CN113684481A - 一种高频磁性材料及其制备方法和应用 - Google Patents

一种高频磁性材料及其制备方法和应用 Download PDF

Info

Publication number
CN113684481A
CN113684481A CN202110993173.8A CN202110993173A CN113684481A CN 113684481 A CN113684481 A CN 113684481A CN 202110993173 A CN202110993173 A CN 202110993173A CN 113684481 A CN113684481 A CN 113684481A
Authority
CN
China
Prior art keywords
nio
zno
magnetic material
cuo
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110993173.8A
Other languages
English (en)
Other versions
CN113684481B (zh
Inventor
杨明雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Fanrui New Material Co ltd
Original Assignee
Guangdong Fanrui New Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Fanrui New Material Co ltd filed Critical Guangdong Fanrui New Material Co ltd
Priority to CN202110993173.8A priority Critical patent/CN113684481B/zh
Publication of CN113684481A publication Critical patent/CN113684481A/zh
Application granted granted Critical
Publication of CN113684481B publication Critical patent/CN113684481B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/085Oxides of iron group metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/087Oxides of copper or solid solutions thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/406Oxides of iron group metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/408Oxides of copper or solid solutions thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明公开了一种高频磁性材料及其制备方法和应用。本发明的高频磁性材料的组成包括ZnO‑NiO‑CuO‑SiO2‑Bi2O3包覆改性Fe2O3、Bi2O3和B2O3,其制备方法包括以下步骤:1)制备ZnO‑NiO‑CuO‑SiO2‑Bi2O3包覆改性Fe2O3;2)将ZnO‑NiO‑CuO‑SiO2‑Bi2O3包覆改性Fe2O3破碎后与Bi2O3和B2O3混合进行球磨,干燥。本发明的高频磁性材料的晶粒尺寸小于2μm,具有非常高的自谐频率,使用频率可以达到1GHz以上,且在相同的偏置电流下较常规铁氧体电感值下降率小30%,能够很好地满足同时传输数据和电源的滤波储能器件对高频化、大电流的需求。

Description

一种高频磁性材料及其制备方法和应用
技术领域
本发明涉及磁性材料技术领域,具体涉及一种高频磁性材料及其制备方法和应用。
背景技术
驾驶辅助系统是高档汽车的重要标志之一,包括车道保持辅助系统、自动泊车辅助系统、刹车辅助系统、倒车辅助系统和行车辅助系统。驾驶辅助系统需要处理摄像头、雷达等传感装置采集的庞大数据,因此基于同轴电缆的电源和数据传输方案(PoC,Powerover Coax)越来越受关注。
PoC方法是将通信信号和电源组合在一根同轴电缆中,而为了保持信号和功率分离,需要采用两种不同的磁芯分别组成电感器和磁珠PoC滤波器,以便信号不通过电源线。如果PoC滤波器电感的阻抗特性不能满足系统要求,通信质量将下降,进而可能会导致故障和出现安全问题。高频磁性器件中的磁芯主要是铁氧体磁芯,虽然频率特性满足应用要求,但抗直流叠加性能不足,难以满足同时传输数据和电源的PoC滤波器对于电感和滤波器二合一磁芯的要求。此外,软磁合金磁粉芯材料也是常见的磁芯材料,其饱和磁通密度高、电流叠加性能优异,但电阻率低、高频下涡流大、发热严重,限制了其在高频下的应用,也无法满足同时传输数据和电源的PoC滤波器的要求。
以上陈述仅仅是提供与本发明有关的背景信息,而不必然构成现有技术。
发明内容
本发明的目的之一在于提供一种能够满足高频化、大电流需求的高频磁性材料。
本发明的目的之二在于提供一种上述高频磁性材料的制备方法。
本发明的目的之三在于提供一种上述高频磁性材料的应用。
本发明所采取的技术方案是:
一种高频磁性材料,其组成包括ZnO-NiO-CuO-SiO2-Bi2O3包覆改性Fe2O3、Bi2O3和B2O3,ZnO-NiO-CuO-SiO2-Bi2O3包覆改性Fe2O3的组成由内至外依次为Fe2O3内核、第一ZnO层、第一NiO层、第二ZnO层、CuO层、第二NiO层、SiO2层和Bi2O3层。
优选的,所述ZnO-NiO-CuO-SiO2-Bi2O3包覆改性Fe2O3、Bi2O3、B2O3的质量比为1:0.001~0.005:0.001~0.003。
优选的,所述Fe2O3内核的平均粒径为0.3μm~0.6μm,且最大粒径≤0.9μm。
优选的,所述第一ZnO层的厚度为6nm~19nm。
优选的,所述第一NiO层的厚度为6nm~19nm。
优选的,所述第二ZnO层的厚度为6nm~19nm。
优选的,所述CuO层的厚度为3nm~5nm。
优选的,所述第二NiO层的厚度为6nm~19nm。
优选的,所述SiO2层的厚度为1nm~5nm。
优选的,所述Bi2O3层的厚度为1nm~2nm。
优选的,所述ZnO-NiO-CuO-SiO2-Bi2O3包覆改性Fe2O3中Fe2O3的质量百分含量为63%~74%,ZnO的质量百分含量为8%~12%,CuO的质量百分含量为0.4%~1%,NiO的质量百分含量为17%~22%,Bi2O3的质量百分含量为0.5%~1.0%,SiO2的质量百分含量为0.1%~1.0%。
上述高频磁性材料的制备方法包括以下步骤:
1)将ZnO和NiO依次沉积在Fe2O3粉末表面,得到ZnO-NiO包覆改性Fe2O3
2)将ZnO、CuO和NiO依次沉积在ZnO-NiO包覆改性Fe2O3表面,得到ZnO-CuO-NiO包覆改性Fe2O3
3)将SiO2和Bi2O3依次沉积在ZnO-CuO-NiO包覆改性Fe2O3表面,再进行热处理,得到ZnO-NiO-CuO-SiO2-Bi2O3包覆改性Fe2O3
4)将ZnO-NiO-CuO-SiO2-Bi2O3包覆改性Fe2O3破碎后与Bi2O3和B2O3混合进行球磨,干燥,即得高频磁性材料。
优选的,步骤1)~步骤3)所述沉积采用的方法为物理气相沉积法或化学气相沉积法。
优选的,步骤1)~步骤3)所述沉积得到的均是无定形态的包覆层。
优选的,步骤3)所述热处理在700~900℃下进行,处理时间为2h~5h。
优选的,步骤4)所述球磨的时间为1h~3h。
本发明的有益效果是:本发明的高频磁性材料的晶粒尺寸小于2μm,具有非常高的自谐频率,使用频率可以达到1GHz以上,且在相同的偏置电流下较常规铁氧体电感值下降率小30%,能够很好地满足同时传输数据和电源的滤波储能器件对高频化、大电流的需求。
附图说明
图1为实施例1~4和对比例1~2的瓷环的电感值曲线。
具体实施方式
下面结合具体实施例对本发明作进一步的解释和说明。
实施例1:
一种高频磁性材料,其制备方法包括以下步骤:
1)通过物理气相沉积法在平均粒径0.6μm、最大粒径<0.9μm的Fe2O3粉末表面依次沉积厚度19nm的ZnO层和厚度19nm的NiO层,得到ZnO-NiO包覆改性Fe2O3
2)通过化学气相沉积法在ZnO-NiO包覆改性Fe2O3表面依次沉积厚度19nm的ZnO层、厚度5nm的CuO层和厚度19nm的NiO层,得到ZnO-CuO-NiO包覆改性Fe2O3
3)通过物理气相沉积法在ZnO-CuO-NiO包覆改性Fe2O3表面依次沉积厚度5nm的SiO2层和厚度2nm的Bi2O3层,再置于900℃下处理2h,得到ZnO-NiO-CuO-SiO2-Bi2O3包覆改性Fe2O3(ZnO-NiO-CuO-SiO2-Bi2O3包覆改性Fe2O3中Fe2O3的质量百分含量为74%,ZnO的质量百分含量为8%,CuO的质量百分含量为0.4%,NiO的质量百分含量为17%,Bi2O3的质量百分含量为0.5%,SiO2的质量百分含量为0.1%);
4)将ZnO-NiO-CuO-SiO2-Bi2O3包覆改性Fe2O3破碎后与Bi2O3和B2O3按照质量比1:0.005:0.003混合进行2h球磨,100℃干燥4h,即得高频磁性材料。
瓷环的制备:
将本实施例的高频磁性材料和聚乙烯醇树脂(数均分子量23000g/mol)按照质量比1:0.05混合,再在喷雾塔内喷雾造粒,制得粒径35μm~150μm的颗粒,再在300MPa的压力下成型瓷环坯体,瓷环坯体的外径为14.6mm,内径为9mm,高度为3.5mm,再在空气气氛中1050℃处理2h,得到瓷环。
实施例2:
一种高频磁性材料,其制备方法包括以下步骤:
1)通过物理气相沉积法在平均粒径0.3μm、最大粒径<0.9μm的Fe2O3粉末表面依次沉积厚度6nm的ZnO层和厚度6nm的NiO层,得到ZnO-NiO包覆改性Fe2O3
2)通过化学气相沉积法在ZnO-NiO包覆改性Fe2O3表面依次沉积厚度6nm的ZnO层、厚度3nm的CuO层和厚度6nm的NiO层,得到ZnO-CuO-NiO包覆改性Fe2O3
3)通过物理气相沉积法在ZnO-CuO-NiO包覆改性Fe2O3表面依次沉积厚度1nm的SiO2层和厚度1nm的Bi2O3层,再置于700℃下处理5h,得到ZnO-NiO-CuO-SiO2-Bi2O3包覆改性Fe2O3(ZnO-NiO-CuO-SiO2-Bi2O3包覆改性Fe2O3中Fe2O3的质量百分含量为63%,ZnO的质量百分含量为12%,CuO的质量百分含量为1%,NiO的质量百分含量为22%,Bi2O3的质量百分含量为1%,SiO2的质量百分含量为1%);
4)将ZnO-NiO-CuO-SiO2-Bi2O3包覆改性Fe2O3破碎后与Bi2O3和B2O3按照质量比1:0.001:0.001混合进行2h球磨,100℃干燥4h,即得高频磁性材料。
瓷环的制备:
将本实施例的高频磁性材料和聚乙烯醇树脂(数均分子量23000g/mol)按照质量比1:0.05混合,再在喷雾塔内喷雾造粒,制得粒径35μm~150μm的颗粒,再在300MPa的压力下成型瓷环坯体,瓷环坯体的外径为14.6mm,内径为9mm,高度为3.5mm,再在空气气氛中950℃处理2h,得到瓷环。
实施例3:
一种高频磁性材料,其制备方法包括以下步骤:
1)通过物理气相沉积法在平均粒径0.45μm、最大粒径<0.9μm的Fe2O3粉末表面依次沉积厚度12nm的ZnO层和厚度12nm的NiO层,得到ZnO-NiO包覆改性Fe2O3
2)通过化学气相沉积法在ZnO-NiO包覆改性Fe2O3表面依次沉积厚度12nm的ZnO层、厚度4nm的CuO层和厚度12nm的NiO层,得到ZnO-CuO-NiO包覆改性Fe2O3
3)通过物理气相沉积法在ZnO-CuO-NiO包覆改性Fe2O3表面依次沉积厚度3nm的SiO2层和厚度1.5nm的Bi2O3层,再置于800℃下处理3.5h,得到ZnO-NiO-CuO-SiO2-Bi2O3包覆改性Fe2O3(ZnO-NiO-CuO-SiO2-Bi2O3包覆改性Fe2O3中Fe2O3的质量百分含量为68%,ZnO的质量百分含量为10%,CuO的质量百分含量为0.7%,NiO的质量百分含量为20%,Bi2O3的质量百分含量为0.8%,SiO2的质量百分含量为0.5%);
4)将ZnO-NiO-CuO-SiO2-Bi2O3包覆改性Fe2O3破碎后与Bi2O3和B2O3按照质量比1:0.003:0.0015混合进行2h球磨,100℃干燥4h,即得高频磁性材料。
瓷环的制备:
将本实施例的高频磁性材料和聚乙烯醇树脂(数均分子量23000g/mol)按照质量比1:0.05混合,再在喷雾塔内喷雾造粒,制得粒径35μm~150μm的颗粒,再在300MPa的压力下成型瓷环坯体,瓷环坯体的外径为14.6mm,内径为9mm,高度为3.5mm,再在空气气氛中1000℃处理2h,得到瓷环。
实施例4:
一种高频磁性材料,其制备方法包括以下步骤:
1)通过物理气相沉积法在平均粒径0.5μm、最大粒径<0.9μm的Fe2O3粉末表面依次沉积厚度15nm的ZnO层和厚度15nm的NiO层,得到ZnO-NiO包覆改性Fe2O3
2)通过化学气相沉积法在ZnO-NiO包覆改性Fe2O3表面依次沉积厚度15nm的ZnO层、厚度4.5nm的CuO层和厚度16nm的NiO层,得到ZnO-CuO-NiO包覆改性Fe2O3
3)通过物理气相沉积法在ZnO-CuO-NiO包覆改性Fe2O3表面依次沉积厚度3nm的SiO2层和厚度2nm的Bi2O3层,再置于850℃下处理3h,得到ZnO-NiO-CuO-SiO2-Bi2O3包覆改性Fe2O3(ZnO-NiO-CuO-SiO2-Bi2O3包覆改性Fe2O3中Fe2O3的质量百分含量为67.8%,ZnO的质量百分含量为11%,CuO的质量百分含量为0.6%,NiO的质量百分含量为19%,Bi2O3的质量百分含量为1%,SiO2的质量百分含量为0.6%);
4)将ZnO-NiO-CuO-SiO2-Bi2O3包覆改性Fe2O3破碎后与Bi2O3和B2O3按照质量比1:0.0025:0.002混合进行2h球磨,100℃干燥4h,即得高频磁性材料。
瓷环的制备:
将本实施例的高频磁性材料和聚乙烯醇树脂(数均分子量23000g/mol)按照质量比1:0.05混合,再在喷雾塔内喷雾造粒,制得粒径35μm~150μm的颗粒,再在300MPa的压力下成型瓷环坯体,瓷环坯体的外径为14.6mm,内径为9mm,高度为3.5mm,再在空气气氛中980℃处理2h,得到瓷环。
对比例1:
一种磁性材料,其制备方法包括以下步骤:
1)将63质量份的Fe2O3、12质量份的ZnO、1质量份的CuO、22质量份的NiO、1质量份的Bi2O3和1质量份的SiO2加入球磨机,球磨5h,120℃干燥8h,再置于900℃的空气气氛中处理4h,再粉碎至粒径为0.2μm~1.5μm,得到混合粉体;
2)将混合粉体、Bi2O3和B2O3按照质量比1:0.005:0.003混合进行2h球磨,100℃干燥4h,即得磁性材料。
瓷环的制备:
将本对比例的磁性材料和聚乙烯醇树脂(数均分子量23000g/mol)按照质量比1:0.05混合,再在喷雾塔内喷雾造粒,制得粒径35μm~150μm的颗粒,再在300MPa的压力下成型瓷环坯体,瓷环坯体的外径为14.6mm,内径为9mm,高度为3.5mm,再在空气气氛中1200℃处理2h,得到瓷环。
对比例2:
一种磁性材料,其制备方法包括以下步骤:
1)将63质量份的Fe2O3、12质量份的ZnO、1质量份的CuO、22质量份的NiO、1质量份的Bi2O3和1质量份的SiO2加入球磨机,球磨5h,120℃干燥8h,再置于900℃的空气气氛中处理4h,再粉碎至粒径为0.2μm~1.5μm,得到混合粉体;
2)将混合粉体、Bi2O3和B2O3按照质量比1:0.005:0.003混合进行2h球磨,100℃干燥4h,即得磁性材料。
瓷环的制备:
将本对比例的磁性材料和聚乙烯醇树脂(数均分子量23000g/mol)按照质量比1:0.05混合,再在喷雾塔内喷雾造粒,制得粒径35μm~150μm的颗粒,再在300MPa的压力下成型瓷环坯体,瓷环坯体的外径为14.6mm,内径为9mm,高度为3.5mm,再在空气气氛中1200℃处理2h,得到瓷环。
性能测试:
1)实施例1~4和对比例1~2的瓷环的电感值曲线如图1所示。
由图1可知:本发明的高频磁性材料具有非常高的自谐频率,使用频率可以达到1GHz以上,且在相同的偏置电流下较常规铁氧体电感值下降率小30%,说明其能够很好地满足同时传输数据和电源的滤波储能器件对高频化、大电流的需求。
2)对实施例1~4和对比例1~2中的瓷环进行性能测试,测试结果如下表所示:
表1瓷环的性能测试结果
Figure BDA0003230218040000061
注:
磁导率:采用精密电磁分析仪3260B进行测试,测试频率为10MHz;
电感下降率/2A电流:采用精密电磁分析仪3260B进行测试,测试频率为10MHz;
电阻率:采用体积表面电阻率测试仪进行测试。
由表1可知:实施例1~4的瓷环的直流叠加下降率要小于对比例1~2的瓷环,在实际的高频大电流应用中更具优势。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种高频磁性材料,其特征在于:所述高频磁性材料的组成包括ZnO-NiO-CuO-SiO2-Bi2O3包覆改性Fe2O3、Bi2O3和B2O3;所述ZnO-NiO-CuO-SiO2-Bi2O3包覆改性Fe2O3的组成由内至外依次为Fe2O3内核、第一ZnO层、第一NiO层、第二ZnO层、CuO层、第二NiO层、SiO2层和Bi2O3层。
2.根据权利要求1所述的高频磁性材料,其特征在于:所述ZnO-NiO-CuO-SiO2-Bi2O3包覆改性Fe2O3、Bi2O3、B2O3的质量比为1:0.001~0.005:0.001~0.003。
3.根据权利要求1或2所述的高频磁性材料,其特征在于:所述Fe2O3内核的平均粒径为0.3μm~0.6μm,且最大粒径≤0.9μm;所述第一ZnO层的厚度为6nm~19nm;所述第一NiO层的厚度为6nm~19nm;所述第二ZnO层的厚度为6nm~19nm;所述CuO层的厚度为3nm~5nm;所述第二NiO层的厚度为6nm~19nm;所述SiO2层的厚度为1nm~5nm;所述Bi2O3层的厚度为1nm~2nm。
4.根据权利要求1或2所述的高频磁性材料,其特征在于:所述ZnO-NiO-CuO-SiO2-Bi2O3包覆改性Fe2O3中Fe2O3的质量百分含量为63%~74%,ZnO的质量百分含量为8%~12%,CuO的质量百分含量为0.4%~1%,NiO的质量百分含量为17%~22%,Bi2O3的质量百分含量为0.5%~1.0%,SiO2的质量百分含量为0.1%~1.0%。
5.权利要求1~4中任意一项所述的高频磁性材料的制备方法,其特征在于,包括以下步骤:
1)将ZnO和NiO依次沉积在Fe2O3粉末表面,得到ZnO-NiO包覆改性Fe2O3
2)将ZnO、CuO和NiO依次沉积在ZnO-NiO包覆改性Fe2O3表面,得到ZnO-CuO-NiO包覆改性Fe2O3
3)将SiO2和Bi2O3依次沉积在ZnO-CuO-NiO包覆改性Fe2O3表面,再进行热处理,得到ZnO-NiO-CuO-SiO2-Bi2O3包覆改性Fe2O3
4)将ZnO-NiO-CuO-SiO2-Bi2O3包覆改性Fe2O3破碎后与Bi2O3和B2O3混合进行球磨,干燥,即得高频磁性材料。
6.根据权利要求5所述的高频磁性材料的制备方法,其特征在于:步骤1)~步骤3)所述沉积采用的方法为物理气相沉积法或化学气相沉积法。
7.根据权利要求5或6所述的高频磁性材料的制备方法,其特征在于:步骤1)~步骤3)所述沉积得到的均是无定形态的包覆层。
8.根据权利要求5或6所述的高频磁性材料的制备方法,其特征在于:步骤3)所述热处理在700~900℃下进行,处理时间为2h~5h。
9.根据权利要求5或6所述的高频磁性材料的制备方法,其特征在于:步骤4)所述球磨的时间为1h~3h。
10.权利要求1~4中任意一项所述的高频磁性材料在制备高频磁性器件中的应用。
CN202110993173.8A 2021-08-25 2021-08-25 一种高频磁性材料及其制备方法和应用 Active CN113684481B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110993173.8A CN113684481B (zh) 2021-08-25 2021-08-25 一种高频磁性材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110993173.8A CN113684481B (zh) 2021-08-25 2021-08-25 一种高频磁性材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113684481A true CN113684481A (zh) 2021-11-23
CN113684481B CN113684481B (zh) 2022-04-22

Family

ID=78583198

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110993173.8A Active CN113684481B (zh) 2021-08-25 2021-08-25 一种高频磁性材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113684481B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393667A (ja) * 1989-09-01 1991-04-18 Hitachi Ferrite Ltd 高周波用磁性材料
KR20130104807A (ko) * 2012-03-15 2013-09-25 삼성전기주식회사 금속 자성 분말과 이의 제조방법, 및 이를 자성층으로 포함하는 적층형 칩 소자
CN103360043A (zh) * 2012-03-29 2013-10-23 三菱综合材料株式会社 铁氧体薄膜的形成方法及通过该方法得到的铁氧体薄膜
CN104446414A (zh) * 2014-11-14 2015-03-25 无锡信大气象传感网科技有限公司 一种热敏传感器用铁氧体磁性材料
US20200118723A1 (en) * 2018-10-10 2020-04-16 Powdermet Inc. High Frequency Low Loss Magnetic Core and Method of Manufacture
CN111484322A (zh) * 2019-01-29 2020-08-04 Tdk株式会社 铁氧体组合物和层叠电子部件
CN112530655A (zh) * 2020-11-25 2021-03-19 广东泛瑞新材料有限公司 一种低功耗软磁合金材料及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393667A (ja) * 1989-09-01 1991-04-18 Hitachi Ferrite Ltd 高周波用磁性材料
KR20130104807A (ko) * 2012-03-15 2013-09-25 삼성전기주식회사 금속 자성 분말과 이의 제조방법, 및 이를 자성층으로 포함하는 적층형 칩 소자
CN103360043A (zh) * 2012-03-29 2013-10-23 三菱综合材料株式会社 铁氧体薄膜的形成方法及通过该方法得到的铁氧体薄膜
CN104446414A (zh) * 2014-11-14 2015-03-25 无锡信大气象传感网科技有限公司 一种热敏传感器用铁氧体磁性材料
US20200118723A1 (en) * 2018-10-10 2020-04-16 Powdermet Inc. High Frequency Low Loss Magnetic Core and Method of Manufacture
CN111484322A (zh) * 2019-01-29 2020-08-04 Tdk株式会社 铁氧体组合物和层叠电子部件
CN112530655A (zh) * 2020-11-25 2021-03-19 广东泛瑞新材料有限公司 一种低功耗软磁合金材料及其制备方法和应用

Also Published As

Publication number Publication date
CN113684481B (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
TWI567765B (zh) Magnetic parts and metal powders for use therewith and methods of making the same
JP4274897B2 (ja) Fe系非晶質金属粉末の製造方法およびこれを用いた軟磁性コアの製造方法
KR102428560B1 (ko) 연자성 분말, Fe 분말 또는 Fe를 포함하는 합금 분말의 제조 방법, 연자성 재료, 및 압분자심의 제조 방법
US8377576B2 (en) Magnetic composites and methods of making and using
JP5372481B2 (ja) 圧粉磁心及びその製造方法
CN109216006B (zh) 软磁合金粉芯及其制备方法
KR100478710B1 (ko) 연자성 분말의 제조 및 이를 이용한 인덕터의 제조방법
WO2011148826A1 (ja) 軟磁性粉末、造粒粉、圧粉磁心、電磁部品及び圧粉磁心の製造方法
JP7542714B2 (ja) シリコン酸化物被覆軟磁性粉末
JP2009302420A (ja) 圧粉磁心及びその製造方法
CN107004481B (zh) 扁平状软磁性粉末及其制造方法
TWI471876B (zh) A magnetic part, a soft magnetic metal powder for use, and a method for manufacturing the same
CN107275033A (zh) 一种软磁合金材料及其制备方法
CN103745791A (zh) 一种具有超高磁导率的铁基纳米晶磁粉芯的制备方法
CN113684481B (zh) 一种高频磁性材料及其制备方法和应用
KR102185145B1 (ko) 연자성 금속 분말, 압분 자심 및 자성 부품
JP5023041B2 (ja) 圧粉磁心及びその製造方法
KR100721501B1 (ko) 나노 결정립 연자성 합금 분말 코어의 제조 방법 및 이에 의해 제조된 나노 결정립 연자성 합금 분말 코어
CN111785471B (zh) 一种非晶纳米晶高频抗干扰磁芯复合材料及制备方法和磁芯
JP2014120699A (ja) Fe基軟磁性粉末、前記Fe基軟磁性粉末を用いた複合磁性粉末及び前記複合磁性粉末を用いた圧粉磁心
JP5549063B2 (ja) フェライト材料及びフェライト材料の製造方法
CN110783091A (zh) 一种纳米晶FeSiBCr磁粉芯的制备方法
JP5160129B2 (ja) 薄片状酸化鉄微粒子、薄片状Fe系金属微粒子及びそれらの製造方法
JP7338644B2 (ja) 焼結体およびその製造方法
CN110323029B (zh) 复合磁性体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant