CN112062598A - 一种固废制备超轻陶粒及其制备方法 - Google Patents

一种固废制备超轻陶粒及其制备方法 Download PDF

Info

Publication number
CN112062598A
CN112062598A CN202010850372.9A CN202010850372A CN112062598A CN 112062598 A CN112062598 A CN 112062598A CN 202010850372 A CN202010850372 A CN 202010850372A CN 112062598 A CN112062598 A CN 112062598A
Authority
CN
China
Prior art keywords
solid waste
temperature
ceramsite
tailings
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010850372.9A
Other languages
English (en)
Other versions
CN112062598B (zh
Inventor
刘玉林
童思意
刘长淼
谭琦
赵毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou Institute of Multipurpose Utilization of Mineral Resources CAGS
Original Assignee
Zhengzhou Institute of Multipurpose Utilization of Mineral Resources CAGS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou Institute of Multipurpose Utilization of Mineral Resources CAGS filed Critical Zhengzhou Institute of Multipurpose Utilization of Mineral Resources CAGS
Priority to CN202010850372.9A priority Critical patent/CN112062598B/zh
Publication of CN112062598A publication Critical patent/CN112062598A/zh
Application granted granted Critical
Publication of CN112062598B publication Critical patent/CN112062598B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/04Clay; Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/131Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/1321Waste slurries, e.g. harbour sludge, industrial muds
    • C04B33/1322Red mud
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Treatment Of Sludge (AREA)

Abstract

本发明提出了一种固废制备超轻陶粒及其制备方法,超轻陶粒由以下固废原材料制备:铝矾土尾矿、赤泥和高岭土尾矿,三种固废原材料配比后的化学成分:Al2O3含量为12~18.5wt%,SiO2含量为48‑54wt%,碱金属和碱土金属的总含量为:14~19wt%。满足400级优等品超轻陶粒的要求,协同利用铝矾土尾矿、高岭土尾矿和赤泥,不用添加传统的页岩、粘土、滑石,轻质建筑陶粒的主要原料均为固废,提供固废原料的综合利用。

Description

一种固废制备超轻陶粒及其制备方法
技术领域
本发明涉及超轻陶粒制备技术领域,特别是指一种固废制备超轻陶粒及其制备方法。
背景技术
陶粒是一种具有一定强度的、粒度多为5~25mm的规则球体或不规则的陶制颗粒。陶粒表面有一层坚硬的外壳,内部多孔,具有良好的物理、化学特性:强度高、密度小、比表面积大、孔隙率高、吸附截污能力强、化学和热稳定性好、耐酸耐热、隔水保气、保温隔热。陶粒作为一种热门的新兴材料,由于其优越的物理与化学性能,加上可以以固废为原料以达到大规模消纳固废的优势,受到广泛研究者的追捧。近年来关于固废陶粒的研究众多,充实了固废陶粒的原料选择面,使固废陶粒的生产理论更加完善。
目前,陶粒的研究热度高,研究结果丰富,且各种固体废料作为陶粒的原料都能生产出符合国家标准的陶粒。但是又同时存在相同的短板:1、固废掺入量较低,部分研究掺入粘黏土超过50%,达不到固废综合利用的目的;2、制备出的陶粒密度普遍偏高,密度等级多为600级以上,且强度也普遍不够,大大限制了陶粒的使用范围,附加价值较低。
文献“基于赤泥、铝土尾矿和污泥三大工业废物的陶粒制备试验研究,符勇等,能源与环保,2017年4月,第39卷第4期”,将赤泥、铝土尾矿和污泥三大工业废物加水搅拌制成圆球,经过1150℃焙烧,制备膨胀陶粒,堆积密度为866.75kg/m3或694kg/m3,密度等级较高,而且焙烧温度高。
发明内容
本发明提出一种固废制备超轻陶粒及其制备方法,满足400级优等品超轻陶粒的要求,协同利用铝矾土尾矿、高岭土尾矿和赤泥,不用添加传统的页岩、粘土、滑石,轻质建筑陶粒的主要原料均为固废,提供固废原料的综合利用。
本发明的技术方案是这样实现的:一种固废制备超轻陶粒,由以下固废原材料制备:铝矾土尾矿、赤泥和高岭土尾矿,三种固废原材料配比后的化学成分:Al2O3含量为12~18.5wt%,SiO2含量为48-54wt%,碱金属和碱土金属的总含量为:14~19wt%。
进一步地,碱土金属CaO的含量≥9wt%。
进一步地,铝土矿尾矿:赤泥:高岭土尾矿的重量比为3:3:4,其中SiO2含量为48.40wt%,Al2O3含量为18.32wt%,碱金属及碱土金属总量为15.56%,CaO的含量为15.15wt%。
一种固废制备超轻陶粒的制备方法,包括以下步骤:
(1)将铝矾土尾矿、赤泥和高岭土尾矿研磨至-0.074mm以下;
(2)根据铝矾土尾矿、高岭土尾矿、赤泥的化学组成,设计配方,使三种固废原材料配比后的化学成分:Al2O3含量为12~18.5wt%,SiO2含量为≥45wt%,碱金属和碱土金属的总含量为:14~19wt%;
(3)根据步骤(2)的配方,取研磨后的三种固废原材料,添加发泡剂混合均匀,加水,均化2h后,造球后并干燥,得到生球;
(4)生球焙烧后得到超轻建筑陶粒产品。
进一步地,步骤(4)中,焙烧的温度为:室温升至100℃,升温速率为10℃/min,100℃的条件下保温10min;100℃升至预热温度700℃,升温速率为15℃/min,700℃的条件下保温10min;700℃升至焙烧温度1120-1130℃,升温速率为10℃/min,1130℃下保温30min。
进一步地,步骤(2)中发泡剂的用量是三种固废原材料总质量的0.1-0.2%。
进一步地,步骤(3)中,造球后,在80-95℃条件下干燥1-2h。
本发明的有益效果:
本发明制备的超轻建筑陶粒满足《JC487-1992-超轻陶粒和陶砂》中400级优等品超轻陶粒以及《GB/T 17431.1-2010轻集料及其试验方法》的要求,其筒压强度远高于标准的相关要求。本发明的铝矾土尾矿、高岭土尾矿、赤泥通过协同利用,利用铝矾土尾矿富铝(相对富铝)、高岭土尾矿富硅、赤泥富碱金属和碱土金属的特性,不用添加传统的页岩、粘土、滑石,轻质建筑陶粒的主要原料均为固废。
本发明中超轻建筑陶粒通过焙烧达到整体发泡并完成陶瓷化的过程,焙烧温度为1120-1130℃,低于传统矿物制备陶粒的1150℃~1200℃的温度,大大降低了能源消耗,而且陶粒的堆积密度与焙烧温度关系较大,采用1120-1130℃,可使陶粒土的堆积密度小于400kg·m-3,高于或低于该温度范围,则陶粒的堆积密度均过大。在焙烧时,先室温升至100℃,升温速率为10℃/min,100℃的条件下保温10min,避免生球内有残留的水,升温过快,造成生球炸裂。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明固废制备超轻陶粒的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
一种固废制备超轻陶粒,由以下固废原材料制备:铝矾土尾矿、赤泥和高岭土尾矿,三种固废原材料配比后的化学成分:Al2O3含量为12~18.5wt%,SiO2含量为48-54wt%,碱金属和碱土金属的总含量为:14~19wt%,其中碱土金属CaO的含量≥9wt%。
一种固废制备超轻陶粒的制备方法,包括以下步骤:
(1)将铝矾土尾矿、赤泥和高岭土尾矿研磨至-0.074mm以下;
(2)根据铝矾土尾矿、高岭土尾矿、赤泥的化学组成,设计配方,使三种固废原材料配比后的化学成分:Al2O3含量为12~18.5wt%,SiO2含量为≥45wt%,碱金属和碱土金属的总含量为:14~19wt%;
(3)根据步骤(2)的配方,取研磨后的三种固废原材料,添加发泡剂混合均匀,加水,均化2h后,造球后并干燥,得到生球;
(4)生球放入马弗炉焙烧后得到超轻建筑陶粒产品。
焙烧的温度为:室温升至100℃,升温速率为10℃/min,100℃的条件下保温10min;100℃升至预热温度700℃,升温速率为15℃/min,700℃的条件下保温10min;700℃升至焙烧温度1120-1130℃,升温速率为10℃/min,1130℃下保温30min。
步骤(2)中发泡剂的用量是三种固废原材料总质量的0.1-0.2%。
步骤(3)中,造球后,在80-95℃条件下干燥1-2h。
实施例一
本试验铝土矿尾矿为河南焦作中州铝业铝土矿选矿尾矿,其主要化学成分分析结果如表1所示。尾矿中Al2O3含量高达38.90%,作为主要铝质来源原料。
表1铝土矿尾矿主要化学组成(%)
成分 Al<sub>2</sub>O<sub>3</sub> SiO<sub>2</sub> MgO Na<sub>2</sub>O K<sub>2</sub>O CaO Fe<sub>2</sub>O<sub>3</sub>
含量/% 38.90 28.12 0.49 0.26 3.80 0.63 12.32
本试验高岭土尾矿为砂质高岭土选矿尾矿,其主要化学成分分析结果如表2所示。SiO2含量高达84.55%,作为主要硅质来源原料。
表2高岭土尾矿主要化学元素组成
成分 Al<sub>2</sub>O<sub>3</sub> SiO<sub>2</sub> MgO Na<sub>2</sub>O K<sub>2</sub>O CaO Fe<sub>2</sub>O<sub>3</sub>
含量/% 8.23 84.55 0.13 0.14 2.53 0.03 1.47
本试验赤泥为河南焦作中州铝业赤泥,其主要化学成分分析结果如表3所示。赤泥中含有大量的CaO、K2O,作为主要的碱(土)金属来源原料。
表3赤泥主要化学组成(%)
成分 Al<sub>2</sub>O<sub>3</sub> SiO<sub>2</sub> MgO Na<sub>2</sub>O K<sub>2</sub>O CaO Fe<sub>2</sub>O<sub>3</sub>
含量/% 11.18 20.47 1.32 3.06 1.64 37.53 9.64
超轻建筑陶粒的制备流程见图1。将铝矾土尾矿、高岭土、赤泥尾矿研磨至-0.074mm以下,研磨的粒度要求为物料全部通过200目筛;根据铝矾土尾矿、高岭土尾矿、赤泥的化学组成,设计配方,使三种物料混合后的化学成分满足以下要求:Al2O3:12%~18.5%;SiO2:48-54wt%;碱金属和碱土金属的总含量(R2O+RO):14%~19%。添加SiC发泡剂混合均匀,加水,均化2h后,造球后并干燥,得到生球,升球放入马弗炉焙烧后,冷却得到超轻建筑陶粒产品。
以铝土矿尾矿:赤泥:高岭土尾矿=3:3:4,其中SiO2含量为48.40%,Al2O3含量为18.32%,CaO的含量为11.46%,碱金属及碱土金属总量为15.56%。焙烧温度为1130℃,得到产品的陶粒性能指标与相关要求如表4,产品到达相关指标要求。
表4固废陶粒与国家标准的性能指标对比
Figure BDA0002644534110000051
对比配方一:
1:铝土矿尾矿:赤泥:高岭土尾矿=1:2:2;SiO2含量为47.63%,Al2O3含量为15.54%,碱金属和碱土金属总量为19.46%,CaO的含量为15.15%。
2:铝土矿尾矿:赤泥:高岭土尾矿=2:1:2;SiO2含量为49.16%,Al2O3含量为21.09%,碱金属和碱土金属总量为11.62%,CaO的含量为7.77%。
配方1得到陶粒的表观密度为899kg/m3,其堆积密度为490kg/m3,其密度稍高,其SiO2含量稍低,碱金属含量稍高,陶粒液相较多,烧制过程中产生收缩现象,密度偏大。
配方2得到陶粒未发现明显的膨胀现象,其堆积密度大于1000kg/m3,其原因为Al2O3含量、CaO含量、碱金属和碱土金属总量均不在权利要求范围内,Al2O3含量较高,碱金属和碱土金属总量及CaO含量较低。
对比配方二:
3:铝土矿尾矿:赤泥:高岭土尾矿=2:3:5;SiO2含量为54.04%,Al2O3含量为15.25%,碱金属和碱土金属总量为15.39%,CaO的含量为11.4%。
4:铝土矿尾矿:赤泥:高岭土尾矿=1:3:6;SiO2含量为59.68%,Al2O3含量为12.18%,碱金属和碱土金属总量为14.94%,CaO的含量为11.34%。
配方3得到陶粒的表观密度为847kg/m3,其堆积密度为461kg/m3,其密度稍高,其原因为SiO2含量稍微偏高,导致其堆积密度稍微偏高。
配方4得到陶粒的表观密度为816kg/m3,其堆积密度为444kg/m3,其原因SiO2含量偏高,导致其堆积密度稍微偏高。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种固废制备超轻陶粒,其特征在于,由以下固废原材料制备:铝矾土尾矿、赤泥和高岭土尾矿,三种固废原材料配比后的化学成分:Al2O3含量为12~18.5wt%,SiO2含量为48-54wt%,碱金属和碱土金属的总含量为:14~19wt%。
2.根据权利要求1所述的一种固废制备超轻陶粒,其特征在于,碱土金属CaO的含量≥9wt%。
3.根据权利要求1或2所述的一种固废制备超轻陶粒,其特征在于,铝土矿尾矿:赤泥:高岭土尾矿的重量比为3:3:4,其中SiO2含量为48.40wt%,Al2O3含量为18.32wt%,碱金属及碱土金属总量为15.56%,CaO的含量为15.15wt%。
4.一种权利要求1-3之一所述的固废制备超轻陶粒的制备方法,其特征在于,包括以下步骤:
(1)将铝矾土尾矿、赤泥和高岭土尾矿研磨至-0.074mm以下;
(2)根据铝矾土尾矿、高岭土尾矿、赤泥的化学组成,设计配方,使三种固废原材料配比后的化学成分:Al2O3含量为12~18.5wt%,SiO2含量为≥45wt%,碱金属和碱土金属的总含量为:14~19wt%;
(3)根据步骤(2)的配方,取研磨后的三种固废原材料,添加发泡剂混合均匀,加水,均化2h后,造球后并干燥,得到生球;
(4)生球焙烧后得到超轻建筑陶粒产品。
5.根据权利要求4所述的制备方法,其特征在于,步骤(4)中,焙烧的温度为:室温升至100℃,升温速率为10℃/min,100℃的条件下保温10min;100℃升至预热温度700℃,升温速率为15℃/min,700℃的条件下保温10min;700℃升至焙烧温度1120-1130℃,升温速率为10℃/min,1130℃下保温30min。
6.根据权利要求4所述的制备方法,其特征在于,步骤(2)中发泡剂的用量是三种固废原材料总质量的0.1-0.2%。
7.根据权利要求4所述的制备方法,其特征在于,步骤(3)中,造球后,在80-95℃条件下干燥1-2h。
CN202010850372.9A 2020-08-21 2020-08-21 一种固废制备超轻陶粒及其制备方法 Expired - Fee Related CN112062598B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010850372.9A CN112062598B (zh) 2020-08-21 2020-08-21 一种固废制备超轻陶粒及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010850372.9A CN112062598B (zh) 2020-08-21 2020-08-21 一种固废制备超轻陶粒及其制备方法

Publications (2)

Publication Number Publication Date
CN112062598A true CN112062598A (zh) 2020-12-11
CN112062598B CN112062598B (zh) 2022-10-18

Family

ID=73659352

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010850372.9A Expired - Fee Related CN112062598B (zh) 2020-08-21 2020-08-21 一种固废制备超轻陶粒及其制备方法

Country Status (1)

Country Link
CN (1) CN112062598B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113480325A (zh) * 2021-08-16 2021-10-08 苏州大学 一种基于萤石尾矿的建筑陶粒及其制备方法
CN114133223A (zh) * 2022-01-07 2022-03-04 山东理工大学 一种节能环保的低成本陶粒支撑剂及其制备方法
CN114276073A (zh) * 2021-05-25 2022-04-05 山西黄河前沿新材料研究院有限公司 一种装配式建筑用轻质高性能混凝土及其制备方法
CN114315407A (zh) * 2022-01-12 2022-04-12 湖南大学 一种利用铝矾土尾矿制备小粒径多孔陶砂的方法
CN114751767A (zh) * 2022-04-07 2022-07-15 河南城建学院 一种用于超高性能混凝土内养护的多孔骨料及其制备方法
CN115259885A (zh) * 2022-08-11 2022-11-01 镇江市雅盛节能环保材料有限公司 一种铝土尾矿烧结陶粒及其制备方法
CN117466621A (zh) * 2023-12-28 2024-01-30 西南石油大学 一种基于油基岩屑的中空超轻陶粒及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2610012A1 (de) * 1975-03-17 1976-09-30 Chemokomplex Vegyipari Gep Es Verfahren zur herstellung von keramischen produkten unter verwertung von rotschlamm der tonerdeerzeugung
CN104876625A (zh) * 2015-05-27 2015-09-02 中钢集团马鞍山矿山研究院有限公司 一种利用粘土性含铁尾矿制备超轻陶粒的方法
CN104909799A (zh) * 2015-05-26 2015-09-16 福建省建筑科学研究院 一种轻质高强陶粒及其制备工艺
CN106116637A (zh) * 2016-06-28 2016-11-16 蒋文兰 铝矾土尾矿轻质通孔陶粒
CN106116634A (zh) * 2016-06-28 2016-11-16 蒋文兰 高岭土尾矿轻质通孔陶粒
CN109665813A (zh) * 2018-12-19 2019-04-23 桂林理工大学 一种赤泥陶粒的原料混合配比及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2610012A1 (de) * 1975-03-17 1976-09-30 Chemokomplex Vegyipari Gep Es Verfahren zur herstellung von keramischen produkten unter verwertung von rotschlamm der tonerdeerzeugung
CN104909799A (zh) * 2015-05-26 2015-09-16 福建省建筑科学研究院 一种轻质高强陶粒及其制备工艺
CN104876625A (zh) * 2015-05-27 2015-09-02 中钢集团马鞍山矿山研究院有限公司 一种利用粘土性含铁尾矿制备超轻陶粒的方法
CN106116637A (zh) * 2016-06-28 2016-11-16 蒋文兰 铝矾土尾矿轻质通孔陶粒
CN106116634A (zh) * 2016-06-28 2016-11-16 蒋文兰 高岭土尾矿轻质通孔陶粒
CN109665813A (zh) * 2018-12-19 2019-04-23 桂林理工大学 一种赤泥陶粒的原料混合配比及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
张蔚: "高岭土尾矿-煤矸石烧制轻质高强陶粒的研究", 《新型建筑材料》 *
桑迪等: "利用工业固体废弃物制备烧胀陶粒的研究进展", 《材料导报A》 *
符勇等: "基于赤泥、铝土尾矿和污泥三大工业废物的陶粒制备实验研究", 《能源与环保》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114276073A (zh) * 2021-05-25 2022-04-05 山西黄河前沿新材料研究院有限公司 一种装配式建筑用轻质高性能混凝土及其制备方法
CN113480325A (zh) * 2021-08-16 2021-10-08 苏州大学 一种基于萤石尾矿的建筑陶粒及其制备方法
CN114133223A (zh) * 2022-01-07 2022-03-04 山东理工大学 一种节能环保的低成本陶粒支撑剂及其制备方法
CN114315407A (zh) * 2022-01-12 2022-04-12 湖南大学 一种利用铝矾土尾矿制备小粒径多孔陶砂的方法
CN114315407B (zh) * 2022-01-12 2023-05-26 湖南大学 一种利用铝矾土尾矿制备小粒径多孔陶砂的方法
CN114751767A (zh) * 2022-04-07 2022-07-15 河南城建学院 一种用于超高性能混凝土内养护的多孔骨料及其制备方法
CN115259885A (zh) * 2022-08-11 2022-11-01 镇江市雅盛节能环保材料有限公司 一种铝土尾矿烧结陶粒及其制备方法
CN115259885B (zh) * 2022-08-11 2023-08-01 镇江市雅盛节能环保材料有限公司 一种铝土尾矿烧结陶粒及其制备方法
CN117466621A (zh) * 2023-12-28 2024-01-30 西南石油大学 一种基于油基岩屑的中空超轻陶粒及其制备方法
CN117466621B (zh) * 2023-12-28 2024-03-08 西南石油大学 一种基于油基岩屑的中空超轻陶粒及其制备方法

Also Published As

Publication number Publication date
CN112062598B (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
CN112062598B (zh) 一种固废制备超轻陶粒及其制备方法
JP7038708B2 (ja) 軽量高強度セラミック粒子及びその製造方法
CN102336579B (zh) 一种利用赤泥生产高性能陶粒的方法
CN113372134A (zh) 一种微孔轻质硅砖及其制备方法
CN104909799A (zh) 一种轻质高强陶粒及其制备工艺
CN110862270B (zh) 一种轻质粉煤灰陶粒及其制备方法
CN106904992B (zh) 烧结原料及其制备方法
CN101538131A (zh) 一种用拜尔法赤泥为主要原料制备烧胀陶粒的方法
CN110183120B (zh) 利用原状电解锰渣和钢渣尾泥生产水泥活性掺合料的方法
CN103193467A (zh) 一种低温高强陶瓷结合剂及其制备方法
CN112341238A (zh) 一种陶粒及其制备方法
CN106904938B (zh) 一种以煤矸石为原料和燃料的高强陶粒及其制备方法
CN111205103A (zh) 一种利用石墨尾矿制备轻质陶瓷砖的方法
CN113603496A (zh) 一种由高掺量煤基固废制得的陶粒及制备方法
CN105130360B (zh) 一种利用磷尾矿和磷渣为主要原料制备的轻质硅酸钙板
CN110128109A (zh) 一种高强陶粒及其制备方法
CN108455884B (zh) 一种具有相变潜热钢渣的制备方法
CN111606689B (zh) 一种废石粉轻质微晶发泡保温材料及其制造方法
CN112552021B (zh) 一种粉煤灰陶粒及其制备方法
CN112979336B (zh) 利用氟碳铈型稀土尾矿低能耗制备发泡陶瓷保温材料的方法及产品
CN112521036A (zh) 一种高活性低温稻壳灰及掺有该稻壳灰的高性能混凝土
CN112876214A (zh) 一种微晶发泡陶瓷及其制备方法与应用
CN115819098A (zh) 一种隔热耐火砖及其制备方法
CN103524123B (zh) 用膨润土尾矿制备的轻质堇青石-莫来石窑具材料
CN108558293A (zh) 一种保温材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20221018