CN113680321A - 一种同步高效去除水中As(III)和Cr(VI)的载铁活性炭、制备方法及其应用 - Google Patents

一种同步高效去除水中As(III)和Cr(VI)的载铁活性炭、制备方法及其应用 Download PDF

Info

Publication number
CN113680321A
CN113680321A CN202111027555.1A CN202111027555A CN113680321A CN 113680321 A CN113680321 A CN 113680321A CN 202111027555 A CN202111027555 A CN 202111027555A CN 113680321 A CN113680321 A CN 113680321A
Authority
CN
China
Prior art keywords
activated carbon
iron
iii
water
synchronously
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111027555.1A
Other languages
English (en)
Other versions
CN113680321B (zh
Inventor
孔艳丽
黄智研
马雅倩
储航宇
马江雅
丁磊
陈昊
刘甜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Technology AHUT
Original Assignee
Anhui University of Technology AHUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Technology AHUT filed Critical Anhui University of Technology AHUT
Priority to CN202111027555.1A priority Critical patent/CN113680321B/zh
Publication of CN113680321A publication Critical patent/CN113680321A/zh
Application granted granted Critical
Publication of CN113680321B publication Critical patent/CN113680321B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及水处理技术领域,具体涉及一种同步高效去除水中As(III)和Cr(VI)的载铁活性炭、制备方法及其应用,采用的是恒温浸润法,选取合适的活性炭粉为原料,经过稀硝酸预处理,先与铁盐溶液充分浸渍12h后,再加入一定量的高铁酸钾缓冲溶液继续震荡12h,固液分离将所得固体清洗后在适当温度下熟化后研磨,在活性炭改性载铁过程中,不同价态铁盐的化学反应将创新性地在活性炭表面及内部原位生成丰富的铁氧化物,极大提高了对As(III)和Cr(VI)的去除效果,回收处理后可重复使用,既提高了对As(III)和Cr(VI)的同步高效去除,又解决了在吸附法中活性炭极细的颗粒粒径导致其在实际应用中水头损失过大,固液分离困难,易造成构筑物管道或设备堵塞,限制了其工业化应用的问题。

Description

一种同步高效去除水中As(III)和Cr(VI)的载铁活性炭、制备 方法及其应用
技术领域
本发明涉及水处理技术领域,具体涉及一种同步高效去除水中As(III)和Cr(VI)的载铁活性炭、制备方法及其应用。
背景技术
砷及砷化物(As)是诸多权威机构所公认的致癌物,人类长期接触和饮用砷超标的水会引起各种急慢性中毒,甚至会面临患皮肤癌、膀胱癌等各类疾病的危险。水源水中的砷一般以三价砷As(III)和五价砷As(V)两种价态存在,其中As(III)比As(V)的毒性高出60倍左右。含铬(Cr)废水的主要来源包括皮革鞣制、电镀、纺织印染、原子能发电厂、冶金采矿等众多工业行业的废水。Cr在自然界中多以氧化物的状态存在,Cr(II)、Cr(III)、Cr(VI)为其主要的氧化价态,其中Cr(VI)是对人类健康威胁最大的8种化学物质之一,属于重金属污染物。目前,对含砷废水的处理技术主要有吸附法、氧化与沉淀法、膜分离法、阴阳离子交换法。而对含铬废水的主要处理技术包括吸附法、化学还原法、钡盐沉淀法、电化学法、膜分离法、离子交换法和生物修复法等。
在吸附法中活性炭吸附具有操作简便、吸附效率高、运行稳定、成本低廉等优点,而水合氧化铁对砷和铬这两种污染物均具有显著的选择性配位性,吸附去除效果好,因此,在反应过程中原位生成丰富的水合铁氧化物是强化去除As(III)和Cr(VI)的关键。但其极细的水合氧化铁颗粒粒径(纳米级粒径)导致在实际应用时水头损失过大,固液分离困难,易造成构筑物管道或设备堵塞,限制了其工业化应用。
鉴于上述缺陷,本发明创作者经过长时间的研究和实践终于获得了本发明。
发明内容
本发明的目的在于创新性的将原位生成的铁氧化物有效负载到活性炭表面及其内部,并解决在吸附法中极细的水合氧化铁颗粒粒径导致其在实际应用中水头损失过大,固液分离困难,易造成构筑物管道或设备堵塞,限制了其工业化应用的问题,提供了一种同步高效去除水中As(III)和Cr(VI)的载铁活性炭、制备方法及其应用。
为了实现上述目的,本发明公开了一种同步高效去除水中As(III)和Cr(VI)的载铁活性炭的制备方法,包括以下步骤:
S1:用超纯水将活性炭粉清洗3次以上,清洗后的活性炭粉在60℃下真空干燥,研磨后得到PAC;
S2:将步骤S1中得到的PAC加入稀硝酸溶液中,搅拌均匀,浸渍24h,固液分离后得到的固体用超纯水清洗至上清液pH不变,所得固体在60℃下真空干燥10h,研磨后得到APAC;
S3:将步骤S2中得到的APAC与铁盐加入超纯水中,在25℃下水浴震荡12h得到混合溶液;
S4:向步骤S3中得到的混合溶液中缓慢滴加浓度为0.01mol/L的高铁酸钾缓冲溶液,继续震荡12h,固液分离后将得到的固体用超纯水冲洗至清洗出水的pH保持不变,将得到的固体在80℃下真空熟化12h,研磨得到载铁活性炭粉AFPAC。
所述步骤S1中活性炭粉纯度为分析纯,粒径为200目左右,碘值为1000mg/g,亚甲基蓝值为120mg/g,水分为10%,灰分为9%。
所述步骤S2中的稀硝酸溶液浓度为0.1mol/L,pH为1,搅拌速度为100r/min,稀硝酸与活性炭粉体积比为3:1
所述步骤S3中铁盐为亚铁盐,超纯水pH为4。
所述亚铁盐为FeSO4·7H2O或FeCl3,所述亚铁盐与活性炭粉的质量比为1:5。
所述步骤S4中高铁酸钾溶液采用10mM的硼砂缓冲液配置,采用湿式氧化法制得,纯度在96%以上,浓度为0.01mol/L,pH为9.2。
所述步骤S4中活性炭、高铁酸钾的质量比为1:0.002。。
本发明还公开了一种采用上述制备方法制得的同步高效去除水中As(III)和Cr(VI)的载铁活性炭以及这种载铁活性炭在含砷和铬废水处理中的应用。
所述载铁活性炭在使用后冲洗干净,在1.0mol/L的氯化钠溶液中搅拌浸渍24h,清洗后在60℃下干燥10h进行回收,所述载铁活性炭可重复回收使用3次。
与现有技术比较本发明的有益效果在于:本发明将原位生成的吸附性能良好的铁氧化物固载在多孔材料活性炭粉上,制备出吸附和固液分离性能良好的载铁活性炭复合材料,绿色安全地应用了活性炭和水合氧化铁的吸附性能,同时又解决了水合氧化铁固液分离的难题;通过实验研究得出制备水合氧化铁负载活性炭即载铁活性炭的较优条件,强化活性炭酸、氧化剂的处理,同时控制铁盐的种类和负载顺序,创新性地原位生成的吸附性能良好的铁氧化物,可以明显提高负载的水合氧化铁的比表面积,从而有效地提高材料对污染物的吸附性能;这种载铁活性炭成本低廉、制作简便、炭损失率小、吸附效率高、绿色环保,用来处理含As(III)和Cr(VI)的复合污染水体。对活性炭的吸附效能大大优化,实现了不同价态铁盐原位反应生成的多种水合氧化铁有效利用和同步对水体中As(III)和Cr(VI)污染物的高效去除。
附图说明
图1(a)、(b)分别为吸附前后载铁活性炭AFPAC的X射线光电子能谱(XPS)中的Fe2p的精细谱;
图2(a)、(b)分别为吸附前后载铁活性炭AFPAC的XPS全谱图,图2(c)和(d)分别为吸附前后载铁活性炭AFPAC的Cr2p和As3d的XPS精细谱图。
具体实施方式
以下结合附图,对本发明上述的和另外的技术特征和优点作更详细的说明。
实施例1
(1)选择纯度为分析纯,粒径为200目左右,碘值为1000mg/g;亚甲基蓝值为120mg/g;粒度超过200目占比90%;水分为10%;灰分为9%的活性炭粉。常温下用用超纯水清洗活性炭粉3次以上,清洗过程中充分搅拌、浸泡,降低其碱性,清除活性炭粉表面的灰分和杂质,过滤后将洗净的活性炭粉置于60℃的真空干燥箱里干燥10h,研磨后的样品PAC记为第一样品,备用;
(2)常温下,取约10g的步骤(1)中得到的活性炭粉PAC,用浓度为0.1mol/L,pH约为1左右的稀硝酸,在100r/min机械均匀搅拌条件下充分浸渍24h,稀硝酸与活性炭粉体积比为2:1。浸渍结束后固液分离,将所得固体用超纯水清洗至上清液pH不变后在60℃下真空烘干10h,研磨后得到样品APAC记为第二样品,备用;
(3)常温下进行亚铁盐为FeSO4·7H2O负载,取0.2g FeSO4·7H2O和1g步骤(2)所得APAC投加到pH为4的超纯水的锥形瓶中,将混合液在25℃水浴条件下以150r/min转速震荡12h;
(4)取出步骤(3)中水浴震荡后锥形瓶,并向其缓慢滴加1.2mL浓度为0.01mol/L的高铁酸钾缓冲溶液,继续以150r/min转速水浴震荡12h后固液分离。其中高铁酸钾缓冲溶液由10mM的硼砂缓冲液配置,pH为9.2左右;
5)将步骤(4)中固液分离所得固体用超纯水反复清洗至上清液pH保持不变后进行熟化处理,在80℃的真空条件下熟化12h,研磨后即制得载铁活性炭AFPAC。
实施例2
(1)选择纯度为分析纯,粒径为200目左右,碘值为1000mg/g;亚甲基蓝值为120mg/g;粒度超过200目占比90%;水分为10%;灰分为9%的活性炭粉。常温下用用超纯水清洗活性炭粉3次以上,清洗过程中充分搅拌、浸泡,降低其碱性,清除活性炭粉表面的灰分和杂质,过滤后将洗净的活性炭粉置于60℃的真空干燥箱里干燥10h,研磨后的样品PAC记为第一样品,备用;
(2)常温下,取约10g的步骤(1)中得到的活性炭粉PAC,用浓度0.1mol/L,pH约为1左右的稀硝酸,在100r/min机械均匀搅拌条件下充分浸渍24h,稀硝酸与活性炭粉体积比为2:1。浸渍结束后固液分离,将所得固体用超纯水清洗至上清液pH不变后在60℃下真空烘干10h,研磨后得到样品APAC记为第二样品,备用;
(3)常温下进行三价铁盐FeCl3负载,取0.2g FeCl3和1g步骤(2)所得APAC投加到pH为4的超纯水的锥形瓶中,将混合液在25℃水浴条件下以150r/min转速震荡12h;
(4)取出步骤(3)中水浴震荡后锥形瓶并向其缓慢滴加1.2mL浓度为0.01mol/L的高铁酸钾缓冲溶液,继续以150r/min转速水浴震荡12h后固液分离。其中高铁酸钾缓冲溶液由10mM的硼砂缓冲液配置,pH为9.2左右;
(5)将步骤(4)中固液分离所得固体用超纯水反复清洗至上清液pH保持不变后进行熟化处理,在80℃的真空条件下熟化12h,研磨后即制得载铁活性炭AFPAC。
实施例3
(1)选择纯度为分析纯,粒径为200目左右,碘值为1000mg/g;亚甲基蓝值为120mg/g;粒度超过200目占比90%;水分为10%;灰分为9%的活性炭粉。常温下用用超纯水清洗活性炭粉3次以上,清洗过程中充分搅拌、浸泡,降低其碱性,清除活性炭粉表面的灰分和杂质,过滤后将洗净的活性炭粉置于60℃的真空干燥箱里干燥10h,研磨后的样品PAC记为第一样品,备用;
(2)常温下,取约10g的步骤(1)中得到的活性炭粉PAC,用浓度为0.1mol/L,pH约为1左右的稀硝酸,在100r/min机械均匀搅拌条件下充分浸渍24h,稀硝酸与活性炭粉体积比为2:1,浸渍结束后固液分离,将所得固体用超纯水清洗至上清液pH不变后在60℃下真空烘干10h,研磨后得到样品APAC记为第二样品,备用;
(3)将高铁酸钾缓冲液(0.01mol/L)与酸处理后活性炭粉APAC以1.2mL:1g的比例投加到pH为4的超纯水的锥形瓶中,这个过程中先加入活性炭粉APAC进行摇匀,后缓慢滴加高铁酸钾缓冲液,在25℃水浴条件下以150r/min转速震荡24h。其中高铁酸钾缓冲溶液由10mM的硼砂缓冲液配置,pH为9.2左右;
(4)将步骤(3)中固液分离所得固体用超纯水反复清洗至上清液pH保持不变后进行熟化处理,在80℃的真空条件下熟化12h,研磨后即制得载铁活性炭AFPAC。
将制备的载铁活性炭AFPAC应用于对含砷As(III)废水,考察其吸附除As(III)效果,结果见表1所示。结果表明,制备的载铁活性炭AFPAC除As(III)效果显著,其中实施例1成品的除As(III)效果最佳,达到99.58%。实现了不同价态铁盐原位反应生成的多种水合氧化铁有效利用和对水体中As(III)的高效去除。
表1实施例1~3得到的载铁活性炭对含砷废水的处理效果
吸附剂 投加量(g/L) 初始浓度(mg/L) 去除率(%) 吸附量(mg/g)
原始活性炭 1 1 32.97 0.330
实施例1成品 1 1 99.58 0.996
实施例2成品 1 1 85.50 0.855
实施例3成品 1 1 62.43 0.624
将制备的载铁活性炭AFPAC应用于对含Cr(VI)废水,考察其吸附除Cr(VI)效果,结果见表2所示。结果表明,制备的载铁活性炭AFPAC除Cr(VI)效果良好,其中实施例1成品的除砷效果最优,达到82.83%。实现了不同价态铁盐原位反应生成的多种水合氧化铁有效利用和对水体中Cr(VI)的高效去除。
表2实施例1~3得到的载铁活性炭对含铬废水的处理效果
吸附剂 投加量(g/L) 初始浓度(mg/L) 去除率(%) 吸附量(mg/g)
原始活性炭 1 20 53.60 10.72
实施例1成品 1 20 82.83 16.57
实施例2成品 1 20 67.09 13.42
实施例3成品 1 20 56.62 11.32
选择制备的除As(III)和Cr(VI)效果最佳的实施例1成品载铁活性炭AFPAC,应用于同时含As(III)和Cr(VI)的废水,考察其吸附同步除As(III)和Cr(VI)效果,结果见表3所示。结果表明,制备的载铁活性炭AFPAC具有同步高效除As(III)和Cr(VI)的作用。且相较于单独除As(III)和Cr(VI),同步去除As(III)和Cr(VI)的效果均有提高,这表明在同步吸附除污过程中,As(III)和Cr(VI)的共存会促进电子传递效率,强化载铁活性炭AFPAC的吸附除污效果。实现了不同价态铁盐原位反应生成的多种水合氧化铁有效利用和同步对水体中As(III)和Cr(VI)的高效去除。
表3实施例1得到的载铁活性炭(投放量为1g/L)对复合废水的处理效果
Figure BDA0003244124250000051
Figure BDA0003244124250000061
实施例1制备的载铁活性炭在使用后冲洗干净,在1.0mol/L的氯化钠溶液中搅拌浸渍24h,清洗后在60℃下干燥10h进行回收,所述载铁活性炭在重复回收使用3次后,仍具备较好的吸附能力,回收实施例1的载铁活性炭对砷铬复合废水去除效果如表4。
表4回收实施例1得到的载铁活性炭(原始投放量为1g/L)对复合废水的处理效果
回收次数 砷的去除率(%) 砷的吸附量(μg/g) 铬的去除率(%) 铬的吸附量(mg/g)
1 90.57 953.26 76.56 16.82
2 85.64 951.56 69.78 16.20
3 76.59 890.58 59.68 14.04
结合XPS对其原位生成铁氧化物机理进行分析,结果如图1(a)、和(b)所示。根据XPS中Fe2p的精细谱,改性后活性炭表面及其内部原位生成了丰富了铁氧化物,在709.0eV、711.6eV处出现了Fe的特征峰,根据XPS谱图的数据库匹配,表明有FeO及FeOOH生成,所以AFPAC上的Fe(III)主要是以FeOOH的形式负载的,同时还存在大量的Fe(II),以FeO形态负载的。改性材料同步去除As(III)和Cr(VI)后(图1(b)),铁氧化物的形态发生了显著变化,FeO相对含量大量减少,出现以Fe(III)的(氢)氧化物如FeOOH、Fe2O3为主,表明原位生成的铁氧化物在吸附去除重金属污染物过程中起到了重要作用。
图2(a)、(b)分别为载铁活性炭AFPAC吸附除As(III)和Cr(VI)前后的XPS全谱图,图2(c)和(d)分别为载铁活性炭AFPAC吸附前后的Cr2p和As3d的XPS精细谱图。由图2(a)、(b)可知,载铁活性炭AFPAC吸附前后C1s的结合能均未曾改变,为炭纤维中炭骨架峰,无谱峰分裂现象,吸附后的AFPAC中O1s的结合能有所提高,说明O原子参加了吸附反应且参加反应的程度最强,配位络合作用使得电荷转移至其他离子,从而导致电荷密度降低,结合能升高。对比吸附前后的AFPAC的全谱图可以看出,吸附后的全谱图中在45.0eV附近出现了一个砷的特征峰,而在578eV附近新出现了一个铬的特征峰,结合图2(a)、(b)Cr2p和As3d的XPS精细谱,查阅XPS标准谱库对比可知,在AFPAC吸附砷铬复合水体过程中,砷最终以As(III)、As(V)两种形式存在,和水合氧化铁形成配位络合物被吸附在载铁活性炭上,吸附过程中砷价态的变化表明载铁活性炭表面存在具有氧化性的物质,这些氧化性的物质推测一部分来自少量的Fe(VI)和游离的Fe(III)离子,另一部分源于活性炭表面具有氧化性的含氧基团,例如-C=O、-C=C-(见公式1)。而铬是以Cr(III)、Cr(VI)两种形式存在,铬价态的变化主要由于与AFPAC上的Fe(II)发生氧化还原反应,Cr(III)一部分与Fe(II)形成铬铁氧化物(FeCr2O4)被AFPAC吸附,还有一部分形成Cr(OH)3被吸附在载铁活性炭上。而剩余的Cr(VI)主要是以HCrO4-形式被AFPAC吸附(见公式2)。
Figure BDA0003244124250000071
Figure BDA0003244124250000072
以上所述仅为本发明的较佳实施例,对本发明而言仅仅是说明性的,而非限制性的。本专业技术人员理解,在本发明权利要求所限定的精神和范围内可对其进行许多改变,修改,甚至等效,但都将落入本发明的保护范围内。

Claims (10)

1.一种同步高效去除水中As(III)和Cr(VI)的载铁活性炭的制备方法,其特征在于,包括以下步骤:
S1:用超纯水将活性炭粉清洗3次以上,清洗后的活性炭粉在60℃下真空干燥,研磨后得到PAC;
S2:将步骤S1中得到的PAC加入稀硝酸溶液中,搅拌均匀,浸渍24h,固液分离后得到的固体用超纯水清洗至上清液pH不变,所得固体在60℃下真空干燥10h,研磨后得到APAC;
S3:将步骤S2中得到的APAC与铁盐加入超纯水中,在25℃下水浴震荡12h得到混合溶液;
S4:向步骤S3中得到的混合溶液中缓慢滴加浓度为0.01mol/L的高铁酸钾缓冲溶液,继续震荡12h,固液分离后将得到的固体用超纯水冲洗至清洗出水的pH保持不变,将得到的固体在80℃下真空熟化12h,研磨得到载铁活性炭粉AFPAC。
2.如权利要求1所述的一种同步高效去除水中As(III)和Cr(VI)的载铁活性炭的制备方法,其特征在于,所述步骤S1中活性炭粉纯度为分析纯,粒径为200目左右,碘值为1000mg/g,亚甲基蓝值为120mg/g,水分为10%,灰分为9%。
3.如权利要求1所述的一种同步高效去除水中As(III)和Cr(VI)的载铁活性炭的制备方法,其特征在于,所述步骤S2中的稀硝酸溶液浓度为0.1mol/L,pH为1,搅拌速度为100r/min,稀硝酸与活性炭粉体积比为3:1。
4.如权利要求1所述的一种同步高效去除水中As(III)和Cr(VI)的载铁活性炭的制备方法,其特征在于,所述步骤S3中铁盐为亚铁盐,超纯水pH为4。
5.如权利要求4所述的一种同步高效去除水中As(III)和Cr(VI)的载铁活性炭的制备方法,其特征在于,所述亚铁盐为FeSO4·7H2O或FeCl3,所述亚铁盐与活性炭粉的质量比为1:5。
6.如权利要求1所述的一种同步高效去除水中As(III)和Cr(VI)的载铁活性炭的制备方法,其特征在于,所述步骤S4中高铁酸钾溶液采用10mM的硼砂缓冲液配置,采用湿式氧化法制得,纯度为96%以上,浓度为0.01mol/L,pH为9.2。
7.如权利要求1所述的一种同步高效去除水中As(III)和Cr(VI)的载铁活性炭的制备方法,其特征在于,所述步骤S4中活性炭、高铁酸钾的质量比为1:0.002。
8.一种如权利要求1~7任一项所述的制备方法制得的同步高效去除水中As(III)和Cr(VI)的载铁活性炭。
9.一种如权利要求8所述的同步高效去除水中As(III)和Cr(VI)的载铁活性炭在含砷和铬废水处理中的应用。
10.如权利要求9所述的一种同步高效去除水中As(III)和Cr(VI)的载铁活性炭在含砷和铬废水处理中的应用,其特征在于,所述载铁活性炭在使用后冲洗干净,在1.0mol/L的氯化钠溶液中搅拌浸渍24h,清洗后在60℃下干燥10h进行回收,所述载铁活性炭可重复回收使用3次。
CN202111027555.1A 2021-09-02 2021-09-02 一种同步高效去除水中As(III)和Cr(VI)的载铁活性炭、制备方法及其应用 Active CN113680321B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111027555.1A CN113680321B (zh) 2021-09-02 2021-09-02 一种同步高效去除水中As(III)和Cr(VI)的载铁活性炭、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111027555.1A CN113680321B (zh) 2021-09-02 2021-09-02 一种同步高效去除水中As(III)和Cr(VI)的载铁活性炭、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN113680321A true CN113680321A (zh) 2021-11-23
CN113680321B CN113680321B (zh) 2024-04-02

Family

ID=78585217

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111027555.1A Active CN113680321B (zh) 2021-09-02 2021-09-02 一种同步高效去除水中As(III)和Cr(VI)的载铁活性炭、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN113680321B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102614854A (zh) * 2012-03-31 2012-08-01 复旦大学 一种除磷载铁活性炭吸附剂的制备方法
CN107175073A (zh) * 2017-07-04 2017-09-19 嘉兴沃特泰科环保科技有限公司 一种水处理活性炭的制备方法及应用
CN111111615A (zh) * 2019-12-27 2020-05-08 扬州大学 一种类珊瑚状生物炭/水合氧化铁复合除砷剂的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102614854A (zh) * 2012-03-31 2012-08-01 复旦大学 一种除磷载铁活性炭吸附剂的制备方法
CN107175073A (zh) * 2017-07-04 2017-09-19 嘉兴沃特泰科环保科技有限公司 一种水处理活性炭的制备方法及应用
CN111111615A (zh) * 2019-12-27 2020-05-08 扬州大学 一种类珊瑚状生物炭/水合氧化铁复合除砷剂的制备方法

Also Published As

Publication number Publication date
CN113680321B (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
Yu et al. Cerium oxide modified activated carbon as an efficient and effective adsorbent for rapid uptake of arsenate and arsenite: Material development and study of performance and mechanisms
Zhang et al. Simultaneous scavenging of Cd (II) and Pb (II) from water by sulfide-modified magnetic pinecone-derived hydrochar
CN109384299B (zh) 一种草酸钠改性零价铁去除水体中六价铬的方法
Mishra et al. Removal of antimonite (Sb (III)) and antimonate (Sb (V)) using zerovalent iron decorated functionalized carbon nanotubes
CN104437364B (zh) 一种石墨烯负载纳米零价铁复合材料的制备方法及该复合材料吸附污染物后的再生利用方法
JP6982318B2 (ja) タリウム含有廃水処理方法
CN108311117B (zh) 一种用于重金属废水处理的磁性生物炭材料及其制备方法
CN112978983B (zh) 基于铁基生物炭的重金属络合废水处理及其资源化工艺
CN103011328A (zh) 一种新型高效吸附水中磷的石墨烯负载纳米铁材料
Zhao et al. Quantitative analysis on the redox conversion mechanism of Cr (VI) and As (III) by iron carbide based biochar composites
CN111905720A (zh) 一种废旧电池正极材料在催化剂中的应用、催化剂及其制备方法
CN113042000A (zh) 一种鸡粪衍生生物炭负载纳米零价铁复合材料及其制备方法和应用
Zhang et al. Outstanding performance of sulfurated titanomaghemite (Fe2TiO5) for hexavalent chromium removal: Sulfuration promotion mechanism and its application in chromium resource recovery
CN114100634A (zh) 一种磁性多组分铁碳复合类芬顿催化剂的制备方法、产品及应用
CN111675379A (zh) 一种利用粘土原矿还原-催化处理水中复合污染的方法
Van Nguyen et al. One-Step Preparation of Rice Husk-Based Magnetic Biochar and Its Catalytic Activity for p-Nitrophenol Degradation.
CN112090398B (zh) 一种光催化吸附剂及其制备方法和在污水处理中的应用
CN111111615B (zh) 一种类珊瑚状生物炭/水合氧化铁复合除砷剂的制备方法
CN113680321B (zh) 一种同步高效去除水中As(III)和Cr(VI)的载铁活性炭、制备方法及其应用
Deng et al. Remediation of arsenic (III) from aqueous solutions using zero-valent iron (ZVI) combined with potassium permanganate and ferrous ions
CN111085159A (zh) 一种去除砷的磁性纳米吸附剂及其制备方法与应用
CN111495331B (zh) 一种耐强酸杂原子磁性生物炭水处理剂及其制备方法和应用
CN115448439A (zh) 一种纳米零价铁/还原氧化石墨烯复合材料联合氧化剂去除水体硝态氮的方法
Zhang et al. 3D/2D MnO/MXene heterostructure with high efficiency for adsorbing uranium
CN111054301A (zh) 一种重金属污染地表水的修复方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant