CN113773090A - 一种ZrB2-ZrC-SiC纳米复合陶瓷材料的制备方法 - Google Patents

一种ZrB2-ZrC-SiC纳米复合陶瓷材料的制备方法 Download PDF

Info

Publication number
CN113773090A
CN113773090A CN202111345215.3A CN202111345215A CN113773090A CN 113773090 A CN113773090 A CN 113773090A CN 202111345215 A CN202111345215 A CN 202111345215A CN 113773090 A CN113773090 A CN 113773090A
Authority
CN
China
Prior art keywords
source solution
zrc
zrb
zirconium
ceramic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111345215.3A
Other languages
English (en)
Other versions
CN113773090B (zh
Inventor
周哲
廖桓毅
毛卫国
陶创芳
金鑫
陈畅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha University of Science and Technology
Original Assignee
Changsha University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha University of Science and Technology filed Critical Changsha University of Science and Technology
Priority to CN202111345215.3A priority Critical patent/CN113773090B/zh
Publication of CN113773090A publication Critical patent/CN113773090A/zh
Application granted granted Critical
Publication of CN113773090B publication Critical patent/CN113773090B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5276Whiskers, spindles, needles or pins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm

Abstract

提供了一种ZrB2‑ZrC‑SiC纳米复合陶瓷材料的制备方法:分别制备锆源溶液、硼源溶液、硅源溶液和碳源溶液;混合四种溶液得到目标前驱体溶液;再经干燥、研磨;然后进行球磨混合;最后依次经冷压成型、等静压致密化、无压烧结,得到所述ZrB2‑ZrC‑SiC纳米复合陶瓷材料,所得材料按体积比计ZrB2:ZrC:SiC的比例为:(64‑16):(64‑16):20;所述ZrB2、ZrC为平均粒径90‑110nm的晶粒;所述SiC为颗粒、晶须和纳米线的混合相,其制备方法为。

Description

一种ZrB2-ZrC-SiC纳米复合陶瓷材料的制备方法
技术领域
本发明总体地涉及陶瓷基复合材料制备技术领域,特别涉及一种ZrB2-ZrC-SiC纳米复合陶瓷材料的制备方法。
背景技术
耐超高温陶瓷基复合材料是一类可经受超高音速飞行器长时间、跨大气层飞行和再入等极端环境的新型热防护材料,超高温陶瓷前驱体是其关键基础原材料。
ZrB2基陶瓷具有极高的熔点、良好的化学稳定性和物理性能,以及优良的抗热震性能,被广泛应用于易氧化,腐蚀的高温环境下。SiC相的引入能在高温下氧化形成致密的SiO2,填充在高强度的ZrO2骨架中,在材料表面形成玻璃态的ZrO2-SiO2层和SiO2富集层,阻碍氧气的渗透,对基材具有良好的氧化保护作用。此外,Bull发现,在ZrB2-SiC二元陶瓷中加入ZrC形成三元复合材料ZrB2-SiC-ZrC,较ZrB2-SiC材料具有更好的力学性能和抗氧化烧蚀性能。刘虎林指出,ZrB2-SiC-ZrC三元体系中,ZrC的引入高温下提高了表面氧化层的抗机械侵蚀能力,并通过抑制ZrB2晶粒长大,裂纹偏转等机制,提高了陶瓷材料本身的断裂韧性。因此,ZrB2-SiC-ZrC陶瓷是一种很有前途的抗高温氧化和高速气流侵蚀的陶瓷复合材料。
溶胶-凝胶法具有反应温度低、产物达到分子水平均匀、工艺简单等优点,使用溶胶-凝胶法制备的陶瓷粉体晶粒细小,在烧结过程中,粉体较大的表面能为烧结提供驱动力,使陶瓷材料在较低的温度下烧结致密。Hossein Moayyeri(Moayyeri, H, Aghdam, R.M. , Ghelich, R. , & Golestani-Fard, F. . In situ synthesis of ZrB2-ZrC-SiCultra-high-temperature nanocomposites by a sol-gel process. Advances inApplied Ceramics, (2018). 1-7.)通过溶胶-凝胶法制备出了粒径约为250nm的ZrB2-ZrC-SiC复合粉体。中国专利CN202010065527.8提出了一种SiCf -ZrB2 -ZrC陶瓷复合粉体的制备方法,通过溶胶-凝胶法获得元素均匀分布的前驱体溶液,然后经过干燥、研磨以及高温裂解,得到SiC纤维均匀分散在ZrB2-ZrC陶瓷内的复合粉体。目前,应用溶胶-凝胶法制备高纯度的纳米级超高温陶瓷粉体已普遍应用,但研究将该方法与烧结技术结合制备致密的复合陶瓷还少见报道。
发明内容
本发明所要解决的技术问题在于提供一种利用溶胶-凝胶法制备ZrB2-ZrC-SiC纳米复合粉体的方法,该方法成本低,工艺简单,所制得的复合粉体平均粒径在100nm左右,颗粒尺寸均匀,呈规则球形,分散性良好。且粉体纯度高,各组元均匀分布。
本发明的技术方案是,本发明提供了上述ZrB2-ZrC-SiC纳米复合陶瓷材料的制备方法,过程为:分别制备锆源溶液、硼源溶液、硅源溶液和碳源溶液;混合四种溶液得到目标前驱体溶液;再经干燥、研磨;然后进行球磨混合;最后依次经冷压成型、等静压致密化、无压烧结,得到所述ZrB2-ZrC-SiC纳米复合陶瓷材料,所得ZrB2-ZrC-SiC纳米复合陶瓷材料,按体积比计ZrB2:ZrC:SiC的比例为(64-16):(64-16):20 ;所述ZrB2、ZrC为平均粒径90-110nm的晶粒;所述SiC为颗粒、晶须和纳米线的混合相。
进一步的,本发明方法具体包括以下步骤:
步骤(1):将氧氯化锆加入到无水乙醇中,加入双氧水和PEG,水浴搅拌,得到分散的锆源溶液;
步骤(2):将硼酸加入到无水乙醇中,水浴搅拌,得到硼源溶液;
步骤(3):将正硅酸乙酯加入到无水乙醇中,搅拌均匀,得到硅源溶液;
步骤(4):将葡萄糖溶解于去离子水中,得到碳源溶液;
步骤(5):将硼源溶液、硅源溶液、碳源溶液加入至锆源溶液,加入PEG,水浴搅拌,得到目标前驱体溶液;
步骤(6):将前驱体溶液转移至烘箱中充分干燥,研磨破碎,得到前驱体粉末;
步骤(7):将前驱体粉末和烧结助剂ZrSi2粉末,依次倒入装有ZrO2研磨球的球磨罐中,充分混合,得到混合粉末;
步骤(8):将混合粉末装入模具内进行冷压成型,施加的压力范围是5-40 MPa,保压时间是1-10min,得到坯体;
步骤(9):将初步成型后的坯体进行等静压致密化,得到冷坯体,等静压致密化施加的压力范围是100-400MPa;保压时间是3-20min。
步骤(10):将冷坯体装入包裹有石墨纸的石墨坩埚中,在Ar气气氛中进行无压烧结,升温速率为2-15℃/min,烧结温度为1700-2200℃,保温时间为1-3h,得到所述ZrB2-ZrC-SiC纳米复合陶瓷材料。
进一步的,上述步骤(5)中,锆源溶液与硼源溶液中氧氯化锆与硼酸的摩尔比为(1:1)-(1:5);锆源溶液与硅源溶液中氧氯化锆与正硅酸乙酯的摩尔比为(1 : 0.5)-(1 :5);锆源溶液与碳源溶液中氧氯化锆与葡萄糖的摩尔比为(1 : 1)-(1 : 6)。
进一步的,上述步骤(5)中,锆源溶液与硼源溶液中氧氯化锆与硼酸的摩尔比为1:2.5;锆源溶液与硅源溶液中氧氯化锆与正硅酸乙酯的摩尔比为1 : 0.7;锆源溶液与碳源溶液中氧氯化锆与葡萄糖的摩尔比为1 : 2.5。
进一步的,上述步骤(1)中,锆源溶液中氧氯化锆的摩尔浓度为0.5-1.5 mol/L,双氧水与氧氯化锆的摩尔比为(4 : 1)-(8 : 1) ,加入PEG占总溶液质量分数为1 wt. %,水浴搅拌温度为65℃-80℃;所述步骤(2)中,硼源溶液的摩尔浓度为0.5-1 mol/L,水浴搅拌温度为50℃-80℃;所述步骤(3)中,硅源溶液的摩尔浓度为0.5-3 mol/L;所述步骤(5)中,加入PEG占总溶液质量分数为1 wt. %,水浴搅拌温度为65℃-80℃,搅拌时间为2-5 h。
进一步的,上述步骤(6)中,前驱体干燥温度为60-120℃。
进一步的,上述步骤(7)中,所述前驱体粉末与ZrSi2粉末质量比为(1:1)-(10:1)。
进一步的,上述步骤(7)中,所述前驱体粉末与ZrSi2粉末质量比为(4:1)-(8:1)。
本发明相比现有技术的先进性在于:
1)本发明的产品为ZrB2、ZrC纳米晶粒与SiC颗粒、晶须和纳米线的混合相形成纳米复合粉体,其中SiC晶须/纳米线具有高强度和良好的化学稳定性,是复合陶瓷的理想增强相。相较于单一的纳米晶增强和晶须增强,纳米晶粒/晶须结合能使陶瓷具有更高的断裂韧性。
2)本发明制备方法中,前驱体经氩气气氛无压烧结后,获得纳米级的细晶组织,使陶瓷具有较好的力学及抗烧蚀性能。烧结得到陶瓷基体中原位生长有颗粒、晶须和纳米线的混合SiC相。
3)溶胶-凝胶法制备前驱体所用原料成本低廉,元素利用率高。无压烧结法工艺简单,可进行异形件的制备。
本发明利用溶胶-凝胶法结合无压烧结技术,制备了致密的ZrB2-ZrC-SiC复合陶瓷。烧结过程中各相结晶产生纳米级别的晶粒组织,并原位生长了SiC颗粒/晶须/纳米线,对基体起到增韧效果,使复合陶瓷拥有良好的高温抗烧蚀性能及力学性能,本发明产品和制备方法均有较好的应用前景。
附图说明
从下面结合附图对本发明实施例的详细描述中,本发明的这些和/或其它方面和优点将变得更加清楚并更容易理解,其中:
图1为本发明实施例中经等静压处理后块体在1700℃氩气环境下无压烧结后样品表面SEM;
图2为本发明实施例中经等静压处理后块体在1700℃氩气环境下无压烧结后样品XRD;
图3为本发明实施例中经等静压处理后块体在1900℃氩气环境下无压烧结后样品表面SEM。
具体实施方式
为了使本领域技术人员更好地理解本发明,下面结合附图和具体实施方式对本发明作进一步详细说明。
实施例1
一种ZrB2-ZrC-SiC纳米复合陶瓷材料的制备方法,包括以下步骤:
锆前驱体溶液的配置:称取3.2g的氧氯化锆备用,将氧氯化锆溶解于30mL无水乙醇中,加入6.8g质量浓度为30%的H2O2以及0.3g PEG6000,在65℃水浴下搅拌均匀得到锆前驱体溶液;
硅前驱体溶液的配置:按照氧氯化锆与正硅酸乙酯的摩尔比1:0.7,称取1.5g正硅酸乙酯溶于20mL无水乙醇中,搅拌均匀得到硅前驱体溶液;
硼前驱体溶液的配制:按照氧氯化锆与硼酸摩尔比为1:2.5,称取1.55g硼酸溶于30mL无水乙醇中,在50℃水浴下搅拌均匀得到硼前驱体溶液;
碳前驱体溶液的配制:按照氧氯化锆与葡萄糖摩尔比为1:2.5,称取4.5g葡萄糖溶于适量去离子水中,搅拌均匀得到碳前驱体溶液;
同时将硼前驱体溶液与硅前驱体溶液逐滴加入锆前驱体溶液,然后将碳前驱体溶液加入混合溶液,再加入0.7g PEG6000,在65℃水浴下搅拌均匀得到目标前驱体溶液;
将目标前驱体溶液在室温下静置24h,然后放入鼓风干燥箱中,80℃下干燥48h,将干燥产物充分研磨,得到目标前驱体粉末;
取20g前驱体粉末与4g ZrSi2,依次放入Al2O3球磨罐中,加入250g ZrO2球,以250r/min球磨8h。
将混合后的粉末放入模具,在20MPa压力下干压成型,将成型坯体放入真空袋中,200MPa下等静压获得目标冷坯体。
将冷坯体置于石墨纸包裹石墨坩埚中,氩气气氛下以10℃/min升温至2200℃,保温150min,获得目标复合陶瓷。
本产品使用的原料氧氯化锆、硼酸、正硅酸四乙酯及葡萄糖均为成本较低且无毒性药品,分散剂PEG的加入,有助于溶胶-凝胶过程中胶体粒子的分散,从而获得更加细小的晶粒组织。
如图2所示,该前驱体溶液原料配比经烧结所制备的陶瓷成分体积分数接近于现有研究的最佳配比60vol% ZrB2 - 20vol% ZrC - 20vol% SiC,其拥有较好的抗氧化及抗烧蚀性能。
ZrSi2烧结助剂的加入,在高温下会产生晶间液相,促进颗粒重排,有助于降低陶瓷的烧结温度,促进陶瓷的致密化。
图1为本发明实施例中经等静压处理后块体在1700℃氩气环境下无压烧结后样品表面SEM;
图2为本发明实施例中经等静压处理后块体在1700℃氩气环境下无压烧结后样品XRD;
图3为本发明实施例中经等静压处理后块体在1900℃氩气环境下无压烧结后样品表面SEM。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (8)

1.一种ZrB2-ZrC-SiC纳米复合陶瓷材料的制备方法,其特征在于,过程为:分别制备锆源溶液、硼源溶液、硅源溶液和碳源溶液;混合四种溶液得到目标前驱体溶液;再经干燥、研磨;然后进行球磨混合;最后依次经冷压成型、等静压致密化、无压烧结,得到所述ZrB2-ZrC-SiC纳米复合陶瓷材料,所得ZrB2-ZrC-SiC纳米复合陶瓷材料按体积比计ZrB2:ZrC:SiC的比例为(64-16):(64-16):20 ;所述ZrB2、ZrC为平均粒径90-110nm的晶粒;所述SiC为颗粒、晶须和纳米线的混合相。
2.根据权利要求1所述的ZrB2-ZrC-SiC纳米复合陶瓷材料的制备方法,其特征在于,包括以下步骤:
步骤(1):将氧氯化锆加入到无水乙醇中,加入双氧水和PEG,水浴搅拌,得到分散的锆源溶液;
步骤(2):将硼酸加入到无水乙醇中,水浴搅拌,得到硼源溶液;
步骤(3):将正硅酸乙酯加入到无水乙醇中,搅拌均匀,得到硅源溶液;
步骤(4):将葡萄糖溶解于去离子水中,得到碳源溶液;
步骤(5):将硼源溶液、硅源溶液、碳源溶液加入至锆源溶液,加入PEG,水浴搅拌,得到目标前驱体溶液;
步骤(6):将前驱体溶液转移至烘箱中充分干燥,研磨破碎,得到前驱体粉末;
步骤(7):将前驱体粉末和烧结助剂ZrSi2粉末,依次倒入装有ZrO2研磨球的球磨罐中,充分混合,得到混合粉末;
步骤(8):将混合粉末装入模具内进行冷压成型,施加的压力范围是5-40 MPa,保压时间是1-10min,得到坯体;
步骤(9):将初步成型后的坯体进行等静压致密化,得到冷坯体,等静压致密化施加的压力范围是100-400MPa;保压时间是3-20min;
步骤(10):将冷坯体装入包裹有石墨纸的石墨坩埚中,在Ar气气氛中进行无压烧结,升温速率为2-15℃/min,烧结温度为1700-2200℃,保温时间为1-3h,得到所述ZrB2-ZrC-SiC纳米复合陶瓷材料。
3.根据权利要求2所述的ZrB2-ZrC-SiC纳米复合陶瓷材料的制备方法,其特征在于,所述步骤(5)中,锆源溶液与硼源溶液中氧氯化锆与硼酸的摩尔比为(1 : 1)-(1 : 5);锆源溶液与硅源溶液中氧氯化锆与正硅酸乙酯的摩尔比为(1 : 0.5)-(1 : 5);锆源溶液与碳源溶液中氧氯化锆与葡萄糖的摩尔比为(1 : 1)-(1 : 6)。
4.根据权利要求3所述的ZrB2-ZrC-SiC纳米复合陶瓷材料的制备方法,其特征在于,所述步骤(5)中,锆源溶液与硼源溶液中氧氯化锆与硼酸的摩尔比为1 : 2.5;锆源溶液与硅源溶液中氧氯化锆与正硅酸乙酯的摩尔比为1 : 0.7;锆源溶液与碳源溶液中氧氯化锆与葡萄糖的摩尔比为1 : 2.5。
5.根据权利要求2所述的ZrB2-ZrC-SiC纳米复合陶瓷材料的制备方法,其特征在于,
所述步骤(1)中,锆源溶液中氧氯化锆的摩尔浓度为0.5-1.5 mol/L,双氧水与氧氯化锆的摩尔比为(4 : 1)-(8 : 1) ,加入PEG占总溶液质量分数为1 wt. %,水浴搅拌温度为65℃-80℃;
所述步骤(2)中,硼源溶液的摩尔浓度为0.5-1 mol/L,水浴搅拌温度为50℃-80℃;
所述步骤(3)中,硅源溶液的摩尔浓度为0.5-3 mol/L;
所述步骤(5)中,加入PEG占总溶液质量分数为1 wt. %,水浴搅拌温度为65℃-80℃,搅拌时间为2-5 h。
6.根据权利要求2所述的ZrB2-ZrC-SiC纳米复合陶瓷材料的制备方法,其特征在于,所述步骤(6)中,前驱体干燥温度为60-120℃。
7.根据权利要求2所述的ZrB2-ZrC-SiC纳米复合陶瓷材料的制备方法,其特征在于,所述步骤(7)中,所述前驱体粉末与ZrSi2粉末质量比为(1:1)-(10:1)。
8.根据权利要求7所述的ZrB2-ZrC-SiC纳米复合陶瓷材料的制备方法,其特征在于,所述步骤(7)中,所述前驱体粉末与ZrSi2粉末质量比为(4 : 1)-(8 : 1)。
CN202111345215.3A 2021-11-15 2021-11-15 一种ZrB2-ZrC-SiC纳米复合陶瓷材料的制备方法 Active CN113773090B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111345215.3A CN113773090B (zh) 2021-11-15 2021-11-15 一种ZrB2-ZrC-SiC纳米复合陶瓷材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111345215.3A CN113773090B (zh) 2021-11-15 2021-11-15 一种ZrB2-ZrC-SiC纳米复合陶瓷材料的制备方法

Publications (2)

Publication Number Publication Date
CN113773090A true CN113773090A (zh) 2021-12-10
CN113773090B CN113773090B (zh) 2022-02-18

Family

ID=78873853

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111345215.3A Active CN113773090B (zh) 2021-11-15 2021-11-15 一种ZrB2-ZrC-SiC纳米复合陶瓷材料的制备方法

Country Status (1)

Country Link
CN (1) CN113773090B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115849914A (zh) * 2022-10-19 2023-03-28 湘潭大学 一种ZrB2-SiC-LaB6三元超高温纳米复合陶瓷的制备方法
CN117209287A (zh) * 2023-09-15 2023-12-12 佛山市陶莹新型材料有限公司 一种高韧性陶瓷材料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102862A (ja) * 1982-12-03 1984-06-14 工業技術院長 複合焼結セラミクス
CN1915906A (zh) * 2006-08-29 2007-02-21 中材高新材料股份有限公司 超高温近零烧蚀ZrB2-ZrC-SiC复相陶瓷的制备方法
US20070270302A1 (en) * 2006-05-22 2007-11-22 Zhang Shi C Pressurelessly sintered zirconium diboride/silicon carbide composite bodies and a method for producing the same
CN101215173A (zh) * 2008-01-04 2008-07-09 中国科学院上海硅酸盐研究所 一种ZrB2-SiC-ZrC复相陶瓷材料的制备方法
CN101597058A (zh) * 2009-06-22 2009-12-09 哈尔滨工业大学 一种应用硼酸提高碳化硅纳米纤维产率的方法
KR20110016776A (ko) * 2009-08-12 2011-02-18 한국기계연구원 지르코늄실리사이드들을 전구체로 하는 나노크기를 갖는 ZrB2-SiC 조성물 및 그 제조방법
CN103553627A (zh) * 2013-09-27 2014-02-05 大连理工大学 一种陶瓷基复合材料及其制备方法和应用
CN106977221A (zh) * 2017-03-16 2017-07-25 陕西科技大学 一种SiCw‑ZrB2‑ZrC陶瓷复合粉体及其制备方法
CN110156468A (zh) * 2019-04-25 2019-08-23 巩义市泛锐熠辉复合材料有限公司 一种ZrC-ZrB2-SiC陶瓷复合粉体的前驱体转化法制备工艺

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102862A (ja) * 1982-12-03 1984-06-14 工業技術院長 複合焼結セラミクス
US20070270302A1 (en) * 2006-05-22 2007-11-22 Zhang Shi C Pressurelessly sintered zirconium diboride/silicon carbide composite bodies and a method for producing the same
CN1915906A (zh) * 2006-08-29 2007-02-21 中材高新材料股份有限公司 超高温近零烧蚀ZrB2-ZrC-SiC复相陶瓷的制备方法
CN101215173A (zh) * 2008-01-04 2008-07-09 中国科学院上海硅酸盐研究所 一种ZrB2-SiC-ZrC复相陶瓷材料的制备方法
CN101597058A (zh) * 2009-06-22 2009-12-09 哈尔滨工业大学 一种应用硼酸提高碳化硅纳米纤维产率的方法
KR20110016776A (ko) * 2009-08-12 2011-02-18 한국기계연구원 지르코늄실리사이드들을 전구체로 하는 나노크기를 갖는 ZrB2-SiC 조성물 및 그 제조방법
CN103553627A (zh) * 2013-09-27 2014-02-05 大连理工大学 一种陶瓷基复合材料及其制备方法和应用
CN106977221A (zh) * 2017-03-16 2017-07-25 陕西科技大学 一种SiCw‑ZrB2‑ZrC陶瓷复合粉体及其制备方法
CN110156468A (zh) * 2019-04-25 2019-08-23 巩义市泛锐熠辉复合材料有限公司 一种ZrC-ZrB2-SiC陶瓷复合粉体的前驱体转化法制备工艺

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHANGQING LIU等: "In-situ fabrication of ZrB2-ZrC-SiCnws hybrid nanopowders with tuneable morphology SiCnws", 《CERAMICS INTERNATIONAL》 *
SHU-QIGUO等: "Pressureless sintering and physical properties of ZrB2-based composites with ZrSi2 additive", 《SCRIPTA MATERIALIA》 *
YUKI KUBOTA等: ""Oxidation behavior of ZrB2-SiC-ZrC at 1700℃", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
YUKI KUBOTA等: "Oxidation behavior of ZrB2-SiC-ZrC in oxygen-hydrogen torch environment", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
詹益兴等: "《现代化工小商品制法大全 第2集》", 31 August 1999, 湖南大学出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115849914A (zh) * 2022-10-19 2023-03-28 湘潭大学 一种ZrB2-SiC-LaB6三元超高温纳米复合陶瓷的制备方法
CN117209287A (zh) * 2023-09-15 2023-12-12 佛山市陶莹新型材料有限公司 一种高韧性陶瓷材料及其制备方法
CN117209287B (zh) * 2023-09-15 2024-04-09 佛山市陶莹新型材料有限公司 一种高韧性陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN113773090B (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
CN109987941B (zh) 一种具有抗氧化性的高熵陶瓷复合材料及其制备方法和应用
CN113773090B (zh) 一种ZrB2-ZrC-SiC纳米复合陶瓷材料的制备方法
CN109879669B (zh) 一种具有高强度的高熵陶瓷复合材料及其制备方法和应用
CN101215173B (zh) 一种ZrB2-SiC-ZrC复相陶瓷材料的制备方法
CN101456737B (zh) 一种碳化硼基复合陶瓷及其制备方法
WO2020042950A1 (zh) 一种短纤维增强取向max相陶瓷基复合材料及制备方法
CN101182193B (zh) 一种原位自增韧氧化铝陶瓷的制备方法
CN109206141A (zh) 一种高硬高韧氮化硅陶瓷及其制备方法和应用
CN110467467B (zh) 一种块体碳化硅聚合物先驱体陶瓷及共混再裂解制备方法
CN108383530B (zh) 一种ZrB2-SiC陶瓷复合粉体的前驱体转化法制备工艺
JPH01301508A (ja) 炭化珪素質材料の製造方法及び原料組成物
CN112679213B (zh) 一种超多元高熵陶瓷及其制备方法和应用
CN112645726B (zh) 一种具有典型长颗粒形貌、富含层错和孪晶的碳化硅晶须陶瓷及其制备方法
CN104496484A (zh) 一种制备Si3N4/BAS复合陶瓷材料的方法
CN114315359A (zh) 一种利用固溶耦合法制备高强韧复相高熵陶瓷的方法和应用
CN112500167A (zh) 一种致密化碳化钛复合陶瓷的制备方法
CN114538931A (zh) 一种高性能AlON透明陶瓷及其低温快速制备方法
CN112592188A (zh) 一种石墨烯复合碳化硅陶瓷材料的制备方法
CN109665848B (zh) 一种超高温SiC-HfB2复合陶瓷及其制备方法和应用
CN111187075A (zh) 一种自分散超细ZrC-SiC陶瓷复合粉体的前驱体转化法制备工艺
CN101734920A (zh) 一种氮化钛多孔陶瓷及其制备方法
CN110642233B (zh) 一种c掺杂氮化硼纳米管与碲化铋复合薄膜的制备方法
CN104844214A (zh) 致密化高强度碳化锆和碳化铪陶瓷材料及其低温制备方法
CN111410539B (zh) 一种Y-Al-Si-O多元玻璃相增强六方氮化硼基复相陶瓷
CN110330349B (zh) 一种氮化硅纳米纤维增强氮化硼陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant