CN113801901B - 一种发酵生产l-苯丙氨酸的方法 - Google Patents

一种发酵生产l-苯丙氨酸的方法 Download PDF

Info

Publication number
CN113801901B
CN113801901B CN202110873708.8A CN202110873708A CN113801901B CN 113801901 B CN113801901 B CN 113801901B CN 202110873708 A CN202110873708 A CN 202110873708A CN 113801901 B CN113801901 B CN 113801901B
Authority
CN
China
Prior art keywords
culture
phenylalanine
fermentation
subjected
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110873708.8A
Other languages
English (en)
Other versions
CN113801901A (zh
Inventor
岳明瑞
谢沛
曹华杰
郭永胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shantou Jiahe Biological Technology Co ltd
Xintai Jiahe Biotech Co ltd
Original Assignee
Shantou Jiahe Biological Technology Co ltd
Xintai Jiahe Biotech Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shantou Jiahe Biological Technology Co ltd, Xintai Jiahe Biotech Co ltd filed Critical Shantou Jiahe Biological Technology Co ltd
Priority to CN202110873708.8A priority Critical patent/CN113801901B/zh
Publication of CN113801901A publication Critical patent/CN113801901A/zh
Application granted granted Critical
Publication of CN113801901B publication Critical patent/CN113801901B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/22Tryptophan; Tyrosine; Phenylalanine; 3,4-Dihydroxyphenylalanine
    • C12P13/222Phenylalanine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01025Shikimate dehydrogenase (1.1.1.25)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/010543-Deoxy-7-phosphoheptulonate synthase (2.5.1.54)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/030043-Dehydroquinate synthase (4.2.3.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y504/00Intramolecular transferases (5.4)
    • C12Y504/99Intramolecular transferases (5.4) transferring other groups (5.4.99)
    • C12Y504/99005Chorismate mutase (5.4.99.5)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种发酵生产L‑苯丙氨酸的方法,包括以下步骤:(1)将L‑苯丙氨酸生产菌的种子液接种至发酵培养基中进行发酵培养,初始发酵温度为35‑37℃,搅拌转速为200‑400rpm,风量30‑50L/min,罐压0.05‑0.1MPa,发酵过程中控制溶氧为15‑35%;发酵培养4‑6h后,加入IPTG进行诱导培养,诱导培养的温度为35‑37℃,控制溶氧为30‑40%,诱导培养40‑42h;培养过程中监测体系的残糖含量,当体系的残糖含量≤0.5g/L时开始补糖,通过流加葡糖糖溶液使体系中的葡萄糖浓度保持在0.5‑1g/L;(2)将诱导培养后的培养物进行破菌处理,即生产得到含有L‑苯丙氨酸的培养液。采用本发明的方法可以实现L‑苯丙氨酸的工业化生产,并显著提高了L‑苯丙氨酸的产率。

Description

一种发酵生产L-苯丙氨酸的方法
技术领域
本发明涉及生物工程技术领域,具体涉及一种发酵生产L-苯丙氨酸的方法。
背景技术
L-苯丙氨酸(L-Phe)是人和动物体不能合成的8种必需氨基酸之一,广泛应用于功能性食品、动物饲料和医药等行业。L-苯丙氨酸与L-天冬氨酸组成的二肽化合物阿斯巴甜,是一种高甜度、低热量的甜味剂,在减肥饮料和食品领域中备受青睐,市场对于其原料L-苯丙氨酸的需求量也在快速增长。
L-苯丙氨酸主要由化学合成法、酶法、微生物发酵法等方法来生产,其中,化学合成法因其生产路线长、副产物多、且产物为消旋体不宜推广使用;酶法主要是由化学合成的类氨基酸前体经过微生物细胞内酶系高效专一的催化合成L-苯丙氨酸,然而由于底物和酶等主要原料成本高以及来源有限,反应过程中酶稳定性差等缺点,酶法生产L-苯丙氨酸也受到严重制约;微生物发酵法是指利用微生物由碳源和氮源大量生产L-苯丙氨酸的一种方法,具有原料廉价易得、环境污染小、产物纯度高等优点,目前已成为工业化生产L-苯丙氨酸的主要方法。
但是,L-苯丙氨酸的生物合成是最复杂的氨基酸合成途径之一,L-苯丙氨酸等终产物对其合成代谢途径的关键酶的酶活和/或酶的表达量具有强烈的反馈抑制或阻遏,使L-苯丙氨酸的过量积累受到限制。因此,通过微生物发酵法生产L-苯丙氨酸的难点在于:对途径间的竞争抑制进行消除,或消除途径内的反馈抑制。目前虽已有通过基因工程技术构建重组菌体提高或抑制关键酶表达,优化发酵过程的报道,但由于L-苯丙氨酸的合成代谢途径复杂,涉及的酶类众多,若各种酶的表达不能相互匹配,会导致中间代谢物的积累,对细胞造成毒性。而且,在实际工业化发酵生产中,由于放大效应而导致菌株生产性能的显著下降,使得现有发酵生产L-苯丙氨酸的产率仍有待进一步提高。
发明内容
针对上述现有技术,本发明的目的是提供一种发酵生产L-苯丙氨酸的方法。采用本发明的方法可以实现L-苯丙氨酸的工业化生产,并显著提高了L-苯丙氨酸的产率。
为实现上述目的,本发明采用如下技术方案:
一种发酵生产L-苯丙氨酸的方法,包括以下步骤:
(1)将L-苯丙氨酸生产菌的种子液接种至发酵培养基中进行发酵培养,初始发酵温度为35-37℃,搅拌转速为200-400rpm,风量30-50L/min,罐压0.05-0.1MPa,发酵过程中控制溶氧(DO)为15-35%;
发酵培养4-6h后,加入IPTG进行诱导培养,诱导培养的温度为35-37℃,控制溶氧(DO)为30-40%,诱导培养40-42h;
培养过程中监测体系的残糖含量,当体系的残糖含量≤0.5g/L时开始补糖,通过流加葡萄糖溶液使体系中的葡萄糖浓度保持在0.5-1g/L;
(2)将诱导培养后的培养物进行破菌处理,即生产得到含有L-苯丙氨酸的培养液。
优选的,步骤(1)中,所述L-苯丙氨酸生产菌由如下方法构建而成:
将质粒pET-28a(+)用NcoⅠ和SacⅠ双酶切处理,将aroB基因整合到双酶切处理后的质粒pET-28a(+)上,得到重组质粒pET-aroB,再用EagⅠ和XhoⅠ对重组质粒pET-aroB进行酶切处理,将aroE基因整合到酶切处理后的重组质粒pET-aroB上,获得第一重组表达载体;
将质粒pGEX-2T用BamHⅠ和EcoRⅠ双酶切处理,将aroF基因整合到双酶切处理后的质粒pGEX-2T上,得到重组质粒pGEX-2T-aroF,再用TthlllⅠ和AatⅡ对重组质粒pGEX-2T-aroF进行酶切处理,pheA基因整合到酶切处理后的重组质粒pGEX-2T-aroF上,获得第二重组表达载体;
将获得的第一重组表达载体和第二重组表达载体导入到同一大肠杆菌酪氨酸营养缺陷型菌株中,构建得到L-苯丙氨酸生产菌;
所述aroB基因的核苷酸序列如SEQ ID NO.1所示;所述aroE基因的核苷酸序列如SEQ ID NO.2所示;所述aroF基因的核苷酸序列如SEQ ID NO.3所示;所述pheA基因的核苷酸序列如SEQ ID NO.4所示。
优选的,步骤(1)中,所述发酵培养基的组成为:葡萄糖30g/L、酵母粉6g/L、蛋白胨2g/L、玉米浆10g/L、磷酸氢二钾3g/L、硫酸铵2 g/L、柠檬酸2 g/L、硫酸镁1 g/L、FeSO4·7H2O 0.1g/L、MnSO4·H2O 9mg/L、硫酸锌12.8mg/L、Co(NO3)2·6H2O 9.8mg/L、CuSO4·5H2O1.2mg/L、维生素B1 0.3mg/L、维生素H 0.3mg/L。
优选的,步骤(1)中,加入IPTG,使IPTG在体系中的终浓度为0.5mmol/L。
优选的,步骤(2)中,采用均质机进行破菌处理,均质处理的条件为:均质压力15,000PSI,均质流量400L/Hr。
本发明的有益效果:
(1)本发明对L-苯丙氨酸的生产菌株进行了优化,首先对aroF基因进行了改造处理,使其不受苯丙氨酸的反馈抑制,然后将aroB基因、aroE基因、aroF基因和pheA基因分成两组,采用pET-28a(+)和pGEX-2T两个质粒载体将上述4个目的基因导入到受体细胞中,使其在菌体对数期之前少量表达目的蛋白,保证菌体的正常生长,等菌体度过对数期之后再通过诱导大量表达目的蛋白,解决了现有L-Phe生产菌种刚过对数期OD就下降的问题。
(2)本发明对L-苯丙氨酸的发酵用培养基、发酵培养条件以及诱导培养条件进行了优化,实现了L-苯丙氨酸的规模化、工业化生产,并进一步提高了L-苯丙氨酸的表达量。
附图说明
图1:本发明实施例1构建的第一重组表达载体的酶切验证结果;图中,M:Marker,泳道1:四酶切验证。
图2:本发明实施例1构建的第二重组表达载体的酶切验证结果;图中,M:Marker,泳道1:四酶切验证,泳道2:优化后的aroF基因,泳道3:优化后的PheA基因。
图3:本发明实施例1中SDS-PAGE电泳检测结果;图中,M:Marker,泳道1和泳道2:阳性转化子。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
为了使得本领域技术人员能够更加清楚地了解本申请的技术方案,以下将结合具体的实施例详细说明本申请的技术方案。
本发明实施例和对比例中所用的试验材料均为本领域常规的试验材料,如无特殊说明,均可通过商业渠道购买得到。其中:
大肠杆菌酪氨酸营养缺陷型菌株,购自BIOVECTOR公司,货号BioVector 931522,来源:进口自美国;货期:BioVector现货。
实施例1:L-苯丙氨酸生产菌的构建
将质粒pET-28a(+)用NcoⅠ和SacⅠ双酶切处理,然后将aroB基因(SEQ ID NO.1所示)整合到双酶切处理后的质粒pET-28a(+)上,得到重组质粒pET-aroB;再用EagⅠ和XhoⅠ对重组质粒pET-aroB进行酶切处理,再将aroE基因(SEQ ID NO.2所示)整合到酶切处理后的重组质粒pET-aroB上,获得第一重组表达载体(pET-aroB-aroE)。
将构建的第一重组表达载体用NaoⅠ、SacⅠ、EagⅠ、XhoⅠ四个酶进行酶切验证,结果如图1所示。结果表明:aroB基因(SEQ ID NO.1所示)和aroE基因(SEQ ID NO.2所示)已成功整合到质粒pET-28a(+)上。
将质粒pGEX-2T用BamHⅠ和EcoRⅠ双酶切处理,然后将aroF基因(SEQ ID NO.3所示)整合到双酶切处理后的质粒pGEX-2T上,得到重组质粒pGEX-2T-aroF,再用TthlllⅠ和AatⅡ对重组质粒pGEX-2T-aroF进行酶切处理,再将pheA基因(SEQ ID NO.4所示)整合到酶切处理后的重组质粒pGEX-2T-aroF上,获得第二重组表达载体(pGEX-2T-aroF-PheA)。
将构建的第二重组表达载体用TthlllⅠ、AatⅡ、BamHⅠ、EcoRⅠ四个酶进行酶切验证,结果如图2所示。结果表明:aroF基因(SEQ ID NO.3所示)和pheA基因(SEQ ID NO.4所示)已成功整合到质粒pGEX-2T上。
将实施例2构建的第一重组表达载体和实施例3构建的第二重组表达载体导入到同一酪氨酸营养缺陷型大肠杆菌中,获得转化子。
将转化子在LB平板上涂布,等长出单菌落之后用影印法分别在KAN平板(含100μg/ml KAN的LB平板)和AMP平板(含100μg/ml AMP的LB平板)上接种,待两个抗性平板上都长出单菌落之后,通过对比位置,在LB平板中挑出能同时在KAN和AMP中生长的单菌落,将其作为阳性转化子。
将阳性转化子接种至含有1g/L乳糖的LB液体培养基中,36℃培养至OD600=0.6,加入IPTG(使IPTG的终浓度为0.5mmol/L),诱导培养42h。诱导培养结束后,超声破菌,离心,分离上清液,采用SDS-PAGE电泳检测,其结果如图3所示,在48.3kDa、38.8 kDa、38.2 kDa和29.4kDa处有表达条带,与外源插入的目的基因所表达蛋白的理论计算得到的分子量一致。
将阳性转化子与受体菌(酪氨酸营养缺陷型大肠杆菌)分别接种于同一发酵培养基中,在相同条件进行培养,培养结束后采用相同的条件进行破菌处理,检测破菌处理后的液体中的L-苯丙氨酸含量。结果表明:阳性转化子生产得到的L-苯丙氨酸含量显著高于受体菌。
由此证明:本实施例已成功构建得到稳定的L-苯丙氨酸生产菌。
实施例2:L-苯丙氨酸的发酵生产
(1)菌种活化:将低温保存的实施例1制备的L-苯丙氨酸生产菌于含有100μg/mlKAN和100μg/ml AMP的LB平板上划线,36℃培养24h;挑取生产菌株单菌落再次划线转接于含有100μg/ml KAN和100μg/ml AMP的LB平板上,36℃培养24h,备用。
LB平板的培养基配方:蛋白胨10.0g,酵母粉5.0g,NaCl 10.0g,琼脂15.0g,水1.0L。
(2)一级种子液制备:用接种环刮取2环步骤(1)活化后的生产菌株菌苔,接种于LB液体培养基中,36℃,200r/min,摇瓶培养12h得到一级种子液。
LB液体培养基配方:蛋白胨10.0g,酵母粉5.0g,NaCl 10.0g,水1.0L。
(3)二级种子液制备:将步骤(2)制得的一级种子液按照二级种子培养基5.0%(体积百分比)的比例接种到种子罐中发酵培养;转速200rpm,温度36℃,溶氧(OD)为25%,罐压0.05~0.06MPa,培养12h,作为二级种子液。
二级种子培养基的组成为如下。
(4)培养(采用149L发酵罐进行培养):
将L-苯丙氨酸生产菌的种子液按18%(体积分数)的接种量接种至发酵培养基中进行发酵培养,初始发酵温度为35-37℃,搅拌转速为200-400rpm,风量30-50L/min,罐压0.05-0.1MPa,发酵过程中控制溶氧(DO)为15-35%;
发酵培养基的组成如下:
发酵培养4h后,加入IPTG进行诱导培养,使IPTG在体系中的终浓度为0.5mmol/L;诱导培养的温度为35-37℃,控制溶氧(DO)为30-40%,诱导培养42h;
培养过程中监测体系的残糖含量,当体系的残糖含量≤0.5g/L时开始补糖,通过流加葡萄糖溶液,使体系中的葡萄糖浓度保持在0.5-1g/L。
溶氧(DO)采用溶氧电极测定,溶氧以溶氧电极在空气中的溶氧水平设定为100%,以饱和亚硫酸钠溶液中的溶氧为0。OD600和pH值采用取样测定,每2h取样一次。
(5)将诱导培养后的培养物采用均质机进行破菌处理,均质处理的条件为:均质压力15,000PSI,均质流量400L/Hr,即生产得到含有L-苯丙氨酸的培养液。
对比例1:
将实施例2中的“L-苯丙氨酸生产菌”替换为“受体菌(酪氨酸营养缺陷型大肠杆菌)”,其余条件同实施例2。
对比例2:
将实施例2中发酵培养基的组成调整如下:
其余条件同实施例2。
对比例3:
将实施例2中的步骤(4)培养条件调整为:
发酵培养12h后,加入IPTG进行诱导培养,使IPTG在体系中的终浓度为0.5mmol/L;诱导培养的温度为35-37℃,控制溶氧(DO)为15-35%,诱导培养34h。
其余条件同实施例2。
试验例:
采用高效液相色谱法测定实施例2、对比例1-对比例3生产的培养液中L-苯丙氨酸的含量。测定方法如下:
1、仪器
1.1 高效液相色谱仪Waters e-2695
1.2 紫外检测器UV2489
1.3 超声清洗机
1.4 抽滤装置:1L
2、试剂
2.1 流动相:乙腈:磷酸盐缓冲液(1.884g磷酸氢二钠+0.726g磷酸二氢钠,溶于1000ml纯水中)=3:97(体积比),为流动相;
2.2 标准溶液配制:精密称取L-苯丙氨酸标准品50mg,置于50mL容量瓶中,用超纯水溶解制成已知浓度1000μg/mL的溶液;
2.3 样品制备:从破菌处理后的培养液中随机取样并定容,0.45nm过滤膜过滤备用。
3、 色谱条件
色谱柱:4.6*150mm C18
流动相:乙腈:磷酸盐缓冲液(3:97)
流速:1.0mL/min
柱温:35℃
进样体积:20uL
检测波长:260nm
结果计算:面积归一法
4、试验结果
结果见表1。
表1:
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
SEQUENCE LISTING
<110> 新泰市佳禾生物科技有限公司,汕头市佳禾生物科技有限公司
<120> 一种发酵生产L-苯丙氨酸的方法
<130> 2021
<160> 4
<170> PatentIn version 3.5
<210> 1
<211> 1099
<212> DNA
<213> 人工序列
<400> 1
catggatgga gaggattgtc gttactctcg gggaacgtag ttacccaatt accatcgcat 60
ctggtttgtt taatgaacca gcttcattct taccgctgaa atcgggcgag caggtcatgt 120
tggtcaccaa cgaaaccctg gctcctctgt atctcgataa ggtccgcggc gtacttgaac 180
aggcgggtgt taacgtcgat agcgttatcc tccctgacgg cgagcagtat aaaagcctgg 240
ctgtactcga taccgtcttt acggcgttgt tacaaaaacc gcatggtcgc gatactacgc 300
tggtggcgct tggcggcggc gtagtgggcg atctgaccgg cttcgcggcg gcgagttatc 360
agcgcggtgt ccgtttcatt caagtcccga cgacgttact gtcgcaggtc gattcctccg 420
ttggcggcaa aactgcggtc aaccatcccc tcggtaaaaa catgattggc gcgttctacc 480
aacctgcttc agtggtggtg gatctcgact gtctgaaaac gcttcccccg cgtgagttag 540
cgtcggggct ggcagaagtc atcaaatacg gcattattct tgacggtgcg ttttttaact 600
