CN113789326A - 一种抗水痘-带状疱疹病毒的重组siRNAs及其生产方法和应用 - Google Patents

一种抗水痘-带状疱疹病毒的重组siRNAs及其生产方法和应用 Download PDF

Info

Publication number
CN113789326A
CN113789326A CN202110917269.6A CN202110917269A CN113789326A CN 113789326 A CN113789326 A CN 113789326A CN 202110917269 A CN202110917269 A CN 202110917269A CN 113789326 A CN113789326 A CN 113789326A
Authority
CN
China
Prior art keywords
recombinant
seq
sirnas
sequence
artificial sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110917269.6A
Other languages
English (en)
Other versions
CN113789326B (zh
Inventor
骞爱荣
田野
裴佳伟
李郁
陈志浩
杨超飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202110917269.6A priority Critical patent/CN113789326B/zh
Publication of CN113789326A publication Critical patent/CN113789326A/zh
Application granted granted Critical
Publication of CN113789326B publication Critical patent/CN113789326B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1131Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against viruses
    • C12N15/1133Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against viruses against herpetoviridae, e.g. HSV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • A61P31/22Antivirals for DNA viruses for herpes viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • C12N2310/141MicroRNAs, miRNAs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/50Biochemical production, i.e. in a transformed host cell
    • C12N2330/51Specially adapted vectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Virology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Communicable Diseases (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Epidemiology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种抗水痘‑带状疱疹病毒的重组siRNAs,所述重组siRNAs的序列为SEQ ID NO:1至SEQ ID NO:15所示序列中的一种,或者为与SEQ ID NO:1至SEQ ID NO:15所示序列中的一种相似度达90%以上的序列。另外,本发明还公开了该重组siRNAs的生产方法及应用。本发明的重组siRNAs具有很好的生物学活性,并且能够显著抑制水痘‑带状疱疹病毒的复制,且具有产量高、成本低、功能性好等优点。

Description

一种抗水痘-带状疱疹病毒的重组siRNAs及其生产方法和 应用
技术领域
本发明属于生物医学技术领域,具体涉及一种抗水痘-带状疱疹病毒的重组siRNAs及其生产方法和应用。
背景技术
水痘-带状疱疹病毒(Varicella Zoster Virus,VZV)是一种广泛存在并且具有高度传染性的人α亚科-疱疹病毒。初次感染VZV可导致水痘,人群普遍易感(感染率约为61%~100%)。该病毒可在背根神经节潜伏感染,持续终生。水痘在全世界造成了巨大的疾病负担,每年至少有1.4亿新发水痘病例、420万水痘严重并发症病例以及4200死亡病例。此外,近三分之一的VZV感染者在年老时会因潜伏于神经的VZV重新激活而引起带状疱疹,通常伴有剧烈的神经痛,即使治愈后还会发生后遗神经痛,严重影响患者的生活质量。水痘和带状疱疹还会在新生儿与免疫缺陷人群中导致严重的危及生命的并发症。当前,VZV防治方法仍存在重大挑战,尚无特效治疗药物,现有疫苗存在仍保留神经毒力的风险隐患和适用人群限制等问题。
RNAi(RNA interference)是指由RNA分子介导的基因抑制,RNAi在基因功能研究和疾病治疗方面都有广泛的应用,目前已有多种基于RNAi的药物获得FDA批准或进入临床试验。逐年增加的RNA类药物获批数量充分证明了RNA疗法的可行性,也说明了RNA疗法作为新一代治疗方案正在快速发展当中。
RNA类新药开发以及RNA的功能研究已经掣肘于RNA原料的获取。目前用于ncRNA研究的RNA试剂,主要采用化学或体外转录合成。这些合成方法生产的RNA,不仅价格昂贵,而且产率很低。因此,RNA疗法的开展,还需新兴生物技术的介入,以大大降低研究/医疗成本。利用重组tRNA支架在活细胞内生产表达小分子RNA已经应用于多个研究领域,取得了良好的发展。
发明内容
本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种抗水痘-带状疱疹病毒的重组siRNAs。本发明通过生物工程获得的重组siRNAs具有很好的生物学活性,并且能够显著抑制水痘-带状疱疹病毒的复制。
为解决上述技术问题,本发明采用的技术方案是:一种抗水痘-带状疱疹病毒的重组siRNAs,其特征在于,所述重组siRNAs的序列如SEQ ID NO:1至SEQ ID NO:15所示序列中的一种,或者为与SEQ ID NO:1至SEQ ID NO:15所示序列中的一种相似度达90%以上的序列。
另外,本发明还提供了一种上述抗水痘-带状疱疹病毒的重组siRNAs的生产方法,其特征在于,包括:以水痘-带状疱疹病毒(VZV)基因组不同开放阅读框(ORF)为靶点,设计小干扰RNA(siRNAs),将设计的小干扰RNA(siRNAs)序列嵌合于tRNA支架,在大肠杆菌中重组表达,所述小干扰RNA的序列为SEQ ID NO:16至SEQ ID NO:30所示序列中的一种。
上述的生产方法,其特征在于,所述tRNA支架的序列为与人丝氨酸tRNA序列相似度达90%以上的序列,所述人丝氨酸tRNA序列如SEQ ID NO:31所示。
上述的生产方法,其特征在于,重组siRNAs的前体序列为成熟序列部分被取代的hsa-miR-34a前体序列,所述重组siRNAs的前体序列相应的为SEQ ID NO:32至SEQ ID NO:46所示序列中的一种。
上述的生产方法,其特征在于,所述生产方法的具体步骤包括:
步骤一、设计合成嵌合小干扰RNA序列的hsa-miR-34a前体引物;
步骤二、利用pBSMrnaSeph质粒在tRNA反密码子环处具有的酶切位点,将重组siRNAs的前体序列插入pBSMrnaSeph质粒中,构建表达载体;
步骤三、将嵌合目标序列的表达载体转化感受态大肠杆菌;
步骤四、大肠杆菌培养扩增后,提取菌内总RNA,以FPLC分离纯化目标重组siRNAs。
进一步地,本发明提供了上述重组siRNAs在制备抗水痘-带状疱疹病毒基因组DNA组装、复制、细胞融合和/或在细胞间传播的试剂、前药、药物、原料药或药物组合中的应用。
更进一步地,本发明提供了上述重组siRNAs在制备抗水痘-带状疱疹病毒活性的前药、药物、原料药或药物组合中的应用。
本发明以人视网膜色素上皮细胞(ARPE19)为细胞模型,检测了重组siRNAs抗水痘-带状疱疹病毒的抗病毒活性,包括:
一、利用表达的重组siRNAs在人视网膜色素上皮细胞(ARPE19)中进行转染,利用Stem loop qPCR技术检测重组siRNAs成熟体表达量;
二、将重组siRNAs在人视网膜色素上皮细胞(ARPE19)中进行转染并感染VZV病毒,利用qPCR技术检测重组siRNAs对靶基因的抑制情况;
三、将重组siRNAs在人视网膜色素上皮细胞(ARPE19)中进行转染并感染VZV病毒,利用Western blot、免疫荧光(IF)、实验技术评价重组si-ORF7、重组si-ORF68对靶基因的抑制情况。
本发明与现有技术相比具有以下优点:
1、本发明利用tRNA支架表达的具有生物学活性的siRNAs相比于化学合成的siRNA,产量高,价格低廉,活性和安全性更高。
2、本发明的重组siRNAs具有很好的生物学活性,并且能够显著抑制水痘-带状疱疹病毒的复制,且具有产量高、成本低、功能性好等优点。与传统的小分子药物相比,RNA药物可以直接作用于病毒的基因组,利用碱基互补配对原则来调节病毒mRNA表达,显著抑制病毒的复制和细胞间传播,降低病毒载量。
下面结合附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为本发明实施例1利用引物PCR对含有重组siRNA(重组si-ORF7、重组si-ORF68)序列的插入片段扩增的凝胶电泳图。
图2为本发明实施例1pBSKrnaSeph/has-mir-34a表达载体双酶切鉴定的结果图。
图3为本发明实施例2利用变性聚丙烯酰胺凝胶电泳检测大肠杆菌中重组siRNA的表达。
图4为本发明实施例3利用Bio-Rad NGCTMChromatography System纯化重组siRNA,以变性聚丙烯酰胺凝胶电泳鉴定所收集组分的纯度。
图5为本发明实施例4利用qPCR技术在mRNA水平检测VZV感染的人视网膜色素上皮细胞(ARPE19)转染重组siRNA(重组si-ORF7、重组si-ORF68)48h后,其对靶基因的抑制结果图。
图6为本发明实施例5利用qPCR技术检测在人视网膜色素上皮细胞中转染重组siRNA(重组si-ORF7、重组si-ORF68)后成熟体表达含量结果图。
图7为本发明实施例6利用WB技术在蛋白水平检测VZV感染的人视网膜色素上皮细胞(ARPE19)转染重组siRNA(重组si-ORF7、重组si-ORF68)48h后,其对靶基因的抑制效果结果图。
图8为本发明实施例6利用免疫荧光实验技术检测转染重组siRNA(重组si-ORF7、重组si-ORF68)48h后,感染VZV的人视网膜色素上皮细胞(ARPE19)中的病变细胞数量,以评价重组siRNA的抗病毒效果的结果图。
图9为本发明实施例6利用cy5细胞成像仪在相差场对转染重组siRNA(重组si-ORF7、重组si-ORF68)48h后,感染VZV的人视网膜色素上皮细胞(ARPE19)进行拍照,以检测病变细胞数量的结果图。
具体实施方式
以下通过具体实施例来说明本发明的实施方式,除非另外说明,本发明中所公开的实验方法均采用本技术领域常规技术。
本发明的重组siRNAs的序列为SEQ ID NO:1至SEQ ID NO:15所示序列中的一种,或者为与SEQ ID NO:1至SEQ ID NO:15所示序列中的一种相似度达90%以上的序列。SEQID NO:1至SEQ ID NO:15具体如下:
SEQ ID NO 1(重组si-ORF7):
GCAGCGAUGGCCGAGUGGUUAAGGCGUUGGACUGGCCAGCUGUGAGUGUUUCUUACAAAUGGGUAAUUGCAGCUUUGUGAGCAAUAGUAAGGAAAAGCUGCAAUUACCCAUUUGUAGAAGUGCUGCACGUUGUUGGCCCAAUCCAAUGGGGUCUCCCCGCGCAGGUUCGAACCCUGCUCGCUGCGCC
SEQ ID NO 2(重组si-ORF9):
GCAGCGAUGGCCGAGUGGUUAAGGCGUUGGACUGGCCAGCUGUGAGUGUUUCUUAACUGUGGUAAUGUAACCCUUUGUGAGCAAUAGUAAGGAAAAGGGUUACAUUACCACAGUUAGAAGUGCUGCACGUUGUUGGCCCAAUCCAAUGGGGUCUCCCCGCGCAGGUUCGAACCCUGCUCGCUGCGCC
SEQ ID NO 3(重组si-ORF14):
GCAGCGAUGGCCGAGUGGUUAAGGCGUUGGACUGGCCAGCUGUGAGUGUUUCUUUAUUUAGUUAUGUUUCGGCUGUGAGCAAUAGUAAGGAAGCCGAAACAUAACUAAAUAAGAAGUGCUGCACGUUGUUGGCCCAAUCCAAUGGGGUCUCCCCGCGCAGGUUCGAACCCUGCUCGCUGCGCC
SEQ ID NO 4(重组si-ORF21):
GCAGCGAUGGCCGAGUGGUUAAGGCGUUGGACUGGCCAGCUGUGAGUGUUUCUUUUGUUGCAUCCUUUAAGGCUGUGAGCAAUAGUAAGGAACCUUAAAGGAUGCAACAAAGAAGUGCUGCACGUUGUUGGCCC
AAUCCAAUGGGGUCUCCCCGCGCAGGUUCGAACCCUGCUCGCUGCGCC
SEQ ID NO 5(重组si-ORF22):
GCAGCGAUGGCCGAGUGGUUAAGGCGUUGGACUGGCCAGCUGUGAGUGUUUCUUAUGCGCAUAUGUCAUAUGCUGUGAGCAAUAGUAAGGAAGCAUAUGACAUAUGCGCAUAGAAGUGCUGCACGUUGUUGGCCCAAUCCAAUGGGGUCUCCCCGCGCAGGUUCGAACCCUGCUCGCUGCGCC
SEQ ID NO 6(重组si-ORF25):
GCAGCGAUGGCCGAGUGGUUAAGGCGUUGGACUGGCCAGCUGUGAGUGUUUCUUAUAUCAUUUACCAGUCGCCUGUGAGCAAUAGUAAGGAAGGCGACUGGUAAAUGAUAUAGAAGUGCUGCACGUUGUUGGCCCAAUCCAAUGGGGUCUCCCCGCGCAGGUUCGAACCCUGCUCGCUGCGCC
SEQ ID NO 7(重组si-ORF31):
GCAGCGAUGGCCGAGUGGUUAAGGCGUUGGACUGGCCAGCUGUGAGUGUUUCUUAUUUAAUCAUUUCCUGGGCUGUGAGCAAUAGUAAGGAAGCCCAGGAAAUGAUUAAAUAGAAGUGCUGCACGUUGUUGGCCCAAUCCAAUGGGGUCUCCCCGCGCAGGUUCGAACCCUGCUCGCUGCGCC
SEQ ID NO 8(重组si-ORF33):
GCAGCGAUGGCCGAGUGGUUAAGGCGUUGGACUGGCCAGCUGUGAGUGUUUCUUAUAAACGCCACAUUCCACCUGUGAGCAAUAGUAAGGAAGGUGGAAUGUGGCGUUUAUAGAAGUGCUGCACGUUGUUGGCCCAAUCCAAUGGGGUCUCCCCGCGCAGGUUCGAACCCUGCUCGCUGCGCC
SEQ ID NO 9(重组si-ORF37):
GCAGCGAUGGCCGAGUGGUUAAGGCGUUGGACUGGCCAGCUGUGAGUGUUUCUUAUUAUAUCCAUAAUCGCCCUUUGUGAGCAAUAGUAAGGAAAAGGGCGAUUAUGGAUAUAAUAGAAGUGCUGCACGUUGUUGGCCCAAUCCAAUGGGGUCUCCCCGCGCAGGUUCGAACCCUGCUCGCUGCGCC
SEQ ID NO 10(重组si-ORF38):
GCAGCGAUGGCCGAGUGGUUAAGGCGUUGGACUGGCCAGCUGUGAGUGUUUCUUAUAUAGCAUAUUUAGGCGCUGUGAGCAAUAGUAAGGAAGCGCCUAAAUAUGCUAUAUAGAAGUGCUGCACGUUGUUGGCCCAAUCCAAUGGGGUCUCCCCGCGCAGGUUCGAACCCUGCUCGCUGCGCC
SEQ ID NO 11(重组si-ORF46):
GCAGCGAUGGCCGAGUGGUUAAGGCGUUGGACUGGCCAGCUGUGAGUGUUUCUUUUAUUUAAAUCGGCGCAGGUGUGAGCAAUAGUAAGGAACCUGCGCCGAUUUAAAUAAAGAAGUGCUGCACGUUGUUGGCCCAAUCCAAUGGGGUCUCCCCGCGCAGGUUCGAACCCUGCUCGCUGCGCC
SEQ ID NO 12(重组si-ORF47):
GCAGCGAUGGCCGAGUGGUUAAGGCGUUGGACUGGCCAGCUGUGAGUGUUUCUUAGUAUAUUUAGUAAGGCCCUGUGAGCAAUAGUAAGGAAGGGCCUUACUAAAUAUACUAGAAGUGCUGCACGUUGUUGGCCCAAUCCAAUGGGGUCUCCCCGCGCAGGUUCGAACCCUGCUCGCUGCGCC
SEQ ID NO 13(重组si-ORF56):
GCAGCGAUGGCCGAGUGGUUAAGGCGUUGGACUGGCCAGCUGUGAGUGUUUCUUAUAUUAACGAAAGAACGUCUGUGAGCAAUAGUAAGGAAGACGUUCUUUCGUUAAUAUAGAAGUGCUGCACGUUGUUGGCCCAAUCCAAUGGGGUCUCCCCGCGCAGGUUCGAACCCUGCUCGCUGCGCC
SEQ ID NO 14(重组si-ORF60):
GCAGCGAUGGCCGAGUGGUUAAGGCGUUGGACUGGCCAGCUGUGAGUGUUUCUUUUAAAGACAAACAAAUGGCUGUGAGCAAUAGUAAGGAAGCCAUUUGUUUGUCUUUAAAGAAGUGCUGCACGUUGUUGGCCCAAUCCAAUGGGGUCUCCCCGCGCAGGUUCGAACCCUGCUCGCUGCGCC
SEQ ID NO 15(重组si-ORF68):
GCAGCGAUGGCCGAGUGGUUAAGGCGUUGGACUGGCCAGCUGUGAGUGUUUCUUAACAAUCCACGGUUGGUCCUUUGUGAGCAAUAGUAAGGAAAAGGACCAACCGUGGAUUGUUAGAAGUGCUGCACGUUGUUGGCCCAAUCCAAUGGGGUCUCCCCGCGCAGGUUCGAACCCUGCUCGCUGCGCC
本发明的小干扰RNA的序列为SEQ ID NO:16至SEQ ID NO:30所示序列中的一种。SEQ ID NO:16至SEQ ID NO:30具体如下:
SEQ ID NO 16(si-ORF7):
ACAAAUGGGUAAUUGCAGC
SEQ ID NO 17(si-ORF9):
AACUGUGGUAAUGUAACCC
SEQ ID NO 18(si-ORF14):
UAUUUAGUUAUGUUUCGGC
SEQ ID NO 19(si-ORF21):
UUGUUGCAUCCUUUAAGGC
SEQ ID NO 20(si-ORF22):
AUGCGCAUAUGUCAUAUGC
SEQ ID NO 21(si-ORF25):
AUAUCAUUUACCAGUCGCC
SEQ ID NO 22(si-ORF31):
AUUUAAUCAUUUCCUGGGC
SEQ ID NO 23(si-ORF33):
AUAAACGCCACAUUCCACC
SEQ ID NO 24(si-ORF37):
AUUAUAUCCAUAAUCGCCC
SEQ ID NO 25(si-ORF38):
AUAUAGCAUAUUUAGGCGC
SEQ ID NO 26(si-ORF46):
UUAUUUAAAUCGGCGCAGG
SEQ ID NO 27(si-ORF47):
AGUAUAUUUAGUAAGGCCC
SEQ ID NO 28(si-ORF56):
AUAUUAACGAAAGAACGUC
SEQ ID NO 29(si-ORF60):
UUAAAGACAAACAAAUGGC
SEQ ID NO 30(si-ORF68):
AACAAUCCACGGUUGGUCC
本发明的重组siRNAs的前体序列相应的为SEQ ID NO:32至SEQ ID NO:46所示序列中的一种。SEQ ID NO:32至SEQ ID NO:46具体如下:
SEQ ID NO 32(重组si-ORF7前体):
GGCCAGCUGUGAGUGUUUCUUACAAAUGGGUAAUUGCAGCUUUGUGAGCAAUAGUAAGGAAAAGCUGCAAUUACCCAUUUGUAGAAGUGCUGCACGUUGUUGGCCC
SEQ ID NO 33(重组si-ORF9前体):
GGCCAGCUGUGAGUGUUUCUUAACUGUGGUAAUGUAACCCUUUGUGAGCAAUAGUAAGGAAAAGGGUUACAUUACCACAGUUAGAAGUGCUGCACGUUGUUGGCCC
SEQ ID NO 34(重组si-ORF14前体):
GGCCAGCUGUGAGUGUUUCUUUAUUUAGUUAUGUUUCGGCUGUGAGCAAUAGUAAGGAAGCCGAAACAUAACUAAAUAAGAAGUGCUGCACGUUGUUGGCCC
SEQ ID NO 35(重组si-ORF21前体):
GGCCAGCUGUGAGUGUUUCUUUUGUUGCAUCCUUUAAGGCUGUGAGCAAUAGUAAGGAACCUUAAAGGAUGCAACAAAGAAGUGCUGCACGUUGUUGGCCC
SEQ ID NO 36(重组si-ORF22前体):
GGCCAGCUGUGAGUGUUUCUUAUGCGCAUAUGUCAUAUGCUGUGAGCAAUAGUAAGGAAGCAUAUGACAUAUGCGCAUAGAAGUGCUGCACGUUGUUGGCCC
SEQ ID NO 37(重组si-ORF25前体):
GGCCAGCUGUGAGUGUUUCUUAUAUCAUUUACCAGUCGCCUGUGAGCAAUAGUAAGGAAGGCGACUGGUAAAUGAUAUAGAAGUGCUGCACGUUGUUGGCCC
SEQ ID NO 38(重组si-ORF31前体):
GGCCAGCUGUGAGUGUUUCUUAUUUAAUCAUUUCCUGGGCUGUGAGCAAUAGUAAGGAAGCCCAGGAAAUGAUUAAAUAGAAGUGCUGCACGUUGUUGGCCC
SEQ ID NO 39(重组si-ORF33前体):
GGCCAGCUGUGAGUGUUUCUUAUAAACGCCACAUUCCACCUGUGAGCAAUAGUAAGGAAGGUGGAAUGUGGCGUUUAUAGAAGUGCUGCACGUUGUUGGCCC
SEQ ID NO 40(重组si-ORF37前体):
GGCCAGCUGUGAGUGUUUCUUAUUAUAUCCAUAAUCGCCCUUUGUGAGCAAUAGUAAGGAAAAGGGCGAUUAUGGAUAUAAUAGAAGUGCUGCACGUUGUUGGCCC
SEQ ID NO 41(重组si-ORF38前体):
GGCCAGCUGUGAGUGUUUCUUAUAUAGCAUAUUUAGGCGCUGUGAGCAAUAGUAAGGAAGCGCCUAAAUAUGCUAUAUAGAAGUGCUGCACGUUGUUGGCCC
SEQ ID NO 42(重组si-ORF46前体):
GGCCAGCUGUGAGUGUUUCUUUUAUUUAAAUCGGCGCAGGUGUGAGCAAUAGUAAGGAACCUGCGCCGAUUUAAAUAAAGAAGUGCUGCACGUUGUUGGCCC
SEQ ID NO 43(重组si-ORF47前体):
GGCCAGCUGUGAGUGUUUCUUAGUAUAUUUAGUAAGGCCCUGUGAGCAAUAGUAAGGAAGGGCCUUACUAAAUAUACUAGAAGUGCUGCACGUUGUUGGCCC
SEQ ID NO 44(重组si-ORF56前体):
GGCCAGCUGUGAGUGUUUCUUAUAUUAACGAAAGAACGUCUGUGAGCAAUAGUAAGGAAGACGUUCUUUCGUUAAUAUAGAAGUGCUGCACGUUGUUGGCCC
SEQ ID NO 45(重组si-ORF60前体):
GGCCAGCUGUGAGUGUUUCUUUUAAAGACAAACAAAUGGCUGUGAGCAAUAGUAAGGAAGCCAUUUGUUUGUCUUUAAAGAAGUGCUGCACGUUGUUGGCCC
SEQ ID NO 46(重组si-ORF68前体):
GGCCAGCUGUGAGUGUUUCUUAACAAUCCACGGUUGGUCCUUUGUGAGCAAUAGUAAGGAAAAGGACCAACCGUGGAUUGUUAGAAGUGCUGCACGUUGUUGGCCC
本发明的重组siRNAs的生产方法包括:
步骤一、针对VZV基因组设计siRNAs,合成嵌合siRNAs序列的hsa-miR-34a前体引物;
步骤二、利用pBSMrnaSeph质粒在tRNA反密码子环处具有的酶切位点,将重组siRNAs的前体序列插入pBSMrnaSeph质粒中,构建表达载体;所述tRNA支架的序列为与人丝氨酸tRNA序列相似度达90%以上的序列,所述人丝氨酸tRNA序列如SEQ ID NO:31所示;重组siRNAs的前体序列为成熟序列部分被取代的hsa-miR-34a前体序列,所述重组siRNAs的前体序列如SEQ ID NO:32-46所示;
步骤三、将嵌合目标序列的表达载体转化感受态大肠杆菌;
步骤四、大肠杆菌培养扩增后,提取菌内总RNA,以FPLC分离纯化目标重组siRNAs。
下面以重组si-ORF7(SEQ ID NO:1)、重组si-ORF68(SEQ ID NO:15)为例,具体介绍本发明重组siRNAs的生产方法:
实施例1:以pBSKrnaSeph/has-mir-34a表达载体构建重组siRNA质粒,表达重组siRNAs。
(1)根据重组si-ORF7、重组si-ORF68的有效序列,以及pBSKrnaSeph/has-mir-34a表达载体上的序列设计引物,命名为mir-34a/重组si-ORF7、重组si-ORF68,同时在引物的两端加上1-15nt载体插入位点两侧的同源序列。
(2)插入片段的合成
以表1中的两条引物互为模板,利用pBSMrnaSeph质粒在tRNA反密码子环处具有的酶切位点,将重组si-ORF7、重组si-ORF68的前体序列插入pBSMrnaSeph质粒中,构建表达载体;反应体系如表1所示,反应过程如表2所示:
表1聚合酶体外扩增链反应体系(50μL)
Figure BDA0003206087240000121
表2聚合酶体外扩增链反应过程
Figure BDA0003206087240000122
Figure BDA0003206087240000131
图1是本实施例对重组si-ORF7、重组si-ORF68的前体序列插入片段的引物PCR凝胶电泳图。图中M代表DL2000 DNA marker;1代表引物PCR后合成的插入片段。
(3)pBSKrnaSeph/has-mir-34a载体的双酶切
用Eag I-HFTM,Sac II限制性内切酶对载体进行37℃酶切,反应体系如表3所示。
表3 50μL双酶切体系
Figure BDA0003206087240000132
图2是本实施例对pBSKrnaSeph/hsa-mir-34a表达载体进行双酶切鉴定的结果图。图中M代表DL2000 DNA marker;1代表双酶切后的pBSKrnaSeph/hsa-mir-34a质粒;2代表pBSKrnaSeph/hsa-mir-34a质粒。
结果表明pBSKrnaSeph/hsa-mir-34a表达载体酶切成功。
(4)酶切质粒以及PCR片段的回收及纯化
将PCR产物和酶切后的质粒进行琼脂糖凝胶电泳鉴定后,使用OMEGA公司的胶回收试剂盒(OMEGA Gel Extraction Kit)进行回收纯化。在凝胶成像系统中用365nm的紫外光观察琼脂糖凝胶电泳后的DNA分离结果,用刀片小心切下带有目的DNA区带的凝胶,尽可能切下更少的胶,放入1.5mL的EP离心管中;称取凝胶的质量;按照1:1的体积比向装有琼脂糖凝胶的离心管中加入Binding Buffer结合缓冲液,并将混合物放于60℃-65℃水浴中7min,期间每隔两到三分钟振荡混合一次,直至凝胶完全融化;将融化后得到的溶液转移到DNAMini Column离心柱中,并将离心柱放入2mL的Collection Tube收集管中;10000rpm离心1min。每次离心的溶液体积最多为700μL,可将溶液分多次离心,直至全部离心完,并弃去收集管中的滤液,重复利用收集管;在离心柱中加入700μL的添加过无水乙醇的SPW WashBuffer。放于离心机中10000rpm,室温离心1min,重复此步骤一次;弃去滤液,将离心柱以13000rpm的转速室温下离心2min,以彻底除去纯化柱中的乙醇;将离心柱置于全新干净的离心管中。向离心柱中央悬空滴加30~100μL的Elution Buffer洗脱液,静置2min使DNA完全溶解在洗脱液中。放于离心机中以13000rpm的转速室温离心1min,回收管底的洗脱液。取少量洗脱液进行DNA凝胶电泳测定是否为目的产物,贮存于-20℃。
(5)插入片段与载体的连接
胶回收片段用
Figure BDA0003206087240000141
Ligation-Free Cloning System进行连接,反应体系如表4所示。
表4无缝连接反应体系(20μL)
Figure BDA0003206087240000142
混匀后,置于37℃孵育30min;转化大肠杆菌HST08感受态细菌;对克隆菌落进行氨苄青霉素抗性筛选。
(6)DNA测序鉴定重组si-ORF7、重组si-ORF68表达载体
挑取单克隆菌落,于含有氨苄的LB培养基中培养约3h。取100μL菌液,送擎科生物科技有限公司,用测序引物M13Fow-GTAAAACGACGGCCAGT,Rev-CAGGAAACAGCTATGAC进行DNA测序鉴定。
实施例2:重组si-ORF7、重组si-ORF68的表达
(1)200ng重组si-ORF7、重组si-ORF68表达质粒转化HST08感受态细菌后,加入5mLLB培养基在37℃,200rpm震荡培养过夜。菌液经10000g离心2min后,收集沉淀。于沉淀中加入180μL 10mM醋酸镁-Tris·HCl溶液重悬,再加入200μL的饱和苯酚,室温振摇20-60min。10000g离心10min后收集水相,加入0.1倍水相体积的5M NaCl沉淀大分子杂质。上清液再加入2倍体积无水乙醇,10000g离心10min后,弃掉上清。吸水纸吸干残留乙醇,待RNA干燥后加入DEPC水溶解RNA,测定浓度,-80℃冰箱保存。
(2)变性聚丙烯酰胺凝胶电泳鉴定
将2ug RNA样品与2×RNA上样缓冲液混合,加入变性胶样品孔内。120~150V电泳40~60min后,放入含0.5μg/mL溴化乙锭的溶液中轻摇20~30min,于凝胶成像系统下观测,拍照保存。
图3是本实施例利用变性聚丙烯酰胺凝胶电泳检测大肠杆菌中重组si-ORF7、重组si-ORF68的表达。转化重组si-ORF7、重组si-ORF68表达质粒的细菌总RNA在150-300nt之间多了一条条带。结果表明,重组siRNA表达质粒在大肠杆菌中可以高表达重组si-ORF7、重组si-ORF68。
实施例3:FPLC纯化重组si-ORF7、重组si-ORF68
(1)采用Bio-Rad NGCTM Chromatography System,以离子交换柱(ENrichTMQ10×100Column)纯化重组si-ORF7、重组si-ORF68。
流动相A:10mM NaH2PO4溶液,pH7.0。流动相B:10mM NaH2PO4溶液,1M NaCl溶液,pH7.0。
流速为2.0mL/min。以DEPC水,流动相A,流动相B分别交替冲洗色谱柱约1h。每次冲洗5柱体积。
运行以下程序对总RNA进行分离:0~8.9min(0%B),8.9~13.7min(55%B),13.7~53.7min(55~75%B),53.7~73.7min(75~85%B),73.7~83.7min(100%B),83.7~93.7min(0%B)。以260nm的吸光度检测RNA,并收集重组RNA所对应的峰。用变性聚丙烯酰胺凝胶电泳鉴定纯度。
(2)RNA样品处理方法
总RNA提取步骤同上。所提取的总RNA于4℃13000rpm离心10min后,上清液经0.22μm微孔滤膜过滤后,每次进样5-10mg。
(3)FPLC组分收集及浓缩去盐
以变性聚丙烯酰胺凝胶电泳鉴定所收集组分的纯度。混合后的各组分用2倍体积无水乙醇沉淀RNA,-80℃冰箱放置约1h。以10000g转速于4℃离心10min收集RNA。将所得RNA沉淀用DEPC水溶解,用tra-2mL Centrifugal Filters 4℃7500g离心10min,去滤液,重复此步骤直至所有溶液离心完,再将Filters倒置,2000g离心2min,收集所得溶液,测定浓度后于-80℃保存。
图4是本实施例利用Bio-Rad NGCTM Chromatography System纯化重组siRNAs(重组si-ORF7、重组si-ORF68),以变性聚丙烯酰胺凝胶电泳鉴定所收集组分的纯度。结果表明,经FPLC纯化后,可得到高纯的重组si-ORF7、si-ORF68。
实施例4:重组si-ORF7、重组si-ORF68在细胞内的加工、成熟
(1)重组siRNAs转染
将人视网膜色素上皮细胞(ARPE19)以1×105接种到12孔板中,待细胞贴壁展开后,更换培养基为空白DMEM/F12,将重组si-ORF7、重组si-ORF68加入到一定量的空白DMEM/F12培养基及转染试剂lipo2000加入到一定量的空白DMEM/F12培养基中各自孵育5min,然后将lipo2000与DMEM/F12孵育物加入到重组si-ORF7、重组si-ORF68与DMEM/F12孵育物中,混匀静置20min,然后将孵育物加入到对应的12孔板中,重组si-ORF7、重组si-ORF68终浓度为10nM,6h后更换为10%FBS DMEM/F12培养基。
(2)RNA提取
按照RNA提取说明书提取RNA,所得RNA后冻于-80℃冰箱保存。
(3)qPCR检测检测重组si-ORF7、重组si-ORF68在细胞内的表达
利用反转录试剂盒对RNA进行反转录,反转录产物冻于-20℃,具体过程如下:
a:gDNA消化,在RNase-free离心管中配制如下混合液,用移液器轻轻吹打混匀。42℃2min。
表5 Stem loop qPCR gDNA消化反应体系
Figure BDA0003206087240000171
b:逆转录反应体系配制(20μL体系)
表6 Stem loop qPCR cDNA逆转录反应体系
Figure BDA0003206087240000172
取上述已反转录好的cDNA,稀释5倍,以GAPDH为内参,利用stem loop qPCR方法检测细胞内重组siRNA的表达量,qPCR反应程序如下:95℃,2min;95℃,5s,60℃,30s,39个循环;95℃,5s;65℃,5s;95℃,50s。所使用的引物序列如下:
表7 Stem loop qPCR引物
Figure BDA0003206087240000173
Figure BDA0003206087240000181
图5是本实施例利用Stem loop qPCR技术检测重组si-ORF7和重组si-ORF68在人视网膜色素上皮细胞(ARPE19)中的加工和成熟(数值以“均值±标准差”表示,两组间的显著性采用Students’t检验,*P<0.05,**P<0.01)。与空白对照(Blank)相比,成熟si-ORF7和si-ORF68表达显著升高,表明重组si-ORF7、重组si-ORF68在ARPE19细胞中被加工为成熟siRNA。
实施例5:重组si-ORF7、重组si-ORF68对靶基因(ORF7、ORF68)的调控作用
根据VZV基因组(X04370.1)设计siRNA序列,检测利用tRNA支架表达重组si-ORF7、重组si-ORF68是否能够特异性敲低靶基因的表达。
1.qPCR检测靶基因的敲低效果
(1)重组siRNAs转染及病毒感染
将人视网膜色素上皮细胞(ARPE19)以1×105接种到12孔板中,待细胞贴壁展开后,更换培养基为空白DMEM/F12,将重组si-ORF7、重组si-ORF68加入到一定量的空白DMEM/F12培养基及转染试剂lipo2000加入到一定量的空白DMEM/F12培养基中各自孵育5min,然后将lipo2000与DMEM/F12孵育物加入到重组si-ORF7、重组si-ORF68与DMEM/F12孵育物中,混匀静置20min,然后将孵育物加入到对应的12孔板中,重组si-ORF7、重组si-ORF68终浓度为10nM,转染6h后换液为2%FBS DMEM/F12培养基并利用以一定的感染复数(MOI=0.3)感染VZV病毒。
(2)RNA提取
RNA提取说明书提取RNA,所得RNA后冻于-80℃冰箱保存。
(3)qPCR检测靶基因(ORF7、ORF68)表达
利用反转录试剂盒对RNA进行反转录,反转录产物冻于-20℃,具体过程如下:
a:gDNA消化
在RNase-free离心管中配制如下混合液,用移液器轻轻吹打混匀。42℃2min。
表8 Real time qPCR gDNA消化反应体系
Figure BDA0003206087240000191
b:逆转录反应体系配制(20μL体系)
表9 Real time qPCR cDNA逆转录反应体系
Figure BDA0003206087240000192
取上述已反转录好的cDNA,稀释5倍,以GAPDH为内参,利用qPCR方法检测细胞内靶基因(ORF7、ORF9)表达量,qPCR反应程序如下:95℃,2min;95℃,5s,60℃,30s,39个循环;95℃,5s;65℃,5s;95℃50s。所使用的引物序列如下:
表10重组si-ORF7、重组si-ORF68 qPCR引物
Figure BDA0003206087240000193
Figure BDA0003206087240000201
图6是本实施例中利用qPCR技术检测检测重组si-ORF7和重组si-ORF68对水痘-带状疱疹病毒(VZV)靶基因的敲低作用(数值以“均值±标准差”表示,两组间的显著性采用Students’t检验,*P<0.05,**P<0.01,**P<0.001,****P<0.0001)。与空白对照组相比,重组si-ORF7和重组si-ORF68能够显著抑制靶基因的表达,表明重组si-ORF7和重组si-ORF68在ARPE19细胞中被加工成为具有生物活性的重组siRNAs。
实施例6:重组si-ORF7、重组si-ORF68抗病毒效果评价
1.Western blot检测重组siRNAs抗病毒效果
(1)重组siRNAs转染及病毒感染
将人视网膜色素上皮细胞(ARPE19)以2×105接种到6孔板中,待细胞贴壁展开后,更换培养基为空白DMEM/F12,将重组si-ORF7、重组si-ORF68加入到一定量的空白DMEM/F12培养基及转染试剂lipo2000加入到一定量的空白DMEM/F12培养基中各自孵育5min,然后将lipo2000与DMEM/F12孵育物加入到重组si-ORF7、重组si-ORF68与DMEM/F12孵育物中,混匀静置20min,然后将孵育物加入到对应的6孔板中,重组si-ORF7、重组si-ORF68终浓度为10nM,转染6h后换液为2%FBS DMEM/F12培养基并利用以一定的感染复数(MOI=0.3)感染VZV病毒。
(2)蛋白提取
48h后,弃掉6孔板中的培养基,DPBS洗一遍,加入含有磷酸酶和蛋白酶抑制剂的RIPA裂解液在冰上裂解30min,用细胞刮将细胞刮下来加入到1.5mL EP管中,在日立离心机上离心(12000rpm,15min,4℃),将上清转移至新准备的EP管中,利用BCA蛋白定量试剂盒进行蛋白定量。将蛋白定量加入loading buffer煮沸10min后,在10%的分离胶的蛋白胶中每个泳道加入30μg蛋白进行电泳(70V,30min;120V,1.3h)、PVDF膜转膜(200mA,2h)。将膜转移到3%BSA(TBST)封闭液中封闭1h,随后移除3%BSA,加入一抗gE(TBST稀释,1:3000,Abcam)4℃摇床过夜,第二天回收gE一抗,TBST洗三遍,加入内参GAPDH一抗(TBST稀释,1:10000,CST)4℃摇床过夜,第二天回收GAPDH一抗,TBST洗三遍,加入含有绿色荧光二抗鼠抗(TBST稀释,1:10000,CST)室温摇床孵育1h,TBST洗三遍,利用奥德赛成像仪进行扫膜(如图7)。
图7是本实施例中利用Western blot技术检测重组si-ORF7和重组si-ORF68对水痘-带状疱疹病毒糖蛋白(gE)表达影响。如图所示,与空白对照Blank相比,重组siRNAs能够显著抑制VZV糖蛋白gE的表达,表明重组si-ORF7和重组si-ORF68能够显著抑制病毒粒子的形成,具有显著的抗病毒活性。
2.免疫荧光(IF)实验评价重组siRNAs抗病毒效果
(1)重组siRNAs转染及病毒感染
将人视网膜色素上皮细胞(ARPE19)以1×105/孔接种到12孔板中,待细胞贴壁展开后按照脂质体转染试剂lipo2000说明书进行细胞转染,重组siRNAs终浓度为10nM。转染6h后换液为2%FBS DMEM/F12培养基并利用以一定的感染复数(MOI=0.3)感染VZV病毒。
(2)免疫荧光染色
48h后,弃掉12孔板中的培养基,DPBS洗2遍,加入4%多聚甲醛固定30min,DPBS洗2遍,加入0.5%Triton-X100室温破膜10min,DPBS洗2遍,加入3%BSA封闭30min(现配现用),DPBS洗2遍,加入VZV gE一抗(1:100,Abcam)4℃过夜,第二天DPBS洗5遍,加入cy5标记的鼠源二抗(1:500,CST)室温避光孵育1h,弃去二抗,DPBS洗5遍,加入细胞核染料DAPI(1:10000)室温孵育5min,弃去染料,DPBS洗5遍,利用荧光倒置显微镜进行观察拍照(如图8)。
图8是本实施例中利用免疫荧光技术(IF)检测重组si-ORF7和重组si-ORF68对水痘-带状疱疹病毒荧光数量的影响。如图所示,与空白对照blank相比,重组si-ORF7和重组si-ORF68能够显著降低荧光数量,表明重组si-ORF7和重组si-ORF68能够显著抑制病毒粒子形成,具有显著的抗病毒活性。
3.利用cy5细胞成像仪在相差场进行拍照
(1)重组siRNAs转染及病毒感染
将人视网膜色素上皮细胞(ARPE19)以1×105接种到12孔板中,待细胞贴壁展开后,更换培养基为空白DMEM/F12,将重组si-ORF7、重组si-ORF68加入到一定量的空白DMEM/F12培养基及转染试剂lipo2000加入到一定量的空白DMEM/F12培养基中各自孵育5min,然后将lipo2000与DMEM/F12孵育物加入到重组si-ORF7、重组si-ORF68与DMEM/F12孵育物中,混匀静置20min,然后将孵育物加入到对应的12孔板中,重组si-ORF7、重组si-ORF68终浓度为10nM,转染6h后换液为2%FBS DMEM/F12培养基并利用以一定的感染复数(MOI=0.3)感染VZV病毒。
(2)细胞拍照
48h后,按照cy5细胞成像仪操作说明对12孔板进行拍照(如图9)。
图9是本实施例中利用相差显微镜在相差场拍照检测重组si-ORF7和重组si-ORF68对水痘-带状疱疹病毒病变细胞数量的影响。如图所示,与空白对照blank相比,重组si-ORF7和重组si-ORF68能够显著抑制病变细胞数量,表明重组si-ORF7和重组si-ORF68能够抑制病毒粒子的形成,具有显著的抗病毒活性。
本发明通过针对水痘-带状疱疹病毒(Varicellar Zoster Virus)疫苗株(VZVvoka)基因组ORF7、ORF68设计siRNAs,利用改良tRNA支架,嵌合siRNA序列,在大肠杆菌中表达重组si-ORF7、重组si-ORF68。生产的重组si-ORF7、重组si-ORF68能够特异性的敲低靶基因的表达,同时能够抑制病毒的复制及细胞间的传播,降低病毒载量。
以上所述,仅是本发明的较佳实施例,并非对本发明做任何限制,凡是根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。
序列表
<110> 西北工业大学
<120> 一种抗水痘-带状疱疹病毒的重组siRNAs及其生产方法和应用
<160> 60
<170> SIPOSequenceListing 1.0
<210> 1
<211> 187
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 1
gcagcgaugg ccgagugguu aaggcguugg acuggccagc ugugaguguu ucuuacaaau 60
ggguaauugc agcuuuguga gcaauaguaa ggaaaagcug caauuaccca uuuguagaag 120
ugcugcacgu uguuggccca auccaauggg gucuccccgc gcagguucga acccugcucg 180
cugcgcc 187
<210> 2
<211> 187
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 2
gcagcgaugg ccgagugguu aaggcguugg acuggccagc ugugaguguu ucuuaacugu 60
gguaauguaa cccuuuguga gcaauaguaa ggaaaagggu uacauuacca caguuagaag 120
ugcugcacgu uguuggccca auccaauggg gucuccccgc gcagguucga acccugcucg 180
cugcgcc 187
<210> 3
<211> 183
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 3
gcagcgaugg ccgagugguu aaggcguugg acuggccagc ugugaguguu ucuuuauuua 60
guuauguuuc ggcugugagc aauaguaagg aagccgaaac auaacuaaau aagaagugcu 120
gcacguuguu ggcccaaucc aauggggucu ccccgcgcag guucgaaccc ugcucgcugc 180
gcc 183
<210> 4
<211> 182
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 4
gcagcgaugg ccgagugguu aaggcguugg acuggccagc ugugaguguu ucuuuuguug 60
cauccuuuaa ggcugugagc aauaguaagg aaccuuaaag gaugcaacaa agaagugcug 120
cacguuguug gcccaaucca auggggucuc cccgcgcagg uucgaacccu gcucgcugcg 180
cc 182
<210> 5
<211> 183
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 5
gcagcgaugg ccgagugguu aaggcguugg acuggccagc ugugaguguu ucuuaugcgc 60
auaugucaua ugcugugagc aauaguaagg aagcauauga cauaugcgca uagaagugcu 120
gcacguuguu ggcccaaucc aauggggucu ccccgcgcag guucgaaccc ugcucgcugc 180
gcc 183
<210> 6
<211> 183
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 6
gcagcgaugg ccgagugguu aaggcguugg acuggccagc ugugaguguu ucuuauauca 60
uuuaccaguc gccugugagc aauaguaagg aaggcgacug guaaaugaua uagaagugcu 120
gcacguuguu ggcccaaucc aauggggucu ccccgcgcag guucgaaccc ugcucgcugc 180
gcc 183
<210> 7
<211> 183
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 7
gcagcgaugg ccgagugguu aaggcguugg acuggccagc ugugaguguu ucuuauuuaa 60
ucauuuccug ggcugugagc aauaguaagg aagcccagga aaugauuaaa uagaagugcu 120
gcacguuguu ggcccaaucc aauggggucu ccccgcgcag guucgaaccc ugcucgcugc 180
gcc 183
<210> 8
<211> 183
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 8
gcagcgaugg ccgagugguu aaggcguugg acuggccagc ugugaguguu ucuuauaaac 60
gccacauucc accugugagc aauaguaagg aagguggaau guggcguuua uagaagugcu 120
gcacguuguu ggcccaaucc aauggggucu ccccgcgcag guucgaaccc ugcucgcugc 180
gcc 183
<210> 9
<211> 187
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 9
gcagcgaugg ccgagugguu aaggcguugg acuggccagc ugugaguguu ucuuauuaua 60
uccauaaucg cccuuuguga gcaauaguaa ggaaaagggc gauuauggau auaauagaag 120
ugcugcacgu uguuggccca auccaauggg gucuccccgc gcagguucga acccugcucg 180
cugcgcc 187
<210> 10
<211> 183
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 10
gcagcgaugg ccgagugguu aaggcguugg acuggccagc ugugaguguu ucuuauauag 60
cauauuuagg cgcugugagc aauaguaagg aagcgccuaa auaugcuaua uagaagugcu 120
gcacguuguu ggcccaaucc aauggggucu ccccgcgcag guucgaaccc ugcucgcugc 180
gcc 183
<210> 11
<211> 183
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 11
gcagcgaugg ccgagugguu aaggcguugg acuggccagc ugugaguguu ucuuuuauuu 60
aaaucggcgc aggugugagc aauaguaagg aaccugcgcc gauuuaaaua aagaagugcu 120
gcacguuguu ggcccaaucc aauggggucu ccccgcgcag guucgaaccc ugcucgcugc 180
gcc 183
<210> 12
<211> 183
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 12
gcagcgaugg ccgagugguu aaggcguugg acuggccagc ugugaguguu ucuuaguaua 60
uuuaguaagg cccugugagc aauaguaagg aagggccuua cuaaauauac uagaagugcu 120
gcacguuguu ggcccaaucc aauggggucu ccccgcgcag guucgaaccc ugcucgcugc 180
gcc 183
<210> 13
<211> 183
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 13
gcagcgaugg ccgagugguu aaggcguugg acuggccagc ugugaguguu ucuuauauua 60
acgaaagaac gucugugagc aauaguaagg aagacguucu uucguuaaua uagaagugcu 120
gcacguuguu ggcccaaucc aauggggucu ccccgcgcag guucgaaccc ugcucgcugc 180
gcc 183
<210> 14
<211> 183
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 14
gcagcgaugg ccgagugguu aaggcguugg acuggccagc ugugaguguu ucuuuuaaag 60
acaaacaaau ggcugugagc aauaguaagg aagccauuug uuugucuuua aagaagugcu 120
gcacguuguu ggcccaaucc aauggggucu ccccgcgcag guucgaaccc ugcucgcugc 180
gcc 183
<210> 15
<211> 187
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 15
gcagcgaugg ccgagugguu aaggcguugg acuggccagc ugugaguguu ucuuaacaau 60
ccacgguugg uccuuuguga gcaauaguaa ggaaaaggac caaccgugga uuguuagaag 120
ugcugcacgu uguuggccca auccaauggg gucuccccgc gcagguucga acccugcucg 180
cugcgcc 187
<210> 16
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 16
acaaaugggu aauugcagc 19
<210> 17
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 17
aacuguggua auguaaccc 19
<210> 18
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 18
uauuuaguua uguuucggc 19
<210> 19
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 19
uuguugcauc cuuuaaggc 19
<210> 20
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 20
augcgcauau gucauaugc 19
<210> 21
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 21
auaucauuua ccagucgcc 19
<210> 22
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 22
auuuaaucau uuccugggc 19
<210> 23
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 23
auaaacgcca cauuccacc 19
<210> 24
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 24
auuauaucca uaaucgccc 19
<210> 25
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 25
auauagcaua uuuaggcgc 19
<210> 26
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 26
uuauuuaaau cggcgcagg 19
<210> 27
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 27
aguauauuua guaaggccc 19
<210> 28
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 28
auauuaacga aagaacguc 19
<210> 29
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 29
uuaaagacaa acaaauggc 19
<210> 30
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 30
aacaauccac gguuggucc 19
<210> 31
<211> 97
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 31
gcagcgaugg ccgagugguu aaggcguugg acunnnnnnn nnnnnnnnna auccaauggg 60
gucuccccgc gcagguucga acccugcucg cugcgcc 97
<210> 32
<211> 106
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 32
ggccagcugu gaguguuucu uacaaauggg uaauugcagc uuugugagca auaguaagga 60
aaagcugcaa uuacccauuu guagaagugc ugcacguugu uggccc 106
<210> 33
<211> 106
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 33
ggccagcugu gaguguuucu uaacuguggu aauguaaccc uuugugagca auaguaagga 60
aaaggguuac auuaccacag uuagaagugc ugcacguugu uggccc 106
<210> 34
<211> 102
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 34
ggccagcugu gaguguuucu uuauuuaguu auguuucggc ugugagcaau aguaaggaag 60
ccgaaacaua acuaaauaag aagugcugca cguuguuggc cc 102
<210> 35
<211> 101
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 35
ggccagcugu gaguguuucu uuuguugcau ccuuuaaggc ugugagcaau aguaaggaac 60
cuuaaaggau gcaacaaaga agugcugcac guuguuggcc c 101
<210> 36
<211> 102
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 36
ggccagcugu gaguguuucu uaugcgcaua ugucauaugc ugugagcaau aguaaggaag 60
cauaugacau augcgcauag aagugcugca cguuguuggc cc 102
<210> 37
<211> 102
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 37
ggccagcugu gaguguuucu uauaucauuu accagucgcc ugugagcaau aguaaggaag 60
gcgacuggua aaugauauag aagugcugca cguuguuggc cc 102
<210> 38
<211> 102
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 38
ggccagcugu gaguguuucu uauuuaauca uuuccugggc ugugagcaau aguaaggaag 60
cccaggaaau gauuaaauag aagugcugca cguuguuggc cc 102
<210> 39
<211> 102
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 39
ggccagcugu gaguguuucu uauaaacgcc acauuccacc ugugagcaau aguaaggaag 60
guggaaugug gcguuuauag aagugcugca cguuguuggc cc 102
<210> 40
<211> 106
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 40
ggccagcugu gaguguuucu uauuauaucc auaaucgccc uuugugagca auaguaagga 60
aaagggcgau uauggauaua auagaagugc ugcacguugu uggccc 106
<210> 41
<211> 102
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 41
ggccagcugu gaguguuucu uauauagcau auuuaggcgc ugugagcaau aguaaggaag 60
cgccuaaaua ugcuauauag aagugcugca cguuguuggc cc 102
<210> 42
<211> 102
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 42
ggccagcugu gaguguuucu uuuauuuaaa ucggcgcagg ugugagcaau aguaaggaac 60
cugcgccgau uuaaauaaag aagugcugca cguuguuggc cc 102
<210> 43
<211> 102
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 43
ggccagcugu gaguguuucu uaguauauuu aguaaggccc ugugagcaau aguaaggaag 60
ggccuuacua aauauacuag aagugcugca cguuguuggc cc 102
<210> 44
<211> 102
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 44
ggccagcugu gaguguuucu uauauuaacg aaagaacguc ugugagcaau aguaaggaag 60
acguucuuuc guuaauauag aagugcugca cguuguuggc cc 102
<210> 45
<211> 102
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 45
ggccagcugu gaguguuucu uuuaaagaca aacaaauggc ugugagcaau aguaaggaag 60
ccauuuguuu gucuuuaaag aagugcugca cguuguuggc cc 102
<210> 46
<211> 106
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 46
ggccagcugu gaguguuucu uaacaaucca cgguuggucc uuugugagca auaguaagga 60
aaaggaccaa ccguggauug uuagaagugc ugcacguugu uggccc 106
<210> 47
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 47
cctctgactt caacagcgac 20
<210> 48
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 48
tcctcttgtg ctcttgctgg 20
<210> 49
<211> 50
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 49
gtcgtatcca gtgcagggtc cgaggtattc gcactggata cgacaagctg 50
<210> 50
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 50
gcgcgacaaa tgggtaattg 20
<210> 51
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 51
agtgcagggt ccgaggtatt 20
<210> 52
<211> 50
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 52
gtcgtatcca gtgcagggtc cgaggtattc gcactggata cgacaaggac 50
<210> 53
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 53
cgcgaacaat ccacggttg 19
<210> 54
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 54
agtgcagggt ccgaggtatt 20
<210> 55
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 55
cctctgactt caacagcgac 20
<210> 56
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 56
tcctcttgtg ctcttgctgg 20
<210> 57
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 57
tggggtcgtt gctaaacctc 20
<210> 58
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 58
tcttgcgtct gttttggggt 20
<210> 59
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 59
ggggtgtata atcagggccg 20
<210> 60
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 60
ctgaatcggt gcgcgtaaag 20

Claims (7)

1.一种抗水痘-带状疱疹病毒的重组siRNAs,其特征在于,所述重组siRNAs的序列为SEQ ID NO:1至SEQ ID NO:15所示序列中的一种,或者为与SEQ ID NO:1至SEQ ID NO:15所示序列中的一种相似度达90%以上的序列。
2.一种如权利要求1所述重组siRNAs的生产方法,其特征在于,包括:以水痘-带状疱疹病毒基因组不同开放阅读框为靶点,设计小干扰RNA,将设计的小干扰RNA序列嵌合于tRNA支架,在大肠杆菌中重组表达;所述小干扰RNA的序列为SEQ ID NO:16至SEQ ID NO:30所示序列中的一种。
3.根据权利要求2所述的生产方法,其特征在于,所述tRNA支架的序列为与人丝氨酸tRNA序列相似度达90%以上的序列,所述人丝氨酸tRNA序列如SEQ ID NO:31所示。
4.根据权利要求2所述的生产方法,其特征在于,重组siRNAs的前体序列为成熟序列部分被取代的hsa-miR-34a前体序列,所述重组siRNAs的前体序列相应的为SEQ ID NO:32至SEQ ID NO:46所示序列中的一种。
5.根据权利要求2至4中任一权利要求所述的生产方法,其特征在于,所述生产方法的具体步骤包括:
步骤一、设计合成嵌合小干扰RNA序列的hsa-miR-34a前体引物;
步骤二、利用pBSMrnaSeph质粒在tRNA反密码子环处具有的酶切位点,将重组siRNAs的前体序列插入pBSMrnaSeph质粒中,构建表达载体;
步骤三、将嵌合目标序列的表达载体转化感受态大肠杆菌;
步骤四、大肠杆菌培养扩增后,提取菌内总RNA,以FPLC分离纯化目标重组siRNAs。
6.一种如权利要求1所述重组siRNAs在制备抗水痘-带状疱疹病毒基因组DNA组装、复制、细胞融合和/或在细胞间传播的试剂、前药、药物、原料药或药物组合中的应用。
7.一种如权利要求1所述重组siRNAs在制备抗水痘-带状疱疹病毒活性的试剂、前药、药物、原料药或药物组合中的应用。
CN202110917269.6A 2021-08-11 2021-08-11 一种抗水痘-带状疱疹病毒的重组siRNAs及其生产方法和应用 Active CN113789326B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110917269.6A CN113789326B (zh) 2021-08-11 2021-08-11 一种抗水痘-带状疱疹病毒的重组siRNAs及其生产方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110917269.6A CN113789326B (zh) 2021-08-11 2021-08-11 一种抗水痘-带状疱疹病毒的重组siRNAs及其生产方法和应用

Publications (2)

Publication Number Publication Date
CN113789326A true CN113789326A (zh) 2021-12-14
CN113789326B CN113789326B (zh) 2023-04-07

Family

ID=78875826

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110917269.6A Active CN113789326B (zh) 2021-08-11 2021-08-11 一种抗水痘-带状疱疹病毒的重组siRNAs及其生产方法和应用

Country Status (1)

Country Link
CN (1) CN113789326B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6528066B1 (en) * 1999-09-14 2003-03-04 University Of Iowa Research Foundation Variant varicella-zoster viruses and methods of use
US20100256219A1 (en) * 2009-04-01 2010-10-07 University Of Zuerich Small interfering DNA (siDNA) oligonucleotides as an antiviral agent against Herpes virus infections
CN105770886A (zh) * 2009-07-28 2016-07-20 北京万泰生物药业股份有限公司 Orf7缺陷型水痘病毒、含有该病毒的疫苗及应用
US20190093092A1 (en) * 2016-05-05 2019-03-28 Temple University - Of The Commonwealth System Of Higher Education Rna guided eradication of varicella zoster virus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6528066B1 (en) * 1999-09-14 2003-03-04 University Of Iowa Research Foundation Variant varicella-zoster viruses and methods of use
US20100256219A1 (en) * 2009-04-01 2010-10-07 University Of Zuerich Small interfering DNA (siDNA) oligonucleotides as an antiviral agent against Herpes virus infections
CN105770886A (zh) * 2009-07-28 2016-07-20 北京万泰生物药业股份有限公司 Orf7缺陷型水痘病毒、含有该病毒的疫苗及应用
US20190093092A1 (en) * 2016-05-05 2019-03-28 Temple University - Of The Commonwealth System Of Higher Education Rna guided eradication of varicella zoster virus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GENBANK ACCESSION: X04370.1: "Human herpesvirus 3 (strain Dumas) complete genome" *
胡妙凤等: "RNA干扰对疱疹病毒的抑制作用" *

Also Published As

Publication number Publication date
CN113789326B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
EP3168298B1 (en) Production method for non-enveloped virus particles
WO2020239040A1 (zh) 重组溶瘤病毒以及制备方法、应用和药物
EA024878B1 (ru) Ген, кодирующий мутантную глюкокиназу человека, отличающуюся увеличенной стабильностью, и его применение для контроля глюкозы в крови или предупреждения и лечения нарушений углеводного обмена
CN107034220A (zh) 草鱼呼肠孤病毒的核酸适配体及其衍生物、筛选方法和应用
CN115927473B (zh) 一种用于单纯疱疹病毒感染性疾病的基因治疗药物
CN112029803A (zh) 一种慢病毒过表达病毒载体及其制备方法、用途
CN113244412B (zh) 一种基于mRNA剂型的治疗高尿酸血症或痛风的药物及其制备方法
CN113789326B (zh) 一种抗水痘-带状疱疹病毒的重组siRNAs及其生产方法和应用
CN117511888A (zh) 一种基于CRISPR-Cas9技术的表达鸡传染性贫血病病毒T1P6毒株VP2蛋白的重组血清4型禽腺病毒及其制备方法
CN109097363B (zh) 一种可有效抑制骨肉瘤生长的生物重组型miR34a-5p
CN113874495A (zh) 一种生产病毒的方法及收获液组合物
CN114469996B (zh) 一种包含miR-135b-5p的外泌体及在抗轮状病毒感染中的应用
CN113425855B (zh) 一种mRNA剂型的骨关节炎药物制剂及其制备方法和应用
CN113304256B (zh) 非洲猪瘟病毒d205r和d345l基因的应用
CN110964726B (zh) 一种重组siMACF1及其生产方法和应用
CN113755494B (zh) 一种抗水痘-带状疱疹病毒的siRNAs及其应用
CN116121250A (zh) 一种抗Ⅰ型单纯疱疹病毒的重组siRNAs及其应用
CN112063620A (zh) 抑制猪流行性腹泻病毒M基因表达的shRNA
CN113755493A (zh) 一种抗骨关节炎的重组miR-140及其生产方法和应用
CN105671006B (zh) 一种高效表达海肾荧光素酶基因的产品及其应用
CN111235114A (zh) 一种ev71复制缺陷型病毒及其制备方法和应用
CN115896112B (zh) 靶向敲除人TMEM121基因的sgRNA,构建该基因缺失细胞株的方法及应用
CN116676267A (zh) 无成瘤性mdck基因工程细胞株及其制备方法和应用
CN117379431A (zh) 一种嘧啶类衍生物在制备抗猪繁殖与呼吸综合征病毒的药物中的用途
CN101502659A (zh) Krüppel样转录因子4的新用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant