碳陶复合材料。
进一步地,步骤S1中无纬布层、网胎层和针刺的炭纤维均采用T700炭纤维,铺层密度为5-40层/cm,针刺密度为50-80针/m2,进针深度为20-40mm,预制体中炭纤维体积分数为20%-40%,密度为0.3-0.6 g/cm3
进一步地,步骤S2中高温热处理条件为:在高温炉中,温度为1800℃-2100℃,氩气惰性气体保护气氛、压力为1500-3000Pa,处理时长为0.5-1.5h。
进一步地,步骤S3中所述(BN/SiC)n复合材界面相为BN层、SiC层交替周期性叠加。
更进一步地,所述BN层气相沉积条件为:采用三氯化硼和氨气作为源气体,采用氢气和氩气作为稀释气体,制备温度为600-900℃,压力为1000-5000Pa,三氯化硼:氨气:氢气:氩气的气体流量比为1:(4-6):(3-5):(5-7),滞留时间为0.5-3s,制备时长为4-6小时。
更进一步地,所述SiC层气相沉积条件为:采用三氯甲基硅烷作为源气体,氢气和氩气作为稀释气体,制备温度为800-1200℃,压力3000Pa-7000Pa,三氯甲基硅烷:氢气:氩气气体流量比为1:(2-5):(8-12),滞留时间1-2s,沉积时长为0.5-2小时。
进一步地,步骤S4中化学气相渗透条件为:采用天然气作为碳源气体,氮气作为稀释气体,天然气与氮气的体积比为1:(8-12),制备时长为20-40h,温度为1050℃-1150℃,压力为1000-3000Pa,滞留时间为0.2-1.5s;制备的C/C复合材料密度为1.18-1.25 g/cm3
进一步地,步骤S5中液硅浸渗的条件为:将活塞坯体置于装有金属硅粉的石墨坩埚中在高温炉进行,硅粉纯度大于99%,粒度为200~300目,反应温度为1600-1700℃,反应时长为0.5-1h,升温速率为6-8℃/min,氩气保护气氛,压力为1500-5000Pa;制备的多层界面改性碳陶复合材料密度为1.9-2.1g/cm3
第二方面,本发明提供了根据上述制备方法制备得到的多层界面改性碳陶复合材料活塞。
进一步地,本发明提供了上述复合材料活塞在制备内燃发动机中的应用。
与现有技术相比,本发明有益效果在于:
(1)本发明实施例的一种多层界面改性碳陶复合材料活塞的制备方法,采用炭纤维准三维针刺结构预制体与CVD、CVI和RMI工艺结合的方式进行复合材料的制备;具有制备周期短,成本低的优点,同时采用(BN+SiC)n复合界面隔绝液硅,保护增强体碳纤维,避免液态硅浸法过程中碳纤维损伤,材料性能降低,制得的复合材料的室温及高温力学性能优异,促进该材料在发动机活塞领域的进一步应用;
(2)(BN+SiC)n多层界面能够避免LSI过程中液硅腐蚀增强体碳纤维,材料力学性能优异。1600℃下,液Si在β-SiC中的扩散系数仅为De=4.2×10-10cm2/s,因此一定厚度的外层SiC界面可以很好的隔绝液Si,保护炭纤维,进一步地,内层BN界面与液Si不浸润,可以构筑保护炭纤维的第二道防线,避免LSI过程中炭纤维受到液Si腐蚀,劣化性能;
(3)(BN+SiC)n复合界面具有偏转裂纹、阻断裂纹扩展、形成刚性粒子作用,增强增韧。BN界面为层状结构,起到了弱化界面结合能、偏转裂纹的作用,当裂纹扩展到BN界面时,BN相将消耗裂纹断裂功,同时在力的作用下趋于剥离基体和纤维,产生了裂纹偏转;SiC界面具有高模量和高断裂能,增强界面刚性,能够发挥缓冲尖端应力场和阻碍裂纹扩展的作用;
(4)(BN+SiC)n是多层界面具有优异的抗氧化性能。BN在500-1000℃范围内具有优异的抗氧化性能,氧化形成的B2O3具有良好的流动性,可愈合裂纹,进一步提高抗氧化性能,而SiC在1000-1600℃范围内具有优异的抗氧化性能,氧化形成的SiO2具有良好的流动性,可愈合裂纹。因此(BN+SiC)n多层界面可实现500-1600℃范围内优异的抗氧化性能。
附图说明
图1为(BN+SiC)n多层界面改性碳陶复合材料截面SEM图;
图2为传统碳陶复合材料截面SEM图;
图3为实施例2制备的多层界面改性碳陶复合材料与对比例制备的传统碳陶复合材料氧化前后力学性能对比。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下述实施例中的实验方法,如无特殊说明,均为常规方法。
下述实施例中所用的试验材料,如无特殊说明,均为自常规生化试剂商店购买得到的。
以下实施例中的定量试验,均设置三次重复实验,数据为三次重复实验的平均值或平均值±标准差。
实施例1:
(1)将T700炭纤维制备成准三维针刺结构预制体:单层0°无纬布、网胎、90°无纬布、网胎依次循环叠加,采用接力式针刺的方法在垂直于铺层方向引入炭纤维。其中铺层密度为5层/cm,针刺密度为50针/m2,进针深度为20mm,预制体中炭纤维体积分数为20%,密度为0.3g/cm3
(2)将准三维针刺预制体在高温炉中进行1800℃的高温热处理,氩气惰性气体保护气氛,压力为1500Pa,处理时长为0.5h。
(3)采用CVD法制备(BN+SiC)n多层界面,n为1。其中BN界面制备采用三氯化硼和氨气作为源气体,采用氢气和氩气作为稀释气体,制备温度为600℃,压力为1000Pa,气体流量比为三氯化硼:氨气:氢气:氩气=1:4:3:5,滞留时间为0.5s,制备时长为4小时;SiC界面制备采用三氯甲基硅烷作为源气体,氢气和氩气作为稀释气体,制备温度为800℃,压力3000Pa,气体流量比为三氯甲基硅烷:氢气:氩气=1:2:8,滞留时间1s,沉积时长为0.5小时。
(4)采用CVI法对沉积多层界面的预制体进行热解碳增密,制得密度为1.18g/cm3的C/C复合材料。其中采用天然气作为碳源气体,氮气作为稀释气体,天然气与氮气的体积比为1:8,制备时长为20h,温度为1050℃,压力为1000Pa,滞留时间为0.2s。
(5)将C/C复合材料放入装有金属硅粉的石墨坩埚中,在高温炉中进行液硅浸渗,得到密度为1.9g/cm3的C/SiC复合材料。其中金属硅粉粒径为200目,纯度大于99.99%,反应温度为1600℃,反应时长为0.5h,升温速率为6℃/min,氩气保护气氛,压力为1500Pa,金属硅粉放置量通过C/SiC复合材料预期密度与C/C复合材料密度之差计算得出。
实施例2:
(1)将T700炭纤维制备成准三维针刺结构预制体:单层0°无纬布、网胎、90°无纬布、网胎依次循环叠加,采用接力式针刺的方法在垂直于铺层方向引入炭纤维。其中铺层密度为20层/cm,针刺密度为65针/m2,进针深度为30mm,预制体中炭纤维体积分数为30%,密度为0.45g/cm3
(2)将准三维针刺预制体在高温炉中进行1950℃的高温热处理,氩气惰性气体保护气氛,压力为2500Pa,处理时长为1h。
(3)采用CVD法制备(BN+SiC)n多层界面,n为2。其中BN界面制备采用三氯化硼和氨气作为源气体,采用氢气和氩气作为稀释气体,制备温度为750℃,压力为3500Pa,气体流量比为三氯化硼:氨气:氢气:氩气=1:5:4:6,滞留时间为2s,制备时长为5小时;SiC界面制备采用三氯甲基硅烷作为源气体,氢气和氩气作为稀释气体,制备温度为1000℃,压力5000Pa,气体流量比为三氯甲基硅烷:氢气:氩气=1:3.5:10,滞留时间1.5s,沉积时长为1.5小时。
(4)采用CVI法对沉积多层界面的预制体进行热解碳增密,制得密度为1.22g/cm3的C/C复合材料。其中采用天然气作为碳源气体,氮气作为稀释气体,天然气与氮气的体积比为1:10,制备时长为30h,温度为1100℃,压力为2000Pa,滞留时间为1s。
(5)将C/C复合材料放入装有金属硅粉的石墨坩埚中,在高温炉中进行液硅浸渗,得到密度为2.0g/cm3的C/SiC复合材料。其中金属硅粉粒径为250目,纯度大于99.99%,反应温度为1650℃,反应时长为1h,升温速率为7℃/min,氩气保护气氛,压力为3000Pa,金属硅粉放置量通过C/SiC复合材料预期密度与C/C复合材料密度之差计算得出。
实施例3:
(1)将T700炭纤维制备成准三维针刺结构预制体:单层0°无纬布、网胎、90°无纬布、网胎依次循环叠加,采用接力式针刺的方法在垂直于铺层方向引入炭纤维。其中铺层密度为40层/cm,针刺密度为80针/m2,进针深度为40mm,预制体中炭纤维体积分数为40%,密度为0.6g/cm3
(2)将准三维针刺预制体在高温炉中进行2100℃的高温热处理,氩气惰性气体保护气氛,压力为3000Pa,处理时长为1.5h。
(3)采用CVD法制备(BN+SiC)n多层界面,n为3。其中BN界面制备采用三氯化硼和氨气作为源气体,采用氢气和氩气作为稀释气体,制备温度为900℃,压力为5000Pa,气体流量比为三氯化硼:氨气:氢气:氩气=1:6:5:7,滞留时间为3s,制备时长为6小时;SiC界面制备采用三氯甲基硅烷作为源气体,氢气和氩气作为稀释气体,制备温度为1200℃,压力7000Pa,气体流量比为三氯甲基硅烷:氢气:氩气=1:5:12,滞留时间2s,沉积时长为2小时。
(4)采用CVI法对沉积多层界面的预制体进行热解碳增密,制得密度为1.25g/cm3的C/C复合材料。其中采用天然气作为碳源气体,氮气作为稀释气体,天然气与氮气的体积比为1:12,制备时长为40h,温度为1150℃,压力为3000Pa,滞留时间为1.5s。
(5)将C/C复合材料放入装有金属硅粉的石墨坩埚中,在高温炉中进行液硅浸渗,得到密度为2.1g/cm3的C/SiC复合材料。其中金属硅粉粒径为300目,纯度大于99.99%,反应温度为1700℃,反应时长为1h,升温速率为8℃/min,氩气保护气氛,压力为5000Pa,金属硅粉放置量通过C/SiC复合材料预期密度与C/C复合材料密度之差计算得出。
通过实施例1-实施例3制备得到多层界面改性碳陶复合材料活塞,其中,(BN+SiC)n多层界面改性碳陶复合材料截面SEM图如图1所示。
将上述制备得到的多层界面改性碳陶复合材料活塞用于发动机。
对比例:
(1)将T700炭纤维制备成准三维针刺结构预制体:单层0°无纬布、网胎、90°无纬布、网胎依次循环叠加,采用接力式针刺的方法在垂直于铺层方向引入炭纤维。其中铺层密度为20层/cm,针刺密度为65针/m2,进针深度为30mm,预制体中炭纤维体积分数为30%,密度为0.45g/cm3
(2)采用CVI法对沉积多层界面的预制体进行热解碳增密,制得密度为1.25g/cm3的C/C复合材料。其中采用天然气作为碳源气体,氮气作为稀释气体,天然气与氮气的体积比为1:10,制备时长为30h,温度为1100℃,压力为2000Pa,滞留时间为1s。
(3)将C/C复合材料放入装有金属硅粉的石墨坩埚中,在高温炉中进行液硅浸渗,得到密度为2.0g/cm3的C/SiC复合材料。其中金属硅粉粒径为250目,纯度大于99.99%,反应温度为1600℃,反应时长为1h,升温速率为7℃/min,氩气保护气氛,压力为3000Pa,金属硅粉放置量通过C/SiC复合材料预期密度与C/C复合材料密度之差计算得出。图2为传统碳陶复合材料截面SEM图。
实施例2制备的多层界面改性碳陶复合材料与对比例制备的传统碳陶复合材料氧化前后力学性能对比如图3所示。
上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本发明的保护范围。

Claims (9)

1.一种多层界面改性碳陶复合材料的制备方法,其特征在于,包括以下步骤:
S1、预制体的制备:单层0°无纬布、网胎、90°无纬布、网胎依次循环叠加,采用接力式针刺的方法在垂直于铺层方向引入炭纤维,制成准三维针刺预制体;其中,无纬布层、网胎层和针刺的炭纤维均采用T700炭纤维,铺层密度为5-40层/cm,针刺密度为50-80针/m2,进针深度为20-40mm,预制体中炭纤维体积分数为20%-40%,密度为0.3-0.6 g/cm3
S2、高温热处理:在1800℃-2100℃的温度下,将准三维针刺预制体高温热处理,氩气惰性气体保护气氛;
S3、(BN+SiC)n多层界面制备:将高温热处理后的预制体采用化学气相沉积法制备(BN/SiC)n复合材界面相;所述BN层气相沉积条件为:采用三氯化硼和氨气作为源气体,采用氢气和氩气作为稀释气体,三氯化硼:氨气:氢气:氩气的气体流量比为1:(4-6):(3-5):(5-7);所述SiC层气相沉积条件为:采用三氯甲基硅烷作为源气体,氢气和氩气作为稀释气体,三氯甲基硅烷:氢气:氩气气体流量比为1:(2-5):(8-12);
S4、C/C复合材料制备:采用化学气相渗透法对沉积多层界面的预制体进行热解碳增密,制得C/C复合材料;化学气相渗透条件为:采用天然气作为碳源气体,氮气作为稀释气体,天然气与氮气的体积比为1:(8-12);
S5、LSI后致密化:将C/C复合材料放入装有金属硅粉的石墨坩埚中,在高温炉中进行液硅浸渗,以氩气保护气氛,最终得到多层界面改性碳陶复合材料。
2.根据权利要求1所述的多层界面改性碳陶复合材料的制备方法,其特征在于,步骤S2中高温热处理条件为:在高温炉中,压力为1500-3000Pa,处理时长为0.5-1.5h。
3.根据权利要求1所述的多层界面改性碳陶复合材料的制备方法,其特征在于,步骤S3中所述(BN/SiC)n复合材界面相为BN层、SiC层交替周期性叠加。
4.根据权利要求1所述的多层界面改性碳陶复合材料的制备方法,其特征在于,步骤S3中所述BN层气相沉积温度为600-900℃,压力为1000-5000Pa,滞留时间为0.5-3s,制备时长为4-6小时。
5.根据权利要求1所述的多层界面改性碳陶复合材料的制备方法,其特征在于,步骤S3中所述SiC层气相沉积温度为800-1200℃,压力3000Pa-7000Pa,滞留时间1-2s,沉积时长为0.5-2小时。
6.根据权利要求1所述的多层界面改性碳陶复合材料的制备方法,其特征在于,步骤S4中化学气相渗透温度为1050℃-1150℃,压力为1000-3000Pa,制备时长为20-40h,滞留时间为0.2-1.5s;制备的C/C复合材料密度为1.18-1.25 g/cm3
7.根据权利要求1所述的多层界面改性碳陶复合材料的制备方法,其特征在于,步骤S5中硅粉纯度大于99%,粒度为200~300目,液硅浸渗反应温度为1600-1700℃,反应时长为0.5-1h,升温速率为6-8℃/min,压力为1500-5000Pa;制备的多层界面改性碳陶复合材料密度为1.9-2.1g/cm3
8.一种权利要求1-7任一项所述的方法制备得到的多层界面改性碳陶复合材料活塞。
9.一种权利要求8所述的复合材料活塞在制备发动机中的应用。
CN202210279269.2A 2022-03-22 2022-03-22 一种多层界面改性碳陶复合材料的制备方法及发动机活塞 Pending CN114685176A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210279269.2A CN114685176A (zh) 2022-03-22 2022-03-22 一种多层界面改性碳陶复合材料的制备方法及发动机活塞

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210279269.2A CN114685176A (zh) 2022-03-22 2022-03-22 一种多层界面改性碳陶复合材料的制备方法及发动机活塞

Publications (1)

Publication Number Publication Date
CN114685176A true CN114685176A (zh) 2022-07-01

Family

ID=82139488

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210279269.2A Pending CN114685176A (zh) 2022-03-22 2022-03-22 一种多层界面改性碳陶复合材料的制备方法及发动机活塞

Country Status (1)

Country Link
CN (1) CN114685176A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079039A (en) * 1989-03-02 1992-01-07 Societe Europeenne De Propulsion Method for producing a ceramic matrix composite material having improved toughness
CN1850730A (zh) * 2006-05-26 2006-10-25 中国科学院上海硅酸盐研究所 气相渗硅工艺制备碳纤维增强碳化硅基复合材料的方法
CN107793172A (zh) * 2017-11-22 2018-03-13 山东国晶新材料有限公司 一种长纤碳陶紧固件的制备方法
CN108264368A (zh) * 2018-01-17 2018-07-10 长沙理工大学 一种具有自润滑和抗氧化功能的碳陶复合材料及其制备方法
CN108623320A (zh) * 2018-04-08 2018-10-09 中南大学 一种汽车制动用C/C-SiC复合材料、其制备方法及应用
CN113831139A (zh) * 2021-09-29 2021-12-24 湖北瑞宇空天高新技术有限公司 航天发动机燃气舵用C/SiC复合材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079039A (en) * 1989-03-02 1992-01-07 Societe Europeenne De Propulsion Method for producing a ceramic matrix composite material having improved toughness
CN1850730A (zh) * 2006-05-26 2006-10-25 中国科学院上海硅酸盐研究所 气相渗硅工艺制备碳纤维增强碳化硅基复合材料的方法
CN107793172A (zh) * 2017-11-22 2018-03-13 山东国晶新材料有限公司 一种长纤碳陶紧固件的制备方法
CN108264368A (zh) * 2018-01-17 2018-07-10 长沙理工大学 一种具有自润滑和抗氧化功能的碳陶复合材料及其制备方法
CN108623320A (zh) * 2018-04-08 2018-10-09 中南大学 一种汽车制动用C/C-SiC复合材料、其制备方法及应用
CN113831139A (zh) * 2021-09-29 2021-12-24 湖北瑞宇空天高新技术有限公司 航天发动机燃气舵用C/SiC复合材料及其制备方法

Similar Documents

Publication Publication Date Title
CN101503305B (zh) 一种自愈合碳化硅陶瓷基复合材料的制备方法
US7754126B2 (en) Interlaminar tensile reinforcement of SiC/SiC CMC's using fugitive fibers
US7306826B2 (en) Use of biased fabric to improve properties of SiC/SiC ceramic composites for turbine engine components
CN103724035B (zh) 一种碳纤维增强氮化硅-碳化硅陶瓷复合材料的增密方法
CN106083117A (zh) 具有三元层状max相界面层的纤维增韧陶瓷基复合材料及其制备方法
US8309197B2 (en) Integral abradable seals
CN106966738B (zh) 自愈合陶瓷基复合材料燃烧室火焰筒及其制备方法与应用
US9938198B2 (en) Method for integral joining infiltrated ceramic matrix composites
JPWO2016093360A1 (ja) 炭化ケイ素繊維強化炭化ケイ素複合材料
EP2970020B1 (en) Ceramic matrix composites and methods for producing ceramic matrix composites
CN102718539B (zh) 碳/碳/碳化硅复合材料保温筒及制备方法
CN102731119B (zh) 碳/碳/碳化硅复合材料坩埚及制备方法
JP2010229025A (ja) ケイ素含有セラミック物品の接合方法及び製品
US10662117B2 (en) Method of fabricating a part out of ceramic matrix composite material
CN101913894A (zh) 一种碳化硅陶瓷基复合材料的双重自愈合改性方法
CN108863418B (zh) 长纤维增强碳化硅构件、其制造方法及核反应堆结构构件
Xue et al. Compressive strength and damage mechanisms of 3D needle-punched Cf/SiC–Al composites
Zhang et al. Current research art of rare earth compound modified SiC-CMCs for enhanced wet-oxygen corrosion resistance
CN114315394B (zh) 利用Ti3SiC2三维网络多孔预制体增强SiC陶瓷基复合材料的制备方法
CN106966749B (zh) 一种用Ti3Si(Al)C2改性热结构复合材料的方法
CN114685176A (zh) 一种多层界面改性碳陶复合材料的制备方法及发动机活塞
Weiss Carbon fibre reinforced CMCs: manufacture, properties, oxidation protection
Jimenez et al. Joining of C f/SiC ceramics to nimonic alloys
US7427428B1 (en) Interphase for ceramic matrix composites reinforced by non-oxide ceramic fibers
Moeller et al. Fiber‐Reinforced Ceramic Composites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220701