ggctggaaga gaatctggat gcgttgttgc gtctggacgg tccggcaatg gcgtactgta 660
ttcgccgttg ttgtgaactg aaggcagaag ttgtcgccgc cgacgagcgc gaaaccgggt 720
tacgtgcttt actgaatctg ggacacacct ttggtcatgc cattgaagct gaaatggggt 780
atggcaattg gttacatggt gaagcggtcg ctgcgggtat ggtgatggcg gcgcggacgt 840
cggaacgtct cgggcagttt agttctgccg aaacgcagcg tattataacc ctgctcaagc 900
gggctgggtt accggtcaat gggccgcgcg aaatgtccgc gcaggcgtat ttaccgcata 960
tgctgcgtga caagaaagtc cttgcgggag agatgcgctt aattcttccg ttggcaattg 1020
gtaagagtga agttcgcagc ggcgtttcgc acgagcttgt tcttaacgcc attgccgatt 1080
gtcaatcagc gtaagagct 1099
<210> 2
<211> 826
<212> DNA
<213> 人工序列
<400> 2
gggccgatgg aaacctacgc tgttttcggt aacccgatcg ctcactctaa atctccgttc 60
atccaccagc agttcgctca gcagctgaac atcgaacacc cgtacggtcg tgttctggct 120
ccgatcaacg acttcatcaa caccctgaac gctttcttct ctgctggtgg taaaggtgct 180
aacgttaccg ttccgttcaa agaagaagct ttcgctcgtg ctgacgaact gaccgaacgt 240
gctgctctgg ctggtgctgt taacaccctg atgcgtctgg aagacggtcg tctgctgggt 300
gacaacaccg acggtgttgg tctgctgtct gacctggaac gtctgtcttt catccgtccg 360
ggtctgcgta tcctgctgat cggtgctggt ggtgcttctc gtggtgttct gctgccgctg 420
ctgtctctgg actgcgctgt taccatcacc aaccgtaccg tttctcgtgc tgaagaactg 480
gctaaactgt tcgctcacac cggttctatc caggctctgt ctatggacga actggaaggt 540
cacgaattcg acctgatcat caacgctacc tcttctggta tctctggtga catcccggct 600
atcccgtctt ctctgatcca cccgggtatc tactgctacg acatgttcta ccagaaaggt 660
aaaaccccgt tcctggcttg gtgcgaacag cgtggttcta aacgtaacgc tgacggtctg 720
ggtatgctgg ttgctcaggc tgctcacgct ttcctgctgt ggcacggtgt tctgccggac 780
gttgaaccgg ttatcaaaca gctgcaggaa gaactgtctg cttaac 826
<210> 3
<211> 1081
<212> DNA
<213> 人工序列
<400> 3
gatccatgca gaaagacgct ctgaacaacg ttcacatcac cgacgaacag gttctgatga 60
ccccggaaca gctgaaagct gctttcccgc tgtctctgca gcaggaagct cagatcgctg 120
actctcgtaa atctatctct gacatcatcg ctggtcgtga cccgcgtctg ctggttgttt 180
gcggtccgtg ctctatccac gacccggaaa ccgctctgga atacgctcgt cgtttcaaag 240
ctctggctgc tgaagtttct gactctctgt acctggttat gcgtgtttac ttcgaaaaac 300
cgcgtaccac cgttggttgg aaaggtctga tcaacgaccc gcacatggac ggttctttcg 360
acgttgaagc tggtctgcag atcgctcgta aactgctgct ggaactggtt aacatgggtc 420
tgccgctggc taccgaagct ctggacctga actctccgca gtacctgggt gacctgttct 480
cttggtctgc tatcggtgct cgtaccaccg aatctcagac ccaccgtgaa atggcttctg 540
gtctgtctat gccggttggt ttcaaaaacg gtaccgacgg ttctctggct accgctatca 600
acgctatgcg tgctgctgct cagccgcacc gtttcgttgg tatcaaccag gctggtcagg 660
ttgctctgct gcagacccag ggtaacccgg acggtcacgt tatcctgcgt ggtggtaaag 720
ctccgaacta ctctccggct gacgttgctc agtgcgaaaa agaaatggaa caggctggtc 780
tgcgtccgtc tctgatggtt gactgctctc acggtaactc taacaaagac taccgtcgtc 840
agccggctgt tgctgaatct gttgttgctc agatcaaaga cggtaaccgt tctatcatcg 900
gtctgatgat cgaatctaac atccacgaag gtaaccagtc ttctgaacag ccgcgttctg 960
aaatgaaata cggtgtttct gttaccgacg cttgcatctc ttgggaaatg accgacgctc 1020
tgctgcgtga aatccaccag gacctgaacg gtcagctgac cgctcgtgtt gcttaactta 1080
a 1081
<210> 4
<211> 1171
<212> DNA
<213> 人工序列
<400> 4
aagtcatgac atcggaaaac ccgttactgg cgctgcgaga gaaaatcagc gcgctggatg 60
aaaaattatt agcgttactg gcagaacggc gcgaactggc cgtcgaggtg ggaaaagcca 120
aactgctctc gcatcgcccg gtacgtgata ttgatcgtga acgcgatttg ctggaaagat 180
taattacgct cggtaaagcg caccatctgg acgcccatta cattactcgc ctgttccagc 240
tcatcattga agattccgta ttaactcagc aggctttgct ccaacaacat ctcaataaaa 300
ttaatccgca ctcagcacgc atcgcttttc tcggccccaa aggttcttat tcccatcttg 360
cggcgcgcca gtatgctgcc cgtcactttg agcaattcat tgaaagtggc tgcgccaaat 420
ttgccgatat ttttaatcag gtggaaaccg gccaggccga ctatgccgtc gtaccgattg 480
aaaataccag ctccggtgcc ataaacgacg tttacgatct gctgcaacat accagcttgt 540
cgattgttgg cgagatgacg ttaactatcg accattgttt gttggtctcc ggcactactg 600
atttatccac catcaatacg gtctacagcc atccgcagcc attccagcaa tgcagcaaat 660
tccttaatcg ttatccgcac tggaagattg aatataccga aagtacgtct gcggcaatgg 720
aaaaggttgc acaggcaaaa tcaccgcatg ttgctgcgtt gggaagcgaa gctggcggca 780
ctttgtacgg tttgcaggta ctggagcgta ttgaagcaaa tcagcgacaa aacttcaccc 840
gatttgtggt gttggcgcgt aaagccatta acgtgtctga tcaggttccg gcgaaaacca 900
cgttgttaat ggcgaccggg caacaagccg gtgcgctggt tgaagcgttg ctggtactgc 960
gcaaccacaa tctgattatg acccgtctgg aatcacgccc gattcacggt aatccatggg 1020
aagagatgtt ctatctggat attcaggcca atcttgaatc agcggaaatg caaaaagcat 1080
tgaaagagtt aggggaaatc acccgttcaa tgaaggtatt gggctgttac ccaagtgaga 1140
acgtagtgcc tgttgatcca acctgagacg t 1171

Claims (4)

1.一种发酵生产L-苯丙氨酸的方法,其特征在于,包括以下步骤:
(1)将L-苯丙氨酸生产菌的种子液接种至发酵培养基中进行发酵培养,初始发酵温度为35-37℃,搅拌转速为200-400rpm,风量30-50L/min,罐压0.05-0.1MPa,发酵过程中控制溶氧为15-35%;
发酵培养4-6h后,加入IPTG进行诱导培养,诱导培养的温度为35-37℃,控制溶氧为30-40%,诱导培养40-42h;
培养过程中监测体系的残糖含量,当体系的残糖含量≤0.5g/L时开始补糖,通过流加葡萄糖溶液使体系中的葡萄糖浓度保持在0.5-1g/L;
(2)将诱导培养后的培养物进行破菌处理,即生产得到含有L-苯丙氨酸的培养液;
步骤(1)中,所述L-苯丙氨酸生产菌由如下方法构建而成:
将质粒pET-28a(+)用NcoⅠ和SacⅠ双酶切处理,将aroB基因整合到双酶切处理后的质粒pET-28a(+)上,得到重组质粒pET-aroB,再用EagⅠ和XhoⅠ对重组质粒pET-aroB进行酶切处理,将aroE基因整合到酶切处理后的重组质粒pET-aroB上,获得第一重组表达载体;
将质粒pGEX-2T用BamHⅠ和EcoRⅠ双酶切处理,将aroF基因整合到双酶切处理后的质粒pGEX-2T上,得到重组质粒pGEX-2T-aroF,再用TthlllⅠ和AatⅡ对重组质粒pGEX-2T-aroF进行酶切处理,pheA基因整合到酶切处理后的重组质粒pGEX-2T-aroF上,获得第二重组表达载体;
将获得的第一重组表达载体和第二重组表达载体导入到同一大肠杆菌酪氨酸营养缺陷型菌株中,构建得到L-苯丙氨酸生产菌;
所述aroB基因的核苷酸序列如SEQ ID NO.1所示;所述aroE基因的核苷酸序列如SEQID NO.2所示;所述aroF基因的核苷酸序列如SEQ ID NO.3所示;所述pheA基因的核苷酸序列如SEQ ID NO.4所示。
2.根据权利要求1所述的方法,其特征在于,步骤(1)中,所述发酵培养基的组成为:葡萄糖30g/L、酵母粉6g/L、蛋白胨2g/L、玉米浆10g/L、磷酸氢二钾3g/L、硫酸铵2 g/L、柠檬酸2 g/L、硫酸镁1 g/L、FeSO4•7H2O 0.1g/L、MnSO4•H2O 9mg/L、硫酸锌12.8mg/L、Co(NO3)2•6H2O 9.8mg/L、CuSO4•5H2O 1.2mg/L、维生素B1 0.3mg/L、维生素H 0.3mg/L。
3.根据权利要求1所述的方法,其特征在于,步骤(1)中,加入IPTG,使IPTG在体系中的终浓度为0.5mmol/L。
4.根据权利要求1所述的方法,其特征在于,步骤(2)中,采用均质机进行破菌处理,均质处理的条件为:均质压力15,000PSI,均质流量400L/Hr。
CN202110873708.8A 2021-07-30 2021-07-30 一种发酵生产l-苯丙氨酸的方法 Active CN113801901B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110873708.8A CN113801901B (zh) 2021-07-30 2021-07-30 一种发酵生产l-苯丙氨酸的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110873708.8A CN113801901B (zh) 2021-07-30 2021-07-30 一种发酵生产l-苯丙氨酸的方法

Publications (2)

Publication Number Publication Date
CN113801901A CN113801901A (zh) 2021-12-17
CN113801901B true CN113801901B (zh) 2024-05-24

Family

ID=78942525

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110873708.8A Active CN113801901B (zh) 2021-07-30 2021-07-30 一种发酵生产l-苯丙氨酸的方法

Country Status (1)

Country Link
CN (1) CN113801901B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115044526A (zh) * 2022-07-21 2022-09-13 上海奥萝拉医药科技有限公司 一种高产d-泛解酸内酯水解酶的菌种发酵工艺及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102181503A (zh) * 2011-04-15 2011-09-14 江苏汉光生物工程有限公司 一种发酵生产l-苯丙氨酸的方法
CN102399835A (zh) * 2011-10-14 2012-04-04 江南大学 一种微生物发酵生产l-苯丙氨酸的方法
CN102604882A (zh) * 2012-03-31 2012-07-25 福建省麦丹生物集团有限公司 生产l-苯丙氨酸的工程菌及其应用
CN103074292A (zh) * 2013-01-22 2013-05-01 江南大学 一种高产l-苯丙氨酸的重组谷氨酸棒杆菌及其应用
CN104745520A (zh) * 2013-12-31 2015-07-01 福建省麦丹生物集团有限公司 一种高产l-苯丙氨酸的优良菌株及其应用
CN107287198A (zh) * 2017-06-01 2017-10-24 中国科学院微生物研究所 苯丙氨酸衰减子突变体和解决反馈阻遏的苯丙氨酸操纵子以及它们的应用
CN108473990A (zh) * 2016-10-27 2018-08-31 中国科学院微生物研究所 氨基酸衰减子的改造方法及其在生产中的应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102181503A (zh) * 2011-04-15 2011-09-14 江苏汉光生物工程有限公司 一种发酵生产l-苯丙氨酸的方法
CN102399835A (zh) * 2011-10-14 2012-04-04 江南大学 一种微生物发酵生产l-苯丙氨酸的方法
CN102604882A (zh) * 2012-03-31 2012-07-25 福建省麦丹生物集团有限公司 生产l-苯丙氨酸的工程菌及其应用
CN103074292A (zh) * 2013-01-22 2013-05-01 江南大学 一种高产l-苯丙氨酸的重组谷氨酸棒杆菌及其应用
CN104745520A (zh) * 2013-12-31 2015-07-01 福建省麦丹生物集团有限公司 一种高产l-苯丙氨酸的优良菌株及其应用
CN108473990A (zh) * 2016-10-27 2018-08-31 中国科学院微生物研究所 氨基酸衰减子的改造方法及其在生产中的应用
CN107287198A (zh) * 2017-06-01 2017-10-24 中国科学院微生物研究所 苯丙氨酸衰减子突变体和解决反馈阻遏的苯丙氨酸操纵子以及它们的应用

Also Published As

Publication number Publication date
CN113801901A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
CN118086167B (zh) 一种生产l-色氨酸的基因工程菌及其构建方法与应用
CN112359005B (zh) 一种酸胁迫能力得到提高的大肠杆菌工程菌及应用
CN110591989A (zh) 一株高产l-色氨酸工程菌株及其应用
KR20000052825A (ko) 방향족 물질대사/i로부터 물질의 미생물적 제조방법
CN113801901B (zh) 一种发酵生产l-苯丙氨酸的方法
CN116904379A (zh) 一种高产四氢嘧啶的基因重组菌株及其构建方法和应用
CN117844728B (zh) 一种l-缬氨酸生产菌株及其构建方法与应用
CN104745520B (zh) 一种高产l‑苯丙氨酸的优良菌株及其应用
CN109929786B (zh) 发酵法生产酪氨酸的大肠杆菌及其构建方法与应用
CN117844838A (zh) 一株高产l-苯丙氨酸的菌株构建及其应用
CN113462623B (zh) 微生物发酵法制备d-丙氨酸的方法
CN111944857B (zh) 一种提高l-异亮氨酸产率的发酵方法
CN111235136B (zh) 异柠檬酸裂合酶突变体及其在制备芳香族氨基酸中的应用
CN111286496B (zh) 异柠檬酸脱氢酶激酶突变体及其在制备芳香族氨基酸中的应用
CN111057672B (zh) 重组菌株及其应用
CN109554325B (zh) 一种可高产酪氨酸的大肠杆菌工程菌及其应用
CN112080452A (zh) 一种高产苯乳酸地衣芽孢杆菌基因工程菌、生产苯乳酸的方法和应用
CN116515918A (zh) MdtL的色氨酸转运应用及生产方法和菌株
CN114085801B (zh) 一株生产l-色氨酸的重组大肠杆菌及其应用
CN116355818A (zh) 一种生产l-亮氨酸的基因工程菌及其应用
CN113717911B (zh) 一种l-苯丙氨酸生产菌及其构建方法
CN112251476B (zh) 一种l-苯丙氨酸的生产方法
KR890003714B1 (ko) 유전자 조작 미생물에 의한 l-페닐알라닌 제조방법
WO2023092633A1 (zh) 一种生产莽草酸的重组菌及其构建方法和应用
CN113817659B (zh) 一种代谢工程改造大肠杆菌发酵制备β-丙氨酸的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant