CN113683415A - 一种应用于异质结的钙钛矿靶材及其制备方法 - Google Patents

一种应用于异质结的钙钛矿靶材及其制备方法 Download PDF

Info

Publication number
CN113683415A
CN113683415A CN202110865513.9A CN202110865513A CN113683415A CN 113683415 A CN113683415 A CN 113683415A CN 202110865513 A CN202110865513 A CN 202110865513A CN 113683415 A CN113683415 A CN 113683415A
Authority
CN
China
Prior art keywords
powder
heterojunction
target material
srmoo
material applied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110865513.9A
Other languages
English (en)
Inventor
刘芳
周志宏
肖世洪
雷雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UV TECH MATERIAL Ltd
Original Assignee
UV TECH MATERIAL Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UV TECH MATERIAL Ltd filed Critical UV TECH MATERIAL Ltd
Priority to CN202110865513.9A priority Critical patent/CN113683415A/zh
Publication of CN113683415A publication Critical patent/CN113683415A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/082Oxides of alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种应用于异质结的钙钛矿靶材及其制备方法,包括以下步骤:将MoO3粉体、SrCO3粉体加入到球磨机中,再加入分散剂、粘结剂、去离子水,球磨,干燥,得到SrMoO4粉体;将SrMoO4粉体放入到管式炉中,通入还原性气体,将SrMoO4粉体完全还原成SrMoO3粉体;将SrMoO3粉体进行热处理,得到前驱体粉末;将前驱体粉末用冷等静压设备压制成型得到坯体;将坯体进行排胶处理,烧结,得到应用于异质结的钙钛矿靶材。本发明所述的应用于异质结的钙钛矿靶材具有良好的致密度,低电阻率的钙钛矿靶材,应用于异质结,可以提高光电转换效率及电池性能。

Description

一种应用于异质结的钙钛矿靶材及其制备方法
技术领域
本发明涉及靶材技术领域,具体涉及一种应用于异质结的钙钛矿靶材及其制备方法。
背景技术
面对能源危机及环境污染,太阳能作为一种可再生能源,是满足全球范围内日益增长的能源需求的重要途径之一,钙钛矿型太阳能电池,是利用钙钛矿型的有机金属卤化物半导体作为吸光材料的太阳能电池,属于第三代太阳能电池,也称作新概念太阳能电池。
CN109928751A公开了一种基于钙钛矿结构的SrMoO3陶瓷靶材的制备方法,其将SrCO3粉体和 MoO3粉体球磨混合,还原,生成了SrMoO3前驱体粉末,采取冷等静压成型、烧结,得到了致密度88.5~92.2%,电阻率8.86× 10-5 Ω •cm~ 5.42× 10-5 Ω •cm的SrMoO3陶瓷靶材,其球磨时混入了分散剂聚乙烯吡咯烷酮、聚乙烯醇、羧甲基纤维素,这些杂质的存在会严重影响到的SrMoO3陶瓷靶材的致密度以及电阻率,从而降低性能,而且其致密度和电阻率仍待提高。
发明内容
本发明提供一种应用于异质结的钙钛矿靶材及其制备方法,所述的钙钛矿靶材具有良好的致密度,低电阻率。
本发明解决其技术问题采用以下技术方案:
一种应用于异质结的钙钛矿靶材的制备方法,包括以下步骤:
S1、将MoO3粉体、SrCO3粉体加入到球磨机中,再加入分散剂、粘结剂、去离子水,球磨,干燥,得到SrMoO4粉体;
S2、将SrMoO4粉体放入到管式炉中,通入还原性气体,将SrMoO4粉体完全还原成SrMoO3粉体;
S3、将SrMoO3粉体进行热处理,得到前驱体粉末;
S4、将前驱体粉末用冷等静压设备压制成型得到坯体;
S5、将坯体进行排胶处理,烧结,得到应用于异质结的钙钛矿靶材。
本发明的发明人通过将MoO3粉体、SrCO3粉体球磨混合得到SrMoO4粉体,再将SrMoO4粉体还原成SrMoO3粉体,将SrMoO3粉体进行热处理,进行冷等静压设备压制成型,在进行排胶、烧结,得到了具有良好的致密度,低电阻率的钙钛矿靶材,应用于异质结,可以提高光电转换效率及电池性能。
作为一种优选方案,所述MoO3粉体、SrCO3粉体、分散剂、粘结剂、去离子水质量比为1:0.9~1.1:0.01~0.05:0.02~0.06:0.2~0.5。
作为一种优选方案,所述MoO3粉体、SrCO3粉体、分散剂、粘结剂、去离子水质量比为1:1:0.04:0.05:0.3。
作为一种优选方案,所述分散剂为所述分散剂为聚乙二醇、聚乙烯吡咯烷酮、十二烷基苯磺酸钠中的一种或多种。
作为一种优选方案,所述粘结剂为聚乙烯醇缩丁醛。
作为一种优选方案,所述S2步骤具体为:
将SrMoO4粉体放入到管式炉中,通入氨气,在950~1200℃下还原8~13h。
作为一种优选方案,所述S3热处理具体为:将SrMoO3粉体在850~1000℃下处理4~10h。
作为一种优选方案,所述将前驱体粉末用冷等静压设备压制成型得到坯体具体为:将前驱体粉末用冷等静压设备压制成型,采用阶梯式加压和泄压,加压速率为15~25MPa/min,压力升至180~220 MPa时,保压6~12min,再以8~12 MPa/min泄压。
作为一种优选方案,所述排胶具体为:将坯体用热风循环排胶炉进行排胶处理,排胶工艺具体为:以0.8~2℃/min升温至180~220℃,保温20~35min;以0.5~1.5℃/min升温至250~350℃,保温40~70min;以0.5~1.5℃/min升温至480~550℃,保温40~70min;冷却至室温。
作为一种优选方案,所述烧结采用分段升温和分段降温,具体为:将排胶后的坯体置于烧结炉,以0.5~2℃/min升温至1000~1100℃,保温0.5~2h;以1~3℃/min升温至1380~1420℃,保温1~4h;以0.5~1.5℃/min降温至1000~1100℃,保温0.5~2h;以0.2~0.8℃/min降温至800~850℃,保温0.5~1h;以1~2℃/min降至室温。
作为一种优选方案,所述烧结采用分段升温和分段降温,具体为:将排胶后的坯体置于烧结炉,以0.8℃/min升温至1050℃,保温1h;以1.5℃/min升温至1400℃,保温2h;以1℃/min降温至1050℃,保温1h;以0.5℃/min降温至820℃,保温0.5h;以1.5℃/min降至室温。
本发明所述的应用于异质结的钙钛矿靶材的制备方法,能够有效的促进坯体内部颗粒间的物质传输,降低密度离散度,改善微观结构组织的均匀性,有效的提高致密度,有效的消除生成SrMoO3粉体的一些杂质,制备得到稳定相结构的高纯SrMoO3粉体,消除了分散剂、粘结剂引入对靶材质量及性能的影响。
本发明的有益效果:本发明通过将MoO3粉体、SrCO3粉体球磨混合得到SrMoO4粉体,再将SrMoO4粉体还原成SrMoO3粉体,将SrMoO3粉体进行热处理,进行冷等静压设备压制成型,在进行排胶、烧结,得到了具有良好的致密度,低电阻率的钙钛矿靶材,应用于异质结,可以提高光电转换效率及电池性能。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明中,除特别声明,所述的份均为质量份。
实施例1
一种应用于异质结的钙钛矿靶材的制备方法,包括以下步骤:
S1、将100质量份MoO3粉体、100质量份SrCO3粉体加入到球磨机中,再加入4质量份聚乙二醇1000、5质量份聚乙烯醇缩丁醛(麦克林试剂)、30质量份去离子水,以400rpm转速球磨5h,干燥,得到SrMoO4粉体;
S2、将SrMoO4粉体放入到管式炉中,通入氨气,在1100℃下还原10h,将SrMoO4粉体完全还原成SrMoO3粉体;
S3、将SrMoO3粉体在950℃下进行热处理6h,得到前驱体粉末;
S4、将前驱体粉末用冷等静压设备压制成型,采用阶梯式加压和泄压,加压速率为20MPa/min,压力升至200 MPa时,保压8min,再以10MPa/min泄压,得到坯体;
S5、将坯体用热风循环排胶炉进行排胶处理,排胶工艺具体为:以1℃/min升温至200℃,保温30min;以0.8℃/min升温至320℃,保温60min;以1/min升温至500℃,保温60min;冷却至室温,将排胶后的坯体置于烧结炉,以0.8℃/min升温至1050℃,保温1h;以1.5℃/min升温至1400℃,保温2h;以1℃/min降温至1050℃,保温1h;以0.5℃/min降温至820℃,保温0.5h;以1.5℃/min降至室温,得到应用于异质结的钙钛矿靶材。
本实施例所述的应用于异质结的钙钛矿靶材致密度96.2%,电阻率4.28× 10-5 Ω•cm。
通过将MoO3粉体、SrCO3粉体球磨混合得到SrMoO4粉体,再将SrMoO4粉体还原成SrMoO3粉体,将SrMoO3粉体进行热处理,进行冷等静压设备压制成型,在进行排胶、烧结,得到了具有良好的致密度,低电阻率的钙钛矿靶材,应用于异质结,可以提高光电转换效率及电池性能。
所述的应用于异质结的钙钛矿靶材的制备方法,能够有效的促进坯体内部颗粒间的物质传输,降低密度离散度,改善微观结构组织的均匀性,有效的提高致密度,有效的消除生成SrMoO3粉体的一些杂质,制备得到稳定相结构的高纯SrMoO3粉体,消除了分散剂、粘结剂引入对靶材质量及性能的影响。
实施例2
一种应用于异质结的钙钛矿靶材的制备方法,包括以下步骤:
S1、将100质量份MoO3粉体、100质量份SrCO3粉体加入到球磨机中,再加入2质量份聚乙二醇1000、3质量份聚乙烯醇缩丁醛、20质量份去离子水,以400rpm转速球磨5h,干燥,得到SrMoO4粉体;
S2、将SrMoO4粉体放入到管式炉中,通入氨气,在1050下还原11h,将SrMoO4粉体完全还原成SrMoO3粉体;
S3、将SrMoO3粉体在900℃下进行热处理6h,得到前驱体粉末;
S4、将前驱体粉末用冷等静压设备压制成型,采用阶梯式加压和泄压,加压速率为15MPa/min,压力升至180 MPa时,保压10min,再以10MPa/min泄压,得到坯体;
S5、将坯体用热风循环排胶炉进行排胶处理,排胶工艺具体为:以0.8℃/min升温至200℃,保温30min;以1℃/min升温至300℃,保温50min;以1/min升温至500℃,保温60min;冷却至室温,将排胶后的坯体置于烧结炉,以1℃/min升温至1020℃,保温1.5h;以1℃/min升温至1420℃,保温2h;以1℃/min降温至1050℃,保温1h;以0.5℃/min降温至820℃,保温0.5h;以1.5℃/min降至室温,得到应用于异质结的钙钛矿靶材。
本实施例所述的应用于异质结的钙钛矿靶材致密度90.3%,电阻率5.56× 10-5 Ω•cm。
实施例3
一种应用于异质结的钙钛矿靶材的制备方法,包括以下步骤:
S1、将100质量份MoO3粉体、100质量份SrCO3粉体加入到球磨机中,再加入5质量份分散剂、6质量份粘结剂、50质量份去离子水,以400rpm转速球磨5h,干燥,得到SrMoO4粉体;
S2、将SrMoO4粉体放入到管式炉中,通入氨气,在1100℃下还原10h,将SrMoO4粉体完全还原成SrMoO3粉体;
S4、将前驱体粉末用冷等静压设备压制成型,采用阶梯式加压和泄压,加压速率为25MPa/min,压力升至220 MPa时,保压6min,再以10MPa/min泄压,得到坯体;
S5、将坯体用热风循环排胶炉进行排胶处理,排胶工艺具体为:以2℃/min升温至220℃,保温25min;以1.2℃/min升温至350℃,保温40min;以1/min升温至500℃,保温60min;冷却至室温,将排胶后的坯体置于烧结炉,以1℃/min升温至1020℃,保温1.5h;以1℃/min升温至1420℃,保温2h;以1℃/min降温至1050℃,保温1h;以0.5℃/min降温至820℃,保温0.5h;以1.5℃/min降至室温,得到应用于异质结的钙钛矿靶材。
本实施例所述的应用于异质结的钙钛矿靶材致密度91.1%,电阻率5.42× 10-5 Ω•cm。
对比例1
对比例1与实施例1不同之处在于,对比例1所述的钙钛矿靶材不含有所述的热处理步骤,其他都相同。
一种应用于异质结的钙钛矿靶材的制备方法,包括以下步骤:
S1、将100质量份MoO3粉体、100质量份SrCO3粉体加入到球磨机中,再加入4质量份聚乙二醇1000、5质量份聚乙烯醇缩丁醛(麦克林试剂)、30质量份去离子水,以400rpm转速球磨5h,干燥,得到SrMoO4粉体;
S2、将SrMoO4粉体放入到管式炉中,通入氨气,在1100℃下还原10h,将SrMoO4粉体完全还原成SrMoO3粉体;
S3、将前驱体粉末用冷等静压设备压制成型,采用阶梯式加压和泄压,加压速率为20MPa/min,压力升至200 MPa时,保压8min,再以10MPa/min泄压,得到坯体;
S4、将坯体用热风循环排胶炉进行排胶处理,排胶工艺具体为:以1℃/min升温至200℃,保温30min;以0.8℃/min升温至320℃,保温60min;以1/min升温至500℃,保温60min;冷却至室温,将排胶后的坯体置于烧结炉,以0.8℃/min升温至1050℃,保温1h;以1.5℃/min升温至1400℃,保温2h;以1℃/min降温至1050℃,保温1h;以0.5℃/min降温至820℃,保温0.5h;以1.5℃/min降至室温,得到应用于异质结的钙钛矿靶材。
本对比例所述的应用于异质结的钙钛矿靶材致密度87.1%,电阻率5.93× 10-5 Ω•cm。
对比例2
对比例2与实施例1不同之处在于,对比例2所述的钙钛矿靶材不含有所述的排胶步骤,其他都相同。
一种应用于异质结的钙钛矿靶材的制备方法,包括以下步骤:
S1、将100质量份MoO3粉体、100质量份SrCO3粉体加入到球磨机中,再加入4质量份聚乙二醇1000、5质量份聚乙烯醇缩丁醛(麦克林试剂)、30质量份去离子水,以400rpm转速球磨5h,干燥,得到SrMoO4粉体;
S2、将SrMoO4粉体放入到管式炉中,通入氨气,在1100℃下还原10h,将SrMoO4粉体完全还原成SrMoO3粉体;
S3、将SrMoO3粉体在950℃下进行热处理6h,得到前驱体粉末;
S4、将前驱体粉末用冷等静压设备压制成型,采用阶梯式加压和泄压,加压速率为20MPa/min,压力升至200 MPa时,保压8min,再以10MPa/min泄压,得到坯体;
S5、将坯体置于烧结炉,以0.8℃/min升温至1050℃,保温1h;以1.5℃/min升温至1400℃,保温2h;以1℃/min降温至1050℃,保温1h;以0.5℃/min降温至820℃,保温0.5h;以1.5℃/min降至室温,得到应用于异质结的钙钛矿靶材。
本对比例所述的应用于异质结的钙钛矿靶材致密度89.0%,电阻率5.74× 10-5 Ω•cm。
对比例3
对比例3与实施例1不同之处在于,对比例3所述的烧结方法采用一步烧结,其他都相同。
一种应用于异质结的钙钛矿靶材的制备方法,包括以下步骤:
S1、将100质量份MoO3粉体、100质量份SrCO3粉体加入到球磨机中,再加入4质量份聚乙二醇1000、5质量份聚乙烯醇缩丁醛(麦克林试剂)、30质量份去离子水,以400rpm转速球磨5h,干燥,得到SrMoO4粉体;
S2、将SrMoO4粉体放入到管式炉中,通入氨气,在1100℃下还原10h,将SrMoO4粉体完全还原成SrMoO3粉体;
S3、将SrMoO3粉体在950℃下进行热处理6h,得到前驱体粉末;
S4、将前驱体粉末用冷等静压设备压制成型,采用阶梯式加压和泄压,加压速率为20MPa/min,压力升至200 MPa时,保压8min,再以10MPa/min泄压,得到坯体;
S5、将坯体用热风循环排胶炉进行排胶处理,排胶工艺具体为:以1℃/min升温至200℃,保温30min;以0.8℃/min升温至320℃,保温60min;以1/min升温至500℃,保温60min;冷却至室温,将排胶后的坯体置于烧结炉,以2℃/min升温1400℃,保温5h,降至室温,得到应用于异质结的钙钛矿靶材。
本对比例所述的应用于异质结的钙钛矿靶材致密度86.8%,电阻率5.98× 10-5 Ω•cm。
本发明通过将MoO3粉体、SrCO3粉体球磨混合得到SrMoO4粉体,再将SrMoO4粉体还原成SrMoO3粉体,将SrMoO3粉体进行热处理,进行冷等静压设备压制成型,在进行排胶、烧结,得到了具有良好的致密度,低电阻率的钙钛矿靶材,应用于异质结,可以提高光电转换效率及电池性能。
本发明所述的应用于异质结的钙钛矿靶材的制备方法,能够有效的促进坯体内部颗粒间的物质传输,降低密度离散度,改善微观结构组织的均匀性,有效的提高致密度,有效的消除生成SrMoO3粉体的一些杂质,制备得到稳定相结构的高纯SrMoO3粉体,消除了分散剂、粘结剂引入对靶材质量及性能的影响。
对比实施例1~3可知,不同原料配比以及制备参数制备能够影响制备得到的钙钛矿靶材的性能,其中实施例1为最佳配比、最佳制备参数,其制备得到的钙钛矿靶材致密度高、电阻率低。
对比实施例1与对比例1可知,本发明所述的制备方法中经过热处理能够提高所述的钙钛矿靶材的致密度、降低电阻率。
对比实施例1与对比例2可知,所述的制备方法中采取排胶步骤,能够提高所述的钙钛矿靶材的致密度、降低电阻率。
对比实施例1与对比例6可知,采取本发明所述的烧结方法相比于单一烧结步骤,能够显著提高致密度、降低电阻率。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本发明技术思想的范围内,进行多样的变更以及修改。本发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (10)

1.一种应用于异质结的钙钛矿靶材的制备方法,其特征在于,包括以下步骤:
S1、将MoO3粉体、SrCO3粉体加入到球磨机中,再加入分散剂、粘结剂、去离子水,球磨,干燥,得到SrMoO4粉体;
S2、将SrMoO4粉体放入到管式炉中,通入还原性气体,将SrMoO4粉体完全还原成SrMoO3粉体;
S3、将SrMoO3粉体进行热处理,得到前驱体粉末;
S4、将前驱体粉末用冷等静压设备压制成型得到坯体;
S5、将坯体进行排胶处理,烧结,得到应用于异质结的钙钛矿靶材。
2.根据权利要求1所述的应用于异质结的钙钛矿靶材的制备方法,其特征在于,所述MoO3粉体、SrCO3粉体、分散剂、粘结剂、去离子水质量比为1:0.9~1.1:0.01~0.05:0.02~0.06:0.2~0.5。
3.根据权利要求1所述的应用于异质结的钙钛矿靶材的制备方法,其特征在于,所述MoO3粉体、SrCO3粉体、分散剂、粘结剂、去离子水质量比为1:1:0.04:0.05:0.3。
4.根据权利要求1所述的应用于异质结的钙钛矿靶材的制备方法,其特征在于,所述分散剂为聚乙二醇、聚乙烯吡咯烷酮、十二烷基苯磺酸钠中的一种或多种;
所述粘结剂为聚乙烯醇缩丁醛。
5.根据权利要求1所述的应用于异质结的钙钛矿靶材的制备方法,其特征在于,所述S2步骤具体为:
将SrMoO4粉体放入到管式炉中,通入氨气,在950~1200℃下还原8~13h。
6.根据权利要求1所述的应用于异质结的钙钛矿靶材的制备方法,其特征在于,所述S3热处理具体为:将SrMoO3粉体在850~1000℃下处理4~10h。
7.根据权利要求1所述的应用于异质结的钙钛矿靶材的制备方法,其特征在于,所述将前驱体粉末用冷等静压设备压制成型得到坯体具体为:将前驱体粉末用冷等静压设备压制成型,采用阶梯式加压和泄压,加压速率为15~25MPa/min,压力升至180~220 MPa时,保压6~12min,再以8~12 MPa/min泄压。
8.根据权利要求1所述的应用于异质结的钙钛矿靶材的制备方法,其特征在于,所述排胶具体为:将坯体用热风循环排胶炉进行排胶处理,排胶工艺具体为:以0.8~2℃/min升温至180~220℃,保温20~35min;以0.5~1.5℃/min升温至250~350℃,保温40~70min;以0.5~1.5℃/min升温至480~550℃,保温40~70min;冷却至室温。
9.根据权利要求1所述的应用于异质结的钙钛矿靶材的制备方法,其特征在于,所述烧结采用分段升温和分段降温,具体为:将排胶后的坯体置于烧结炉,以0.5~2℃/min升温至1000~1100℃,保温0.5~2h;以1~3℃/min升温至1380~1420℃,保温1~4h;以0.5~1.5℃/min降温至1000~1100℃,保温0.5~2h;以0.2~0.8℃/min降温至800~850℃,保温0.5~1h;以1~2℃/min降至室温。
10.根据权利要求1所述的应用于异质结的钙钛矿靶材的制备方法,其特征在于,所述烧结采用分段升温和分段降温,具体为:将排胶后的坯体置于烧结炉,以0.8℃/min升温至1050℃,保温1h;以1.5℃/min升温至1400℃,保温2h;以1℃/min降温至1050℃,保温1h;以0.5℃/min降温至820℃,保温0.5h;以1.5℃/min降至室温。
CN202110865513.9A 2021-07-29 2021-07-29 一种应用于异质结的钙钛矿靶材及其制备方法 Pending CN113683415A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110865513.9A CN113683415A (zh) 2021-07-29 2021-07-29 一种应用于异质结的钙钛矿靶材及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110865513.9A CN113683415A (zh) 2021-07-29 2021-07-29 一种应用于异质结的钙钛矿靶材及其制备方法

Publications (1)

Publication Number Publication Date
CN113683415A true CN113683415A (zh) 2021-11-23

Family

ID=78578367

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110865513.9A Pending CN113683415A (zh) 2021-07-29 2021-07-29 一种应用于异质结的钙钛矿靶材及其制备方法

Country Status (1)

Country Link
CN (1) CN113683415A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116497324A (zh) * 2023-06-09 2023-07-28 深圳市汉嵙新材料技术有限公司 复合钙钛矿靶材及其制备方法、钙钛矿太阳电池的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109928751A (zh) * 2019-03-21 2019-06-25 中国科学院宁波材料技术与工程研究所 一种SrMoO3陶瓷靶材的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109928751A (zh) * 2019-03-21 2019-06-25 中国科学院宁波材料技术与工程研究所 一种SrMoO3陶瓷靶材的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116497324A (zh) * 2023-06-09 2023-07-28 深圳市汉嵙新材料技术有限公司 复合钙钛矿靶材及其制备方法、钙钛矿太阳电池的制备方法

Similar Documents

Publication Publication Date Title
CN112397715B (zh) 一种硬碳材料及其制备方法和钠离子电池
WO2018064862A1 (zh) 一种添加还原性有机物制备磷酸铁材料的方法
CN107482192A (zh) 单晶三元正极材料及其制备方法和锂离子电池
CN112390628B (zh) 一种氧化铝靶材的制备方法
CN115259136A (zh) 一种使用废弃生物质大批量制备生物质基硬碳材料的方法
CN108847478A (zh) 一种锂电池硅碳纳米复合负极材料及其制备方法
CN113683415A (zh) 一种应用于异质结的钙钛矿靶材及其制备方法
CN110112384B (zh) 一种多孔石墨烯硅负极材料的制备方法
CN115557483A (zh) Latp电解质粉末制备方法、电解质片及全固态电池
CN114388738A (zh) 一种硅基负极材料及其制备方法和应用
CN111470508B (zh) 一种生物氧化亚硅的碳复合方法及其产物
CN114725362B (zh) 一种多孔结构黑磷烯自支撑负极材料的制备方法
CN115579470B (zh) 一种改性沥青包覆微晶石墨负极材料及其制备方法
CN115425221B (zh) 一种硬碳复合材料、制备方法及应用和锂离子电池
CN106435738A (zh) 一种碲锌镉多晶的制备方法
CN110484999A (zh) 一种高纯半导体单晶炉粘胶基石墨毡及其制备工艺
CN115036473A (zh) 一种基于硬碳前驱体和掺杂相的钠离子电池负极材料及制备方法
CN110323436B (zh) 钛酸锂复合材料及其制备方法、锂离子电池的电极片及其制备方法以及锂离子电池
CN114005973B (zh) 一种杂原子改性复合负极材料的制备方法及应用
CN101552339B (zh) 低温催化石墨化质子交换膜燃料电池双极板的制备方法
CN115636405B (zh) 一种高容量硬碳负极材料的制备方法
CN110436895B (zh) 一种多晶硅还原炉用高纯氧化铝绝缘环
CN116525962A (zh) 一种精准制备立方晶系富锂石榴石结构固体电解质的方法
CN115498149A (zh) 一种砂磨结合喷雾干燥制备氧化钛掺杂硅碳锂离子电池负极材料的方法
CN116354334A (zh) 一种包覆无定形碳的石墨及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20211123