CN113764148A - 一种异方性粘结磁体及其制备方法 - Google Patents

一种异方性粘结磁体及其制备方法 Download PDF

Info

Publication number
CN113764148A
CN113764148A CN202010483305.8A CN202010483305A CN113764148A CN 113764148 A CN113764148 A CN 113764148A CN 202010483305 A CN202010483305 A CN 202010483305A CN 113764148 A CN113764148 A CN 113764148A
Authority
CN
China
Prior art keywords
smfen
powder
magnetic powder
pressing
preformed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010483305.8A
Other languages
English (en)
Inventor
罗阳
杨远飞
王子龙
于敦波
谢佳君
武凯文
廖一帆
贾际琛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Youyan Rare Earth Rongcheng Co ltd
Grirem Advanced Materials Co Ltd
Grirem Hi Tech Co Ltd
Original Assignee
Youyan Rare Earth Rongcheng Co ltd
Grirem Advanced Materials Co Ltd
Grirem Hi Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Youyan Rare Earth Rongcheng Co ltd, Grirem Advanced Materials Co Ltd, Grirem Hi Tech Co Ltd filed Critical Youyan Rare Earth Rongcheng Co ltd
Priority to CN202010483305.8A priority Critical patent/CN113764148A/zh
Priority to JP2021085497A priority patent/JP7335292B2/ja
Priority to DE102021113180.4A priority patent/DE102021113180A1/de
Priority to US17/331,544 priority patent/US20210375512A1/en
Priority to KR1020210068284A priority patent/KR102454806B1/ko
Publication of CN113764148A publication Critical patent/CN113764148A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0551Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种异方性粘结磁体及其制备方法,通过采用不同SmFeN含量和/或密度的磁体堆垛的方法,使其中间的磁体性能高、两端和/或外周的磁体性能低,从而补偿压制过程中由于密度差异产生的性能偏差,改善磁体轴向方向的性能均匀性。该方法解决了在取向密实化过程中会存在高度方向磁场取向以及密度不均匀的现象,以及出现中间低两边高的现象。由该方法制得的异方性粘结磁体,具有沿压制方向密度偏差小于2%的特点,有效提高了磁体的取向度和密度,以及磁体磁性能的均一性和尺寸精度。

Description

一种异方性粘结磁体及其制备方法
技术领域
本发明涉及粘结磁体材料技术领域,具体而言,涉及一种异方性粘结磁体及其制备方法。
背景技术
粘结永磁体具有良好的加工性能,其形状自中度大,尺寸精度高,无需二次加工已成为现代高新技术产品不可或缺的重要元器件,被广泛地应用于电子信息、计算机、电机、汽车等领域。而异方性的粘结磁体由于具有更加优异的磁性能,能够有力地促进电子产品的小型化、高效化、节能化、轻量化,而成为粘结永磁的发展方向。
粘结永磁体的成型方式有模压成型、压延成型、注射成型和挤压成型,其中模压成型磁体由于具有最高的磁性能向应用最为广泛。
采用热固性树脂,模压成型制备异方性粘结磁体的基本工艺流程为:
磁粉与粘结剂、添加剂混炼得到复合磁粉→取向压制→退磁→固化→防腐处理→性能检测,其中添加剂是指润滑剂、偶联剂等:粘结剂一般采用环氧树脂、酚醛树脂等热固性树脂。取向成形工艺可以采用三种方式,室温成型、温压成型和多步成型。室温成形制备异方性粘结磁体,由于磁体密度低,取向度差,磁性能较低。由于在温压成形过程中,高温使粘结剂软化,并熔融为粘流态,其低粘度起到一定的润滑作用,达到降低取向时磁粉颗粒转动阻力及磁粉与模壁间摩擦阻力的目的,进而有效提高磁体的取向度和密度,目前温压成型技术被广泛的应用于异方性粘结磁体的制备。因此提高取向度和密度是制备异方性粘结永磁体的关键。
现有技术中,CN101599333A提供一种干压成型各向异性多极磁环的制造方法,通过将磁性粉体进行湿法粉碎,烘干后的磁性粉体中添加一种以上的粘合剂和润滑剂;然后进行预压预磁化,再进行采用高速粉碎机混合,最后进行对前述粉体在径向磁场中的双面等压成型。
CN101814368A提供了一种各项异性磁体制备方法:调整粉末粒度,其中第一混合物由粒径超过20μm且在150μm以下的第一磁性粉末、在各向异性粘结磁体中的添加量不到2.0wt%的热硬化性树脂和第一添加剂构成,第二混合物由粒径在1μm以上20μm以下的第二磁性粉末和第二添加剂构成,用来提升磁体密度和磁性能,但磁体中心部的磁场强度与端部的磁场强度差别 5%以上。
CN103489621A提供一种模压异方性粘结磁体的制备方法,采用两步成型工艺,即室温预成型和取向密实化温压成型工艺制备异方性粘结磁体的方法,在取向密实化过程中会存在高度方向磁场取向以及密度不均匀的现象,出现中间低两边高的现象。
CN107393709A提供了一种冷等静压制备高取向度各向异性粘结磁体的方法,通过将热固性树脂和固化剂制成粘结剂,将各向异性粘结磁粉加入粘结剂溶液中,充分搅拌后注入硅胶模具中,真空密封,在1.5T~2T磁场下进行取向,再进行冷等静压成型制备磁体。
在工业化生产中,对于高长径比的磁环,现有的直接用磁粉形式向高温磁场模腔填料的技术,会导致模腔中磁粉高度较高,容易造成沿高度方向磁场取向的不均匀,另外高温填料时混合磁粉受热,容易造成磁粉粘壁现象,难以保证填料均一,影响到磁体磁性能的均一性和尺寸精度。
发明内容
本发明的目的在于,针对高长径比磁体制备过程中在轴向方向出现的中间密度低两端或外周密度高,造成性能不均匀的问题,采用多个磁体堆垛并且在磁体中混入SmFeN粉末的方法,其中中间的SmFeN粉末含量高,两端或外周的SmFeN粉末含量低,补偿压制过程中由于密度差异产生的性能偏差,改善磁体轴向方向性能均匀性。
为了实现以上目的,本发明采用以下方案:
本发明的第一方面提供了一种异方性粘结磁体,包括R-T-B类永磁粉末和SmFeN永磁粉末,
其中,R-T-B类永磁粉末中,R的含量为28~31wt.%;B的含量为0.9~ 1.1wt.%,余量为T;R选择自一种及以上的稀土元素,T为Fe或FeCo以及过渡族金属,B为硼;
SmFeN永磁粉末为R-T-B类永磁粉末的重量含量的3%~40%;
所述异方性粘结磁体由多个不同的预成型坯体压制形成,得到的所述异方性粘结磁体沿压制方向密度偏差小于2%。
进一步的,所述多个不同的预成型坯体包括SmFeN永磁粉末含量不同的预成型坯体。
进一步的,R选自Y、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Ho、Er、Tm、 Yb、Lu中的1种或2种以上的元素,优选为Nd或PrNd。
进一步的,所述粘结磁体为粘结磁环,粘结磁环长径比大于0.6,优选为 1.0~10,进一步优选为2~8;壁厚大于1mm,优选为1~20mm,进一步优选为1~5mm。
进一步的,所述SmFeN永磁粉末的粒度为1~30μm,优选为3~10μm。
本发明的第二方面提供了一种异方性粘结磁体的制备方法,包括如下步骤:
步骤1、准备粘结磁体原料:所述原料包括R-T-B类永磁粉末、SmFeN 永磁粉末、热固性树脂粘结剂、偶联剂和润滑剂;其中,R-T-B类永磁粉末和SmFeN永磁粉末的重量含量为100,SmFeN永磁粉末为R-T-B类永磁粉末的重量含量的3%~40%;粘结剂的重量含量为R-T-B类永磁粉末和SmFeN 永磁粉末的1.0%~6.0%,优选2.5%~3.5%,偶联剂的重量含量为R-T-B类永磁粉末和SmFeN永磁粉末的0.05%~1.0%,优选0.1%~0.3%,润滑剂的重量含量为R-T-B类永磁粉末和SmFeN永磁粉末的0.05%~2.0%,优选 0.05%~0.50%;
步骤2、混胶:将所述原料中的R-T-B类永磁粉末、SmFeN永磁粉末与所述热固性树脂粘结剂、偶联剂和润滑剂均匀混合,得到复合磁粉;
步骤3、室温预成型:将干燥后的不同磁性能的复合磁粉,放于第一模具并置于磁场H1中加压成型分别得到多种不同的预成型坯体,其中压制压力为100~600MPa,所述磁场H1小于0.15T,压制温度为室温;
步骤4、温压磁场取向成型:将若干个不同的预成型坯体堆垛放入于第二模具中并置于磁场H2中温压成型取向,再次进行压制;然后退磁、降温、脱模,得到经过温压磁场取向成型的异方性粘结磁体;其中,所述磁场强度 H2为0.6~3T,压制压力为300~1000MPa,成型的温度为60~200℃;
步骤5、固化:将所述经过温压磁场取向成型的异方性粘结磁体加热到一定温度后进行保温,保温温度为100~200℃,优选120~180℃;保温时间为0.5~2小时。
进一步的,所述步骤2包括:
将上述步骤计量好的偶联剂溶于相应的有机溶剂中,然后与R-T-B类永磁粉末和SmFeN永磁粉末混合均匀,待有机溶剂挥发去除后,偶联剂均匀地包覆于永磁粉末表面:然后将计量好的粘结剂、润滑剂溶于相应的有机溶剂中,与包覆偶联剂的R-T-B类永磁粉末和SmFeN永磁粉末混合均匀,待有机溶剂去除后,即得到制备所述粘结磁体所需的复合磁粉。
进一步的,所述多种不同的预成型坯体包括第一预成型坯体和第二预成型坯体;所述第一预成型坯体由SmFeN永磁粉末含量较低的复合磁粉制得,所述第二预成型坯体由SmFeN永磁粉末含量较高的复合磁粉制得;其中 SmFeN永磁粉末含量较低的复合磁粉中SmFeN质量百分比含量为3~15%,优选为5~13%,SmFeN永磁粉末含量较的复合磁粉中SmFeN质量百分比含量为15~40%,优选为15~30%。
进一步的,所述第一预成型坯体的密度小于所述第二预成型坯体的密度,两者的密度之比为1:1.1~1:1.5。
进一步的,在所述步骤4中,所述将若干个不同的预成型坯体堆垛放入于第二模具中包括:中间为第二预成型坯体,两端为第一预成型坯体,中间的第二预成型坯体的长度小于两端的第一预成型坯体的长度。
进一步的,在所述步骤4中,所述将若干个不同的预成型坯体堆垛放入于第二模具中包括:中心为第二预成型坯体,外周为第一预成型坯体。
进一步的,所述将若干个不同的预成型坯体堆垛放入于第二模具中包括:中间向两端排列的预成型坯体的密度和/或SmFeN含量逐渐减小;或,中心向外周排列的预成型坯体的密度和/或SmFeN含量逐渐减小。
进一步的,在所述步骤4中,预成型坯体与温压磁场取向成型模具之间存在的间隙率为0.5~40%,优选为3.5%~25%。
进一步的,所述第一预成型坯体和第二预成型坯体为形状相同的磁柱体或磁环,第一预成型坯体和第二预成型坯体的数量比为1:1~10:1。
综上所述,本发明提供了一种异方性粘结磁体及其制备方法,通过采用不同SmFeN含量和/或密度的磁体堆垛的方法,使其中间的磁体性能高、两端和/或外周的磁体性能低,从而补偿压制过程中由于密度差异产生的性能偏差,改善磁体轴向方向的性能均匀性。该方法解决了在取向密实化过程中会存在高度方向磁场取向以及密度不均匀的现象,以及出现中间低两边高的现象。由该方法制得的异方性粘结磁体,具有沿压制方向密度偏差小于2%的特点,有效提高了磁体的取向度和密度,以及磁体磁性能的均一性和尺寸精度。
附图说明
图1是本发明实施例异方性粘结磁体的制备方法的流程示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
本发明的第一方面提供了一种异方性稀土粘结磁体。该粘结磁体包括采用HDDR方法制备的R-T-B类永磁粉末和SmFeN永磁粉末,其中,R-T-B 类永磁粉末中,R的含量为28~31wt.%;B的含量为0.9~1.1wt.%,余量为 T;R选择自一种及以上的稀土元素,T为Fe或FeCo以及少量过渡族金属,过渡族金属的含量在3%以下;B为硼。SmFeN永磁粉末为R-T-B类永磁粉末的重量含量的5%~30%;所述异方性粘结磁体由多个不同的预成型坯体压制形成,得到的所述异方性粘结磁体沿压制方向密度偏差小于2%。
进一步的,多个不同的预成型坯体包括SmFeN永磁粉末含量不同的预成型坯体。
进一步的,构成本发明的R-T-B类永磁粉末的稀土元素R,可以利用选自Y、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Ho、Er、Tm、Yb、Lu中的1种或2种以上,从成本、磁特性的理由出发,优选使用Nd或PrNd。
构成本发明的R-T-B类稀土磁体粉末的元素T是Fe或FeCo。该粉末的平均组成的T量是除去构成该粉末的其它元素以外的余量。另外,通过添加Co作为置换Fe的元素能够提高居里温度,太多都会导致粉末的剩余磁通密度下降,添加过渡族元素作为置换Fe的元素能够提高剩余磁通量密度Br,但是太多会钝化HDDR过程中的氢化反应,影响磁性能。
进一步的,该粘结磁体的形状可以多样,以下以粘结磁环为例进行进一步的说明,但并不限于粘结磁环。粘结磁环的密度决定了其磁性能,对于长径比的磁环,磁环的压制工艺决定了轴向密度会有偏差,密度的偏差会导致磁环在轴向磁性能不均匀,从而影响磁环装配后的电机的输出稳定性,本发明的粘结磁环沿压制方向密度偏差小于2%,充分保证了磁环的性能均匀性和装配后电机的输出稳定性。构成本发明的粘结磁环长径比大于0.6,优选为 1.0-10,再优选为2-8,因为对于长径比小(小于0.6)的磁环,压制方向密度偏差较小,现有技术中可以完成。若磁环的长径比太大(大于10),会给磁环的成型以及后续的装备工艺带来较大难度。
进一步的,构成本发明的粘结磁环壁厚大于1mm,优选为1-20mm,再优选为1-5mm,若磁环的壁厚太薄(小于1mm),磁环制备工艺难度大,容易出现损坏;若磁环的壁厚太厚(大于20mm),由于径向没有经过压制,结合强度太弱,壁厚太厚时不利于磁环整体成型,同时壁厚太厚的不符合轻量化的趋势,限制其装配工艺和应用领域。
进一步的,SmFeN永磁粉末的粒度为1~30μm,优选为3~10μm,若 SmFeN永磁粉末的粒度太细(小于1μm),磁性能出现明显的下降,同时制备难度大且容易氧化;若SmFeN永磁粉末的粒度太粗(>30μm),则无法有效填充压制过程NdFeB粉末间的空隙,导致压制密度低。
本发明的第二方面提供了一种异方性粘结磁体的制备方法,用于制作上述异方性粘结磁体。该方法采用两步成型工艺,即室温预成型和取向温压成型制备异方性粘结磁环(在本发明下文中异方性粘结磁体以磁环作为具体实施例,但不限于磁环结构)的方法,其中室温预成型工序制备若干个性能不一样的预压坯磁环,取向温压成型工序中,采用多个预压坯磁环堆垛压制,其中中间的磁环性能高,两边的性能低。具体的,包括如下的工艺过程,如图1所示:
步骤1、准备粘结磁环原料:
粘结磁环原料为R-T-B类永磁粉末、SmFeN永磁粉末、热固性树脂粘结剂、偶联剂和润滑剂等。
构成本发明的R-T-B类永磁粉末的稀土元素R,可以利用选自Y、Pr、 Nd、Pm、Sm、Eu、Gd、Tb、Ho、Er、Tm、Yb、Lu中的1种或2种以上,从成本、磁特性的理由出发,优选使用Nd或PrNd。构成R-T-B类稀土磁体粉末的元素T是Fe或FeCo;热固性树脂粘结剂为环氧树脂、酚醛树脂等热固性树脂;偶联剂为硅烷偶联剂、钛酸酯等。润滑剂为石蜡、硬质酸盐、硅油等。
以R-T-B类永磁粉末和SmFeN永磁粉末的重量含量为100计,SmFeN 永磁粉末为R-T-B类永磁粉末的重量含量的3%~40%;粘结剂的重量含量为 R-T-B类永磁粉末和SmFeN永磁粉末的1.0%~6.0%,优选2.5%~3.5%;偶联剂的重量含量为R-T-B类永磁粉末和SmFeN永磁粉末的0.05%~1.0%,优选0.1%~0.3%;润滑剂的重量含量为R-T-B类永磁粉末和SmFeN永磁粉末的0.05%~2.0%,优选0.05%~0.50%。
步骤2、混胶:将所述原料中的R-T-B类永磁粉末、SmFeN永磁粉末与所述热固性树脂粘结剂、偶联剂和润滑剂均匀混合,得到复合磁粉。
具体的,将上述步骤计量好的偶联剂溶于相应的有机溶剂中,然后与 R-T-B类永磁粉末和SmFeN永磁粉末混合均匀,待有机溶剂挥发去除后,偶联剂就均匀地包覆于各向异性磁性粉末表面:随后将计量好的粘结剂、润滑剂溶于相应的溶剂中,然后与包覆偶联剂的R-T-B类永磁粉末混合均匀,待有机溶剂去除后,即可得到制备粘结磁体所用的复合磁粉。
制作多种具有不同磁性能(SmFeN含量不同)和/或密度的复合磁粉。
步骤3、室温预成型:
将干燥后的多种不同的复合磁粉,放于模腔置于磁场H1中加压成型得到多种不同的预成型坯体,其中所述压制压力为100~600MPa,所述磁场H1小于0.15T,所述成型的温度为室温;
所述预成型坯体密度为3.6~5.0g/cm3,由于预成型坯体的强度随密度降低而降低,当密度低于3.6g/cm3时,预成型坯体强度较低,搬运过程中不能保持完整;当密度高于5.0g/cm3时,后续的温压磁场取向过程中较难获得高的取向度。
具体的,所述预成型压坯分为两类,一类是SmFeN永磁粉末含量较低的复合磁粉,一类是SmFeN永磁粉末含量较低的复合磁粉,其中SmFeN含量低的复合磁粉中SmFeN含量3%~15%,优选为5~13%,含量高的复合磁粉中SmFeN含量15%~40%,优选为15~30%。
具体的,所述预成型坯体分为两类,包括第一预成型坯体和第二预成型坯体;所述第一预成型坯体的密度小于所述第二预成型坯体的密度,两者的密度之比为1:1.1~1:1.5。
进一步的,第一预成型坯体和第二预成型坯体为形状相同的磁柱体或磁环,第一预成型坯体和第二预成型坯体的数量比为1:1~10:1。
步骤4、温压磁场取向成型:
将若干个脱模后的不同预成型坯体堆垛放入于另一个模具中置于磁场 H2中温压成型取向,其中中间的为性能高的坯体,两边为性能低的坯体;或者中心的为性能高的坯体,外周为性能低的坯体,再次进行压制。具体的,中间向两端排列的预成型坯体的密度和/或SmFeN含量逐渐减小;或,中心向外周排列的预成型坯体的密度和/或SmFeN含量逐渐减小。
所述的预成型坯体堆垛过程中,以相互磁力吸附的方式定位。
所述预成型坯堆垛过程中,中间预成型坯长度小于上下预成型坯;具体的,中间预成型坯长度小于每一端的预成型坯的长度。
其中,所述磁场强度H2为0.6~3T,压制压力为300~1000MPa,成型的温度为60~200℃,间隙率为0.5~40%,从两步法操作过程和提高磁性能方面考虑,预成型坯体与温压磁场取向成型模具之间存在的间隙优选为 3.5%~25%;
随后,退磁、降温、脱模,得到异方性粘结磁环,退磁的方式采用交流脉冲退磁或反向脉冲退磁中的一种。
步骤5、固化:
固化工艺为:将终成型坯体加热到一定温度后进行保温,进一步提高粘结磁环的强度,其中,保温温度一般为100~200℃,优选120~180℃;保温时间一般为0.5~2小时,可根据磁环的尺寸适当调整。
下面对本发明的具体实施例进行说明,但本发明绝非仅局限于所述的实施方式。
实施例1
(1)准备粘结磁环原料
准备好Nd含量为29.5wt.%的NdFeB异方性永磁粉末,SmFeN异方性永磁粉末,热固性树脂粘结剂环氧树脂、偶联剂硅烷和润滑剂硬脂酸锌。
以NdFeB异方性永磁粉末的重量含量为100计,SmFeN异方性永磁粉末有两个不同含量的批次,第一批次中SmFeN质量百分比含量为9%,第二批次中SmFeN质量百分比含量为23%。再以NdFeB和SmFeN异方性永磁粉末的总重量含量为100计,环氧树脂的重量含量为3%;硅烷的重量含量为0.2%,硬脂酸锌的重量含量为0.25%。
(2)混胶
将计量好的硅烷溶于有机溶剂丙酮中,然后与上述中的两批SmFeN含量不同的异方性永磁粉末分别放置于真空混合搅拌机中,均匀混合,待丙酮挥发后,硅烷就均匀地包覆于磁粉表面,然后将计量好的环氧树脂、和硬脂酸锌分别溶于丙酮中,与包覆硅烷的异方性永磁粉末混合均匀,待丙酮挥发后,即可制备好两批性能不同的粘结磁体所用的复合磁粉。
(3)室温预成型
将上述制得的两种复合磁粉干燥后放于模腔置于磁场H1=0中加压成型得到不同的预成型坯体,其中所述压制压力为350MPa,其中第一和第二预成型坯体中SmFeN的含量分别为9%和23%。
本实例中压制的磁环的长径比为1.25,壁厚为2mm,根据实际情况,第一预成型坯体和第二预成型坯体的数量比为2:1。
(4)温压磁场取向成型:
将以上的不同预成型坯体堆垛放入于另一个模具中置于磁场H2(2.5T) 中温压成型取向,压制压力为700MPa,成型温度为150℃,坯体与模腔间的间隙率为5%,其中中间的为性能高和密度较高的第二预成型坯体,两边为性能和密度较低的第一预成型坯体,且第一预成型坯体的高度大于第二预成型坯体,各坯体之间以相互磁力吸附的方式定位进行温压取向压制成型。
随后,退磁、降温、脱模,得到异方性粘结磁环。
(5)固化:
将以上得到的终成型坏体加热到160℃进行固化处理,保温时间1小时,即可完成异方性磁环的制备。
实施例2
(1)准备粘结磁环原料
准备好Nd含量为29.5wt.%的NdFeB异方性永磁粉末,SmFeN异方性永磁粉末,热固性树脂粘结剂环氧树脂、偶联剂硅烷和润滑剂硬脂酸锌。
以NdFeB异方性永磁粉末的重量含量为100计,SmFeN异方性永磁粉末有两个不同含量的批次,第一批次中SmFeN质量百分比含量为5%,第二批次中SmFeN质量百分比含量为23%。再以NdFeB和SmFeN异方性永磁粉末的总重量含量为100计,环氧树脂的重量含量为3%;硅烷的重量含量为0.2%,硬脂酸锌的重量含量为0.25%。
(2)混胶
将计量好的硅烷溶于有机溶剂丙酮中,然后与上述中的两批SmFeN含量不同的异方性永磁粉末分别放置于真空混合搅拌机中,均匀混合,待丙酮挥发后,硅烷就均匀地包覆于磁粉表面,然后将计量好的环氧树脂、和硬脂酸锌分别溶于丙酮中,与包覆硅烷的异方性永磁粉末混合均匀,待丙酮挥发后,即可制备好两批性能不同的粘结磁体所用的复合磁粉。
(3)室温预成型
将上述制得的两种复合磁粉干燥后放于模腔置于磁场H1=0中加压成型得到不同的预成型坯体,其中所述压制压力为350MPa,其中第一和第二预成型坯体中SmFeN的含量分别为5%和23%。
本实例中压制的磁环的长径比为1.25,壁厚为2mm,根据实际情况,第一预成型坯体和第二预成型坯体的数量比为2:1。
其他步骤同实施例1
实施例3
(1)准备粘结磁环原料
准备好Nd含量为29.5wt.%的NdFeB异方性永磁粉末,SmFeN异方性永磁粉末,热固性树脂粘结剂环氧树脂、偶联剂硅烷和润滑剂硬脂酸锌。
以NdFeB异方性永磁粉末的重量含量为100计,SmFeN异方性永磁粉末有两个不同含量的批次,第一批次中SmFeN质量百分比含量为15%,第二批次中SmFeN质量百分比含量为23%。再以NdFeB和SmFeN异方性永磁粉末的总重量含量为100计,环氧树脂的重量含量为NdFeB异方性永磁粉末重量的3%;硅烷的重量含量为NdFeB异方性永磁粉末重量的0.2%,硬脂酸锌的重量含量为NdFeB异方性永磁粉末重量的0.25%。
(2)混胶
将计量好的硅烷溶于有机溶剂丙酮中,然后与上述中的两批SmFeN含量不同的异方性永磁粉末分别放置于真空混合搅拌机中,均匀混合,待丙酮挥发后,硅烷就均匀地包覆于磁粉表面,然后将计量好的环氧树脂、和硬脂酸锌分别溶于丙酮中,与包覆硅烷的异方性永磁粉末混合均匀,待丙酮挥发后,即可制备好两批性能不同的粘结磁体所用的复合磁粉。
(3)室温预成型
将上述制得的两种复合磁粉干燥后放于模腔置于磁场H1=0中加压成型得到不同的预成型坯体,其中所述压制压力为350MPa,其中第一和第二预成型坯体中SmFeN的含量分别为15%和23%。
本实例中压制的磁环的长径比为1.25,壁厚为2mm,根据实际情况,第一预成型坯体和第二预成型坯体的数量比为2:1。
其他步骤同实施例1
实施例4
(1)准备粘结磁环原料
准备好Nd含量为29.5wt.%的NdFeB异方性永磁粉末,SmFeN异方性永磁粉末,热固性树脂粘结剂环氧树脂、偶联剂硅烷和润滑剂硬脂酸锌。
以NdFeB异方性永磁粉末的重量含量为100计,SmFeN异方性永磁粉末有两个不同含量的批次,第一批次中SmFeN质量百分比含量为9%,第二批次中SmFeN质量百分比含量为15%。再以NdFeB和SmFeN异方性永磁粉末的总重量含量为100计,环氧树脂的重量含量为3%;硅烷的重量含量为0.2%,硬脂酸锌的重量含量为0.25%。
(2)混胶
将计量好的硅烷溶于有机溶剂丙酮中,然后与上述中的两批SmFeN含量不同的异方性永磁粉末分别放置于真空混合搅拌机中,均匀混合,待丙酮挥发后,硅烷就均匀地包覆于磁粉表面,然后将计量好的环氧树脂、和硬脂酸锌分别溶于丙酮中,与包覆硅烷的异方性永磁粉末混合均匀,待丙酮挥发后,即可制备好两批性能不同的粘结磁体所用的复合磁粉。
(3)室温预成型
将上述制得的两种复合磁粉干燥后放于模腔置于磁场H1=0中加压成型得到不同的预成型坯体,其中所述压制压力为350MPa,其中第一和第二预成型坯体中SmFeN的含量分别为9%和15%。
本实例中压制的磁环的长径比为1.25,壁厚为2mm,根据实际情况,第一预成型坯体和第二预成型坯体的数量比为2:1。
其他步骤同实施例1
实施例5
(4)准备粘结磁环原料
准备好Nd含量为29.5wt.%的NdFeB异方性永磁粉末,SmFeN异方性永磁粉末,热固性树脂粘结剂环氧树脂、偶联剂硅烷和润滑剂硬脂酸锌。
以NdFeB异方性永磁粉末的重量含量为100计,SmFeN异方性永磁粉末有两个不同含量的批次,第一批次中SmFeN质量百分比含量为9%,第二批次中SmFeN质量百分比含量为25%。再以NdFeB和SmFeN异方性永磁粉末的总重量含量为100计,环氧树脂的重量含量为3%;硅烷的重量含量为0.2%,硬脂酸锌的重量含量为0.25%。
(5)混胶
将计量好的硅烷溶于有机溶剂丙酮中,然后与上述中的两批SmFeN含量不同的异方性永磁粉末分别放置于真空混合搅拌机中,均匀混合,待丙酮挥发后,硅烷就均匀地包覆于磁粉表面,然后将计量好的环氧树脂、和硬脂酸锌分别溶于丙酮中,与包覆硅烷的异方性永磁粉末混合均匀,待丙酮挥发后,即可制备好两批性能不同的粘结磁体所用的复合磁粉。
(6)室温预成型
将上述制得的两种复合磁粉干燥后放于模腔置于磁场H1=0中加压成型得到不同的预成型坯体,其中所述压制压力为350MPa,其中第一和第二预成型坯体中SmFeN的含量分别为9%和25%。
本实例中压制的磁环的长径比为1.25,壁厚为2mm,根据实际情况,第一预成型坯体和第二预成型坯体的数量比为2:1。
其他步骤同实施例1
实施例6
(1)准备粘结磁环原料
准备好Nd含量为29.5wt.%的NdFeB异方性永磁粉末,SmFeN异方性永磁粉末,热固性树脂粘结剂环氧树脂、偶联剂硅烷和润滑剂硬脂酸锌。
以NdFeB异方性永磁粉末的重量含量为100计,SmFeN异方性永磁粉末有两个不同含量的批次,第一批次中SmFeN质量百分比含量为9%,第二批次中SmFeN质量百分比含量为23%。再以NdFeB和SmFeN异方性永磁粉末的总重量含量为100计,环氧树脂的重量含量为1%;硅烷的重量含量为0.2%,硬脂酸锌的重量含量为0.25%。
其他步骤同实施例1
实施例7
(2)准备粘结磁环原料
准备好Nd含量为29.5wt.%的NdFeB异方性永磁粉末,SmFeN异方性永磁粉末,热固性树脂粘结剂环氧树脂、偶联剂硅烷和润滑剂硬脂酸锌。
以NdFeB异方性永磁粉末的重量含量为100计,SmFeN异方性永磁粉末有两个不同含量的批次,第一批次中SmFeN质量百分比含量为9%,第二批次中SmFeN质量百分比含量为23%。再以NdFeB和SmFeN异方性永磁粉末的总重量含量为100计,环氧树脂的重量含量为5%;硅烷的重量含量为0.2%,硬脂酸锌的重量含量为0.25%。
其他步骤同实施例1
实施例8
(1)准备粘结磁环原料
准备好Nd含量为29.5wt.%的NdFeB异方性永磁粉末,SmFeN异方性永磁粉末,热固性树脂粘结剂环氧树脂、偶联剂硅烷和润滑剂硬脂酸锌。
以NdFeB异方性永磁粉末的重量含量为100计,SmFeN异方性永磁粉末有两个不同含量的批次,第一批次中SmFeN质量百分比含量为9%,第二批次中SmFeN质量百分比含量为23%。再以NdFeB和SmFeN异方性永磁粉末的总重量含量为100计,再以NdFeB和SmFeN异方性永磁粉末的总重量含量为100计,环氧树脂的重量含量为3%;硅烷的重量含量为0.2%,硬脂酸锌的重量含量为0.25%。
(2)混胶
将计量好的硅烷溶于有机溶剂丙酮中,然后与上述中的两批SmFeN含量不同的异方性永磁粉末分别放置于真空混合搅拌机中,均匀混合,待丙酮挥发后,硅烷就均匀地包覆于磁粉表面,然后将计量好的环氧树脂、和硬脂酸锌分别溶于丙酮中,与包覆硅烷的异方性永磁粉末混合均匀,待丙酮挥发后,即可制备好两批性能不同的粘结磁体所用的复合磁粉。
(3)室温预成型
将上述制得的两种复合磁粉干燥后放于模腔置于磁场H1=0中加压成型得到不同的预成型坯体,其中所述压制压力为350MPa,其中第一和第二预成型坯体中SmFeN的含量分别为9%和23%。
本实例中压制的磁环的长径比为1.25,壁厚为2mm,根据实际情况,第一预成型坯体和第二预成型坯体的数量比为2:1。
(4)温压磁场取向成型:
将以上的不同预成型坯体堆垛放入于另一个模具中置于磁场H2(2.5T) 中温压成型取向,压制压力为700MPa,成型温度为150℃,坯体与模腔间的间隙率为5%,其中中间的为性能高和密度较高的第二预成型坯体,两边为性能和密度较低的第一预成型坯体,且第一预成型坯体的高度大于第二预成型坯体,各坯体之间以相互磁力吸附的方式定位进行温压取向压制成型。
随后,退磁、降温、脱模,得到异方性粘结磁环。
(5)固化:
将以上得到的终成型坏体加热到120℃进行固化处理,保温时间1小时,即可完成异方性磁环的制备。
其他步骤同实施例1
实施例9
(1)准备粘结磁环原料
准备好Nd含量为29.5wt.%的NdFeB异方性永磁粉末,SmFeN异方性永磁粉末,热固性树脂粘结剂环氧树脂、偶联剂硅烷和润滑剂硬脂酸锌。
以NdFeB异方性永磁粉末的重量含量为100计,SmFeN异方性永磁粉末有两个不同含量的批次,第一批次中SmFeN质量百分比含量为9%,第二批次中SmFeN质量百分比含量为23%。再以NdFeB和SmFeN异方性永磁粉末的总重量含量为100计,环氧树脂的重量含量为3%;硅烷的重量含量为0.2%,硬脂酸锌的重量含量为0.25%。
(2)混胶
将计量好的硅烷溶于有机溶剂丙酮中,然后与上述中的两批SmFeN含量不同的异方性永磁粉末分别放置于真空混合搅拌机中,均匀混合,待丙酮挥发后,硅烷就均匀地包覆于磁粉表面,然后将计量好的环氧树脂、和硬脂酸锌分别溶于丙酮中,与包覆硅烷的异方性永磁粉末混合均匀,待丙酮挥发后,即可制备好两批性能不同的粘结磁体所用的复合磁粉。
(3)室温预成型
将上述制得的两种复合磁粉干燥后放于模腔置于磁场H1=0中加压成型得到不同的预成型坯体,其中所述压制压力为350MPa,其中第一和第二预成型坯体中SmFeN的含量分别为5%和13%。
本实例中压制的磁环的长径比为1.25,壁厚为2mm,根据实际情况,第一预成型坯体和第二预成型坯体的数量比为2:1。
(4)温压磁场取向成型:
将以上的不同预成型坯体堆垛放入于另一个模具中置于磁场H2(2.5T) 中温压成型取向,压制压力为700MPa,成型温度为150℃,坯体与模腔间的间隙率为5%,其中中间的为性能高和密度较高的第二预成型坯体,两边为性能和密度较低的第一预成型坯体,且第一预成型坯体的高度大于第二预成型坯体,各坯体之间以相互磁力吸附的方式定位进行温压取向压制成型。
随后,退磁、降温、脱模,得到异方性粘结磁环。
(5)固化:
将以上得到的终成型坏体加热到180℃进行固化处理,保温时间1小时,即可完成异方性磁环的制备。
其他步骤同实施例1
比较例1
(1)准备粘结磁环原料
准备好Nd含量为29.5wt.%的NdFeB异方性永磁粉末,SmFeN异方性永磁粉末,热固性树脂粘结剂环氧树脂、偶联剂硅烷和润滑剂硬脂酸锌。
以NdFeB异方性永磁粉末的重量含量为100计,SmFeN质量百分比含量为3%。再以NdFeB和SmFeN异方性永磁粉末的总重量含量为100计,环氧树脂的重量含量为3%;硅烷的重量含量为0.2%,硬脂酸锌的重量含量为0.25%。
(2)混胶
将计量好的硅烷溶于有机溶剂丙酮中,然后与上述中的两批SmFeN含量不同的异方性永磁粉末分别放置于真空混合搅拌机中,均匀混合,待丙酮挥发后,硅烷就均匀地包覆于磁粉表面,然后将计量好的环氧树脂、和硬脂酸锌分别溶于丙酮中,与包覆硅烷的异方性永磁粉末混合均匀,待丙酮挥发后,即可制备好两批性能不同的粘结磁体所用的复合磁粉。
(3)室温预成型
将上述制得的两种复合磁粉干燥后放于模腔置于磁场H1=0中加压成型得到预成型坯体,其中所述压制压力为350MPa,预成型坯体中SmFeN的含量为5%。
本实例中压制的磁环的长径比为1.25,壁厚为2mm,根据实际情况,第一预成型坯体和第二预成型坯体的数量比为2:1。
其他步骤同实施例1
比较例2
(4)准备粘结磁环原料
准备好Nd含量为29.5wt.%的NdFeB异方性永磁粉末,SmFeN异方性永磁粉末,热固性树脂粘结剂环氧树脂、偶联剂硅烷和润滑剂硬脂酸锌。
以NdFeB异方性永磁粉末的重量含量为100计,SmFeN质量百分比含量为40%。再以NdFeB和SmFeN异方性永磁粉末的总重量含量为100计,环氧树脂的重量含量为3%;硅烷的重量含量为0.2%,硬脂酸锌的重量含量为0.25%。
(5)混胶
将计量好的硅烷溶于有机溶剂丙酮中,然后与上述中的两批SmFeN含量不同的异方性永磁粉末分别放置于真空混合搅拌机中,均匀混合,待丙酮挥发后,硅烷就均匀地包覆于磁粉表面,然后将计量好的环氧树脂、和硬脂酸锌分别溶于丙酮中,与包覆硅烷的异方性永磁粉末混合均匀,待丙酮挥发后,即可制备好两批性能不同的粘结磁体所用的复合磁粉。
(6)室温预成型
将上述制得的两种复合磁粉干燥后放于模腔置于磁场H1=0中加压成型得到预成型坯体,其中所述压制压力为350MPa,预成型坯体中SmFeN的含量为13%。
本实例中压制的磁环的长径比为1.25,壁厚为2mm,根据实际情况,第一预成型坯体和第二预成型坯体的数量比为2:1。
其他步骤同实施例1
将制备的磁环进行充磁后测试上中下端的表磁分布和径向压溃力,然后将磁环切割成3段,得到两端和中间的密度和性能的数据,评估密度和性能沿着轴向分布的均匀性。如表1所示。
表1
Figure BDA0002517908110000191
综上所述,本发明提供了一种异方性粘结磁体及其制备方法,通过采用不同SmFeN含量和/或密度的磁体堆垛的方法,使其中间的磁体性能高、两端和/或外周的磁体性能低,从而补偿压制过程中由于密度差异产生的性能偏差,改善磁体轴向方向的性能均匀性。该方法解决了在取向密实化过程中会存在高度方向磁场取向以及密度不均匀的现象,以及出现中间低两边高的现象。由该方法制得的异方性粘结磁体,具有沿压制方向密度偏差小于2%的特点,有效提高了磁体的取向度和密度,以及磁体磁性能的均一性和尺寸精度。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (14)

1.一种异方性粘结磁体,其特征在于,包括R-T-B类永磁粉末和SmFeN永磁粉末,
其中,R-T-B类永磁粉末中,R的含量为28~31wt.%;B的含量为0.9~1.1wt.%,余量为T;R选择自一种及以上的稀土元素,T为Fe或FeCo以及过渡族金属,B为硼;
SmFeN永磁粉末为R-T-B类永磁粉末的重量含量的5%~30%;
所述异方性粘结磁体由多个不同的预成型坯体压制形成,得到的所述异方性粘结磁体沿压制方向密度偏差小于2%。
2.根据权利要求1所述异方性粘结磁体,其特征在于,所述多个不同的预成型坯体包括SmFeN永磁粉末含量不同的预成型坯体。
3.根据权利要求1或2所述的异方性粘结磁体,其特征在于,R选自Y、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Ho、Er、Tm、Yb、Lu中的1种或2种以上的元素,优选为Nd或PrNd。
4.根据权利要求1或2所述的异方性粘结磁体,其特征在于,所述粘结磁体为粘结磁环,粘结磁环长径比大于0.6,优选为1.0~10,进一步优选为2~8;壁厚大于1mm,优选为1~20mm,进一步优选为1~5mm。
5.根据权利要求1或2所述的异方性粘结磁体,其特征在于,所述SmFeN永磁粉末的粒度为1~30μm,优选为3~10μm。
6.一种异方性粘结磁体的制备方法,其特征在于,包括如下步骤:
步骤1、准备粘结磁体原料:所述原料包括R-T-B类永磁粉末、SmFeN永磁粉末、热固性树脂粘结剂、偶联剂和润滑剂;其中,R-T-B类永磁粉末和SmFeN永磁粉末的重量含量为100,SmFeN永磁粉末为R-T-B类永磁粉末的重量含量的3%~40%;粘结剂的重量含量为R-T-B类永磁粉末和SmFeN永磁粉末的1.0%~6.0%,优选2.5%~3.5%,偶联剂的重量含量为R-T-B类永磁粉末和SmFeN永磁粉末的0.05%~1.0%,优选0.1%~0.3%,润滑剂的重量含量为R-T-B类永磁粉末和SmFeN永磁粉末的0.05%~2.0%,优选0.05%~0.50%;
步骤2、混胶:将所述原料中的R-T-B类永磁粉末、SmFeN永磁粉末与所述热固性树脂粘结剂、偶联剂和润滑剂均匀混合,得到复合磁粉;
步骤3、室温预成型:将干燥后的不同磁性能的复合磁粉,放于第一模具并置于磁场H1中加压成型分别得到多种不同的预成型坯体,其中压制压力为100~600MPa,所述磁场H1小于0.15T,压制温度为室温;
步骤4、温压磁场取向成型:将若干个不同的预成型坯体堆垛放入于第二模具中并置于磁场H2中温压成型取向,再次进行压制;然后退磁、降温、脱模,得到经过温压磁场取向成型的异方性粘结磁体;其中,所述磁场强度H2为0.6~3T,压制压力为300~1000MPa,成型的温度为60~200℃;
步骤5、固化:将所述经过温压磁场取向成型的异方性粘结磁体加热到一定温度后进行保温,保温温度为100~200℃,优选120~180℃;保温时间为0.5~2小时。
7.根据权利要求6所述的方法,其特征在于,所述步骤2包括:
将上述步骤计量好的偶联剂溶于相应的有机溶剂中,然后与R-T-B类永磁粉末和SmFeN永磁粉末混合均匀,待有机溶剂挥发去除后,偶联剂均匀地包覆于永磁粉末表面:然后将计量好的粘结剂、润滑剂溶于相应的有机溶剂中,与包覆偶联剂的R-T-B类永磁粉末和SmFeN永磁粉末混合均匀,待有机溶剂去除后,即得到制备所述粘结磁体所需的复合磁粉。
8.根据权利要求6所述的方法,其特征在于,所述多种不同的预成型坯体包括第一预成型坯体和第二预成型坯体;所述第一预成型坯体由SmFeN永磁粉末含量较低的复合磁粉制得,所述第二预成型坯体由SmFeN永磁粉末含量较高的复合磁粉制得;其中SmFeN永磁粉末含量较低的复合磁粉中SmFeN质量百分比含量为3~15%,优选为5~13%,SmFeN永磁粉末含量较的复合磁粉中SmFeN质量百分比含量为15~40%,优选为15~30%。
9.根据权利要求8所述的方法,其特征在于,所述第一预成型坯体的密度小于所述第二预成型坯体的密度,两者的密度之比为1:1.1~1:1.5。
10.根据权利要求8或9所述的方法,其特征在于,在所述步骤4中,所述将若干个不同的预成型坯体堆垛放入于第二模具中包括:中间为第二预成型坯体,两端为第一预成型坯体,中间的第二预成型坯体的长度小于两端的第一预成型坯体的长度。
11.根据权利要求8或9所述的方法,其特征在于,在所述步骤4中,所述将若干个不同的预成型坯体堆垛放入于第二模具中包括:中心为第二预成型坯体,外周为第一预成型坯体。
12.根据权利要求6所述的方法,其特征在于,所述将若干个不同的预成型坯体堆垛放入于第二模具中包括:中间向两端排列的预成型坯体的密度和/或SmFeN含量逐渐减小;或,中心向外周排列的预成型坯体的密度和/或SmFeN含量逐渐减小。
13.根据权利要求6-12任一项所述的方法,其特征在于,在所述步骤4中,预成型坯体与温压磁场取向成型模具之间存在的间隙率为0.5~40%,优选为3.5%~25%。
14.根据权利要求11所述的方法,其特征在于,所述第一预成型坯体和第二预成型坯体为形状相同的磁柱体或磁环,第一预成型坯体和第二预成型坯体的数量比为1:1~10:1。
CN202010483305.8A 2020-05-29 2020-06-01 一种异方性粘结磁体及其制备方法 Pending CN113764148A (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202010483305.8A CN113764148A (zh) 2020-06-01 2020-06-01 一种异方性粘结磁体及其制备方法
JP2021085497A JP7335292B2 (ja) 2020-06-01 2021-05-20 異方性結合磁石およびその作製方法
DE102021113180.4A DE102021113180A1 (de) 2020-05-29 2021-05-20 Anisotroper gebundener magnet und verfahren zu seiner herstellung
US17/331,544 US20210375512A1 (en) 2020-05-29 2021-05-26 Anisotropic bonded magnet and preparation method thereof
KR1020210068284A KR102454806B1 (ko) 2020-06-01 2021-05-27 이방성 본드 자석 및 그 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010483305.8A CN113764148A (zh) 2020-06-01 2020-06-01 一种异方性粘结磁体及其制备方法

Publications (1)

Publication Number Publication Date
CN113764148A true CN113764148A (zh) 2021-12-07

Family

ID=78509253

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010483305.8A Pending CN113764148A (zh) 2020-05-29 2020-06-01 一种异方性粘结磁体及其制备方法

Country Status (5)

Country Link
US (1) US20210375512A1 (zh)
JP (1) JP7335292B2 (zh)
KR (1) KR102454806B1 (zh)
CN (1) CN113764148A (zh)
DE (1) DE102021113180A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167632A1 (en) * 2022-03-04 2023-09-07 Neo Performance Materials (Singapore) Pte. Ltd. Compounds for composite rare-earth bonded magnets and methods for producing the same
CN115547668B (zh) * 2022-11-04 2023-11-28 惠州市高斯强电子有限公司 一种圆环磁钢加工工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152116A (ja) * 1991-12-02 1993-06-18 Tokin Corp 希土類ボンド磁石及びその製造方法
WO2003092021A1 (en) * 2002-04-25 2003-11-06 Matsushita Electric Industrial Co., Ltd. Flexible magnet and method for manufacturing motor using the same
CN103489621A (zh) * 2013-10-18 2014-01-01 北京科技大学 一种采用两步成型工艺制备各向异性粘结磁体的方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0464202A (ja) * 1990-07-04 1992-02-28 Hitachi Metals Ltd ボンド磁石およびその製造方法
JP3164179B2 (ja) * 1992-08-11 2001-05-08 旭化成株式会社 希土類ボンド磁石
JP2928494B2 (ja) * 1997-05-30 1999-08-03 日立金属株式会社 希土類焼結磁石およびその製造方法
JP3060104B2 (ja) * 1997-12-19 2000-07-10 愛知製鋼株式会社 ラジアル配向した磁気異方性樹脂結合型磁石及びその製造方法
WO2003085683A1 (fr) * 2002-04-09 2003-10-16 Aichi Steel Corporation Aimant agglomere anisotrope de terre rare composite, compose pour un aimant agglomere anisotrope de terre rare composite, et procede de preparation de ce dernier
JP2005268385A (ja) * 2004-03-17 2005-09-29 Mitsubishi Electric Corp 磁場成形装置、リング型磁石成形装置、磁場成形方法、リング型磁石の製造方法、及びリング型焼結磁石
JP4527436B2 (ja) * 2004-04-19 2010-08-18 三菱電機株式会社 リング型焼結磁石およびその製造方法
JP5045868B2 (ja) * 2005-07-22 2012-10-10 戸田工業株式会社 ボンド磁石用複合磁性粉末、ボンド磁石用樹脂組成物及びボンド磁石
JP5334175B2 (ja) 2009-02-24 2013-11-06 セイコーインスツル株式会社 異方性ボンド磁石の製造方法、磁気回路及び異方性ボンド磁石
CN101599333B (zh) 2009-04-28 2011-09-07 横店集团东磁股份有限公司 干压成型各向异性多极磁环的制造方法
CN102844826B (zh) * 2010-04-05 2016-09-14 爱知制钢株式会社 外壳一体型粘结磁铁及其制造方法
CN107393709B (zh) 2017-07-02 2019-02-01 北京科技大学 一种冷等静压制备高取向度各向异性粘结磁体的方法
CN110783052B (zh) * 2019-11-06 2021-11-05 有研稀土新材料股份有限公司 一种复合稀土类异方性粘结磁体及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152116A (ja) * 1991-12-02 1993-06-18 Tokin Corp 希土類ボンド磁石及びその製造方法
WO2003092021A1 (en) * 2002-04-25 2003-11-06 Matsushita Electric Industrial Co., Ltd. Flexible magnet and method for manufacturing motor using the same
CN103489621A (zh) * 2013-10-18 2014-01-01 北京科技大学 一种采用两步成型工艺制备各向异性粘结磁体的方法

Also Published As

Publication number Publication date
DE102021113180A1 (de) 2021-12-02
US20210375512A1 (en) 2021-12-02
JP2021190706A (ja) 2021-12-13
KR20210148919A (ko) 2021-12-08
JP7335292B2 (ja) 2023-08-29
KR102454806B1 (ko) 2022-10-13

Similar Documents

Publication Publication Date Title
CN103489621B (zh) 一种采用两步成型工艺制备各向异性粘结磁体的方法
CN102360918A (zh) 一种粘结复合磁体及其制备方法
CN100481281C (zh) 一种聚合物粘结成型烧结各向异性永磁铁氧体的方法
KR102454806B1 (ko) 이방성 본드 자석 및 그 제조 방법
CN105788793A (zh) 提高各向异性永磁粉末颗粒表面润滑性的表面改性方法
US20220059286A1 (en) Manufacturing method for anisotropic bonded magnet
KR101261099B1 (ko) 희토류 소결자석 제조방법
CN106340365B (zh) 一种注塑尼龙12-稀土永磁颗粒料及其制备方法
CN105206369B (zh) 一种耐高温各向异性粘结NdFeB磁体及其制备方法
JP2009044795A (ja) 永久磁石埋込型モータ及び永久磁石埋込型モータ用の回転子の製造方法
US20180166191A1 (en) Heat-resistant Isotropic Bonded NdFeB Magnet and Its Preparation Technology
CN103667918B (zh) 一种粘结稀土永磁合金的制备方法
CN113744946A (zh) 一种异方性粘结磁体及其制备方法
CN103280311A (zh) 一种各向异性粘结永磁体的制备方法
CN101034608A (zh) 一种绝缘高磁性能的复合稀土永磁材料
JP7477745B2 (ja) 界磁子およびその製造方法
KR100201684B1 (ko) 희토류 마그네트 제조방법
WO2024028989A1 (ja) 予成形体、予成形方法および圧縮ボンド磁石の製造方法
CN116313471A (zh) 一种各向异性粘结磁体的制备方法
JP2005344142A (ja) ラジアル異方性リング磁石の製造方法
KR20240038557A (ko) 고밀도 본드희토류영구자석 및 그 제조 방법
JPH0450725B2 (zh)
CN103680788B (zh) 一种粘结稀土永磁合金
KR920002258B1 (ko) 수지자석 및 수지자석구조체의 제조방법
JP2022157625A (ja) 圧縮ボンド磁石の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination