CN113754458A - 一种SiO2掺杂树脂灰多孔陶瓷及其制备方法 - Google Patents

一种SiO2掺杂树脂灰多孔陶瓷及其制备方法 Download PDF

Info

Publication number
CN113754458A
CN113754458A CN202110772422.0A CN202110772422A CN113754458A CN 113754458 A CN113754458 A CN 113754458A CN 202110772422 A CN202110772422 A CN 202110772422A CN 113754458 A CN113754458 A CN 113754458A
Authority
CN
China
Prior art keywords
ray diffraction
diffraction intensity
intensity peak
porous ceramic
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110772422.0A
Other languages
English (en)
Inventor
李茂辉
杨少林
陆有军
韩凤兰
邢质冰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North Minzu University
Original Assignee
North Minzu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North Minzu University filed Critical North Minzu University
Priority to CN202110772422.0A priority Critical patent/CN113754458A/zh
Publication of CN113754458A publication Critical patent/CN113754458A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种SiO2掺杂树脂灰多孔陶瓷,涉及陶瓷制备技术领域,多孔陶瓷含有SiO2、Al2O3、Al6Si013和Fe2O3、MnO2,陶瓷的第一X射线衍射强度峰和第二X射线衍射强度峰对应的相均为Al6Si2O13相,第一X射线衍射强度峰对应的2θ为26.201°,第二X射线衍射强度峰对应的2θ为33.100°,第三X射线衍射强度峰对应的相为Al2O3,所述第三X射线衍射强度峰对应的2θ为35.099°。本发明方法通过气孔率等数据获悉,在二氧化硅掺量为20%,且温度为1300℃时材料的气孔率,吸水率均为八组样品中最低,但体积密度最低的是二氧化硅掺量为40%且温度为1300℃的样品。

Description

一种SiO2掺杂树脂灰多孔陶瓷及其制备方法
技术领域
本发明涉及多孔陶瓷制备技术领域,尤其涉及一种SiO2掺杂树脂灰多孔陶瓷及其制备方法。
背景技术
多孔陶瓷作为一种新型的陶瓷材料,其具有许多优良的特性,例如:气孔率高、体积密度小以及比表面积大等。加上陶瓷材料本身具有的耐高温、抗腐蚀性、优良的化学物理稳定性以及热稳定性等,使多孔陶瓷材料被广泛的运用于化工、冶金、能源环保和生物等多个领域。目前,通过利用多孔陶瓷孔结构的均匀透过性,可以制造出各种各样的分离装置和过滤器等,可运用于净化污水、过滤烟尘、吸音降噪等方面。同时,通过利用其发达的比表面积,可以制备出运用于生物制药、敏感元件等领域的催化剂载体、热交换器。
随着世界材料科学的飞速发展,二氧化硅材料的性能及应用也得到了极大的改善和拓展。通过制备多孔二氧化硅陶瓷,将二氧化硅陶瓷与多孔陶瓷的优良特性有机的结合起来,使其应用领域更为广泛,同时,其技术性能也有待进一步提高。二氧化硅陶瓷具有低导热率、热膨胀系数小、密度低以及良好的体积稳定性等优良特性,是轻质隔热材料的理想选择。
因此,本发明致力于提供一种使用二氧化硅掺杂树脂灰制备多孔陶瓷的方法,以此实现资源充分利用并且解决多孔陶瓷吸水率和气孔率适中的问题。
发明内容
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是提供一种使用二氧化硅掺杂树脂灰制备多孔陶瓷的方法,以此实现资源充分利用并且解决多孔陶瓷吸水率和气孔率适中的问题。
为实现上述目的,本发明提供了一种SiO2掺杂树脂灰多孔陶瓷,其特征在于,所述多孔陶瓷含有SiO2、Al2O3、Al6Si013和Fe2O3、MnO2,所述陶瓷的第一X射线衍射强度峰和第二X射线衍射强度峰对应的相均为Al6Si2O13相,所述第一X射线衍射强度峰对应的2θ为26.201°,所述第二X射线衍射强度峰对应的2θ为33.100°,第三X射线衍射强度峰对应的相为Al2O3,所述第三X射线衍射强度峰对应的2θ为35.099°,所述第一X射线衍射强度峰与所述第二X射线衍射强度峰强度比大于所述第二X射线衍射强度峰与所述第三X射线衍射强度峰强度比。
本发明还提供了一种二氧化硅掺杂树脂灰多孔陶瓷的制备方法,其特征在于,所述方法包括步骤:
将树脂灰、二氧化硅、三氧化二铝称重并混合均匀,其中,二氧化硅占混料总重量比为10~40%;
将混好的物料统一称重并将所述物料造型;
干燥造型后的物料块并将其进行烧制得到样品。
与现有技术相比,本发明的优势在于:
(1)本发明方法通过气孔率等数据获悉,在二氧化硅掺量为20%,且温度为1300℃时材料的气孔率,吸水率均为八组样品中最低,但体积密度最低的是二氧化硅掺量为40%且温度为1300℃的样品;
(2)本发明方法通过抗压强度的数据获悉在二氧化硅掺量为10%且温度为1300℃时抗压强度最高,同时发现抗压强度会随着二氧化硅掺量的升高而减小;
(3)本发明方法通过抗折强度的数据获悉在二氧化硅掺量为10%且温度为1300℃时抗折强度最高,同时发现抗折强度会随着二氧化硅掺量的升高而减小;
(4)本发明方法通过XRD数据获悉,在二氧化硅掺量为10%且温度为1300℃时,实验最终产物Al6Si2O13含量最多,且最终产物会随着二氧化硅掺量的增多而减少;
(5)综合吸水率、气孔率、体积密度等性能参数,可以获悉二氧化硅掺量为30%,且温度为1200°时,陶瓷材料的吸水率、气孔率为20.6%、36.7%,是八组样品中性能最佳。
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
图1为树脂灰的XRD图;
图2是树脂灰的形貌图;
图3是制备样品的吸水率图;
图4是制备样品的气孔率图;
图5是1号样品1200℃烧制1h的XRD图;
图6是2号样品1200℃烧制1h的XRD图;
图7是3号样品1200℃烧制1h的XRD图;
图8是4号样品1200℃烧制1h的XRD图;
图9是1号样品1300℃烧制1h的XRD图;
图10是2号样品1300℃烧制1h的XRD图;
图11是3号样品1300℃烧制1h的XRD图;
图12是4号样品1300℃烧制1h的XRD图;
图13是4号样品1300℃烧制的SEM;
图14是1号样品1200℃烧制的SEM。
具体实施方式
以下参考说明书附图介绍本发明的多个优选实施例,使其技术内容更加清楚和便于理解。本发明可以通过许多不同形式的实施例来得以体现,本发明的保护范围并非仅限于文中提到的实施例。
本发明提供了一种SiO2掺杂树脂灰多孔陶瓷,其特征在于,所述多孔陶瓷含有SiO2、Al2O3、Al6Si013和Fe2O3、MnO2,所述陶瓷的第一X射线衍射强度峰和第二X射线衍射强度峰对应的相均为Al6Si2O13相,所述第一X射线衍射强度峰对应的2θ为26.201°,所述第二X射线衍射强度峰对应的2θ为33.100°,第三X射线衍射强度峰对应的相为Al2O3,所述第三X射线衍射强度峰对应的2θ为35.099°,所述第一X射线衍射强度峰与所述第二X射线衍射强度峰强度比大于所述第二X射线衍射强度峰与所述第三X射线衍射强度峰强度比。
在一个较佳的实施例中,所述陶瓷的制备原料以重量百分比记为:10%~40%的SiO2,50%~80%的树脂灰,余量为Al2O3
在一个较佳的实施例中,SiO2重量百分比为10%~30%,所述陶瓷气孔率为15.6%~38.2。
在一个较佳的实施例中,所述陶瓷的吸水率为6.6%~22.1%。
本发明还提供了一种二氧化硅掺杂树脂灰多孔陶瓷的制备方法,其特征在于,所述方法包括步骤:
将树脂灰、二氧化硅、三氧化二铝称重并混合均匀,其中,二氧化硅占混料总重量比为10~40%;
将混好的物料统一称重并将所述物料造型;
干燥造型后的物料块并将其进行烧制得到样品。
在一个较佳的实施例中,在混料时添加增稠剂以确保混料之间的粘稠性.
在一个较佳的实施例中,所述增稠剂为以下任意一种或多种:酒精、甲基纤维素、羧甲基纤维素、羟乙基纤维素、羟丙基甲基纤维素。
在一个较佳的实施例中,所述烧制包括:将干燥后的块状物料放入马弗炉中进行烧制,马弗炉的升温速率为10-15℃/min,先在500-550℃下第一次保温0.5-1.0h,之后在升温到1200℃-1500℃第二次保温1-1.5h。
在一个较佳的实施例中,第二次保温温度为1200-1400℃。
在一个较佳的实施例中,所述方法还包括:样品烧制完成后测定所述样品的吸水率、气孔率、体积密度、抗压强度和抗折强度。
本发明方法通过气孔率等数据获悉,在二氧化硅掺量为20%,且温度为1300℃时材料的气孔率,吸水率均为八组样品中最低,但体积密度最低的是二氧化硅掺量为40%且温度为1300℃的样品。
图1为树脂灰的XRD图,从图谱分析可知,主要矿物相为SiO2、Al2O3、MnO2、Fe2O3,实验中所要制备的陶粒砂中的成分(表2.2)与树脂灰XRD图谱中分析的主要矿物相大致吻合。
图2为树脂灰的形貌图,从图上可以看出树脂灰内部分布良好,其中的颗粒形状不一,存在的物质也是多样的。树脂灰样品表面空隙较大,多孔,气孔的分布不均,形状各异。
下面结合具体实施例来说明本发明方法的具体实施方式。
利用所准备好的Al2O3、SiO2以及树脂灰将其按照4个不同配比混合,其配比如表1所示:
表1样品成分配比
Figure BDA0003154255560000051
根据实验现象、XRD分析和气孔率测试结果确定最佳的实验配比,并将该配比在1200℃、1300℃、1400℃、1500℃等分别进行烧制,分析多孔陶瓷的性能。
性能测试:
1)气孔率测试
表2吸水率、气孔率和体积密度
Figure BDA0003154255560000052
图3是制备样品的吸水率图,从图中可以看出1200℃的四个样品的吸水率在3号和4号有一个明显的下降,1200℃的所有样品呈现出整体下降的趋势。但是1300℃的样品吸水率呈现出整体上升的趋势,且在二氧化硅含量为20%时吸水率最小。
图4是制备样品的气孔率图,由图4可以看出,1200℃样品的气孔率在3号样和4号样有一个明显的下降,整体呈现一个下降的趋势,而1300℃是一个整体上升的趋势,由此图可以看出吸水率最低的是1300℃时二氧化硅掺量为20%的样品。
2)XRD图谱及分析
图5是1号样品1200℃烧制1h的XRD图,这组样品的主要物相是:SiO2,Al2O3,并且含有较多的Al6Si013,表明含有实验最终产物;其中,图5所示XRD图的导出数据如下:
Figure BDA0003154255560000061
图6是2号样品1200℃烧制1h的XRD图,从图中可以看出,这组样品的主要物相是:SiO2,Al2O3。并且含有实验最终产物Al6Si013,其中,图6所示XRD图的导出数据如下:
Figure BDA0003154255560000062
Figure BDA0003154255560000071
图7是3号样品1200℃烧制1h的XRD图,从图中可以看出,这组样品的主要物相是:SiO2,Al2O3。且含有一些Al6Si013,其中,图7所示XRD图的导出数据如下:
Figure BDA0003154255560000072
图8是4号样品1200℃烧制1h的XRD图,从图中可以看出,这组数据杂峰最少,除了SiO2,Al2O3等物质之外还有其他Fe2O3、MnO2等物质的出现,其中,图8所示XRD图的导出数据如下:
Figure BDA0003154255560000081
图9是1号样品1300℃烧制1h的XRD图,由图中可以看出,本样品的杂峰较多,并且有很多实验最终产物Al6SiO13,还有SiO2,Al2O3等物质存在;其中,图9所示XRD图的导出数据如下:
Figure BDA0003154255560000082
Figure BDA0003154255560000091
图10是2号样品1300℃烧制1h的XRD图,由图中可以看出,本组数据杂峰也相对较多,并且有很多实验最终产物Al6SiO13,还有SiO2,Al2O3,Mn2O3等物质存在,其中,图10所示XRD图的导出数据如下:
Figure BDA0003154255560000092
图11是3号样品1300℃烧制1h的XRD图,由图中可以看出,本组杂峰相较于其两组数据来讲变少,且Al2O3含量明显变少,取而代之的是Mn2O3的含量变多。并且也含有较多的,其中,图11所示XRD图的导出数据如下:
Figure BDA0003154255560000101
图12是4号样品1300℃烧制1h的XRD图,由图中可以看出,本组数据杂峰更少且基本只含有SiO2和实验最终产物,其中,图12所示XRD图的导出数据如下:
Figure BDA0003154255560000102
Figure BDA0003154255560000111
图13是4号样品1300℃烧制的SEM,从图中可以看出本组实验样品致密度不是很好,并且含有一些孔,且孔的分布不均匀。样品多为网状结构,导致样品致密度比较低,这与前文所得结论基本相似;
图14是1号样品1200℃烧制的SEM,由图中可以看出气孔的扫描电镜结果较低且均匀,并且孔的分布整体较均匀,结合气孔率的数据来看,这组样品的气孔率,吸水率的数据也与扫描电镜的结果相符。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思做出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

1.一种SiO2掺杂树脂灰多孔陶瓷,其特征在于,所述多孔陶瓷含有SiO2、Al2O3、Al6Si013和Fe2O3、MnO2,所述陶瓷的第一X射线衍射强度峰和第二X射线衍射强度峰对应的相均为Al6Si2O13相,所述第一X射线衍射强度峰对应的2θ为26.201°,所述第二X射线衍射强度峰对应的2θ为33.100°,第三X射线衍射强度峰对应的相为Al2O3,所述第三X射线衍射强度峰对应的2θ为35.099°,所述第一X射线衍射强度峰与所述第二X射线衍射强度峰强度比大于所述第二X射线衍射强度峰与所述第三X射线衍射强度峰强度比。
2.如权利要求1所诉的多孔陶瓷,其中,所述陶瓷的制备原料以重量百分比记为:10%~40%的SiO2,50%~80%的树脂灰,余量为Al2O3
3.如权利要求1所述的多孔陶瓷,其中,SiO2重量百分比为10%~30%,所述陶瓷气孔率为15.6%~38.2。
4.如权利要求1所述的多孔陶瓷,其中,所述陶瓷的吸水率为6.6%~22.1%。
5.权利要求1~4任一项权利要求所述的二氧化硅掺杂树脂灰多孔陶瓷的制备方法,其特征在于,所述方法包括步骤:
将树脂灰、二氧化硅、三氧化二铝称重并混合均匀,其中,二氧化硅占混料总重量比为10~40%;
将混好的物料统一称重并将所述物料造型;
干燥造型后的物料块并将其进行烧制得到样品。
6.如权利要求5所述的方法,其中,在混料时添加增稠剂以确保混料之间的粘稠性.
7.如权利要求6所述的方法,其中,所述增稠剂为以下任意一种或多种:酒精、甲基纤维素、羧甲基纤维素、羟乙基纤维素、羟丙基甲基纤维素。
8.如权利要求5所述的方法,其中,所述烧制包括:将干燥后的块状物料放入马弗炉中进行烧制,马弗炉的升温速率为10-15℃/min,先在500-550℃下第一次保温0.5-1.0h,之后在升温到1200℃-1500℃第二次保温1-1.5h。
9.如权利要求8所述的方法,其中,第二次保温温度为1200-1400℃。
10.如权利要求5所述的方法,其中,所述方法还包括:样品烧制完成后测定所述样品的吸水率、气孔率、体积密度、抗压强度和抗折强度。
CN202110772422.0A 2021-07-08 2021-07-08 一种SiO2掺杂树脂灰多孔陶瓷及其制备方法 Pending CN113754458A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110772422.0A CN113754458A (zh) 2021-07-08 2021-07-08 一种SiO2掺杂树脂灰多孔陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110772422.0A CN113754458A (zh) 2021-07-08 2021-07-08 一种SiO2掺杂树脂灰多孔陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN113754458A true CN113754458A (zh) 2021-12-07

Family

ID=78787560

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110772422.0A Pending CN113754458A (zh) 2021-07-08 2021-07-08 一种SiO2掺杂树脂灰多孔陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN113754458A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183831A (ja) * 1997-09-10 1999-03-26 Fuji Electric Co Ltd イオン交換樹脂灰化物のコバルトの分析方法
CN105669174A (zh) * 2016-01-14 2016-06-15 中国矿业大学 一种高孔隙率定向孔结构多孔莫来石材料及其制备方法
CN108083789A (zh) * 2017-12-06 2018-05-29 宁波爱克创威新材料科技有限公司 多孔莫来石陶瓷及其制备方法
CN110421113A (zh) * 2019-09-18 2019-11-08 北京仁创砂业铸造材料有限公司 一种由旧砂再生废弃物制备的陶粒砂及由该陶粒砂制备的覆膜砂
CN112960967A (zh) * 2021-03-15 2021-06-15 北方民族大学 利用废弃陶粒砂制备的3d打印用陶粒砂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183831A (ja) * 1997-09-10 1999-03-26 Fuji Electric Co Ltd イオン交換樹脂灰化物のコバルトの分析方法
CN105669174A (zh) * 2016-01-14 2016-06-15 中国矿业大学 一种高孔隙率定向孔结构多孔莫来石材料及其制备方法
CN108083789A (zh) * 2017-12-06 2018-05-29 宁波爱克创威新材料科技有限公司 多孔莫来石陶瓷及其制备方法
CN110421113A (zh) * 2019-09-18 2019-11-08 北京仁创砂业铸造材料有限公司 一种由旧砂再生废弃物制备的陶粒砂及由该陶粒砂制备的覆膜砂
CN112960967A (zh) * 2021-03-15 2021-06-15 北方民族大学 利用废弃陶粒砂制备的3d打印用陶粒砂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
(苏)西蒙诺夫,М.З. 著: "《多孔骨料混凝土和钢筋混凝土》", 28 February 1965, 中国工业出版社 *

Similar Documents

Publication Publication Date Title
JP4537238B2 (ja) カオリン粒子のへき開指数測定方法及びコージェライト質ハニカム構造体の製造方法
CN109824381A (zh) 一种碳化硅陶瓷膜及其制备方法和用途
Wu et al. Preparation, microstructure and high temperature performances of porous γ-Y2Si2O7 by in situ foam-gelcasting using gelatin
JPH05254958A (ja) 低熱膨脹で高気孔率のコージエライトボディおよびその製造方法
CN102690117A (zh) 堇青石铝镁钛酸盐组合物及包含该组合物的陶瓷制品
CN101905145B (zh) 一种分子筛蜂窝材料及其制备方法
Wei et al. Porous alumina ceramics with enhanced mechanical and thermal insulation properties based on sol-treated rice husk
CN106975369A (zh) 一种用于油水分离的三氧化二铝陶瓷复合膜及其制备方法
JP5478025B2 (ja) コーディエライトセラミックスおよびその製造方法
JP2010516619A (ja) 架橋済み未焼成体物品およびそれから多孔質セラミック物品を製造する方法
CN107954742A (zh) 微孔轻质耐火砖及其制备方法
JP5075606B2 (ja) 炭化珪素質多孔体
CN114956828A (zh) 碳化硅陶瓷及其制备方法和应用
WO2022142168A1 (zh) 一种低熔点多孔陶瓷材料及其制备方法
CN113754458A (zh) 一种SiO2掺杂树脂灰多孔陶瓷及其制备方法
JPH04305076A (ja) コージェライト質ハニカム構造体の製造法
Wang et al. Effect of starting PMMA content on microstructure and properties of gel casting BN/Si 3 N 4 ceramics with spherical-shaped pore structures
Aydin Development of porous lightweight clay bricks using a replication method
CN113213963B (zh) 一种利用建筑废弃物制备的轻质耐火材料及其制备方法
KR100392701B1 (ko) 메조포러스 제올라이트 허니컴구조체 및 그 제조방법
CN105408284B (zh) 用于催化剂整合的成型陶瓷基材组合物
CN114988903A (zh) 一种高强度低收缩率多孔陶瓷及其制备方法
CN115403365A (zh) 一种宏观孔道结合微观孔隙的有序堇青石陶瓷的制备方法
Li et al. Preparation of high‐strength lightweight alumina with plant‐derived pore using corn stalk as pore‐forming agent
CN110128163B (zh) 一种利用废弃催化剂制备堇青石多孔陶瓷材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20211207