CN113646870B - 微型场板t型栅极及其制造方法 - Google Patents

微型场板t型栅极及其制造方法 Download PDF

Info

Publication number
CN113646870B
CN113646870B CN202080021166.5A CN202080021166A CN113646870B CN 113646870 B CN113646870 B CN 113646870B CN 202080021166 A CN202080021166 A CN 202080021166A CN 113646870 B CN113646870 B CN 113646870B
Authority
CN
China
Prior art keywords
gate
opening
layer
resist layer
field plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080021166.5A
Other languages
English (en)
Other versions
CN113646870A (zh
Inventor
J·C·王
文贞顺
罗伯特·M·格拉巴
迈克尔·T·安特克里夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HRL Laboratories LLC
Original Assignee
HRL Laboratories LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HRL Laboratories LLC filed Critical HRL Laboratories LLC
Publication of CN113646870A publication Critical patent/CN113646870A/zh
Application granted granted Critical
Publication of CN113646870B publication Critical patent/CN113646870B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0272Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers for lift-off processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28575Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
    • H01L21/28587Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds characterised by the sectional shape, e.g. T, inverted T
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/765Making of isolation regions between components by field effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/413Nanosized electrodes, e.g. nanowire electrodes comprising one or a plurality of nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

一种制造具有微型场板的栅极的方法包括:在衬底上的外延层上方形成电介质钝化层;用第一抗蚀剂层涂布电介质钝化层;蚀刻第一抗蚀剂层和电介质钝化层以在电介质钝化层中形成第一开口;去除第一抗蚀剂层;以及形成三层栅极,该三层栅极具有:在第一开口中的栅极底脚,栅极底脚具有第一宽度;栅极颈部,其从栅极底脚延伸并且在第一开口的两侧上的电介质钝化层上方延伸一长度,栅极颈部具有比栅极底脚的第一宽度宽的第二宽度;以及栅极头部,其从栅极颈部延伸,栅极头部具有比栅极颈部的第二宽度宽的第三宽度。

Description

微型场板T型栅极及其制造方法
【相关申请的交叉引用】
本申请涉及并要求2019年4月4日提交的美国临时申请编号62/829,192的优先权,此处将该申请并入,如同完全阐述一样。本申请还涉及并要求2020年1月27日提交的美国非临时专利申请编号16/773,090的优先权,该申请同时提交,并且此处以引证的方式将该申请并入,如同完全阐述一样。
【关于联邦资金的声明】
本发明是在美国政府合同FA8650-18-C-7802下进行的。美国政府在本发明中具有特定权利。
【技术领域】
本公开涉及高电子迁移率晶体管(HEMT)。
【背景技术】
AlGaN/GaN高电子迁移率晶体管(HEMT)由于其具有高电子饱和速度和高电子浓度的二维电子气(2DEG)而有望用于高频晶体管。由于GaN的高临界击穿场,这些HEMT也可以提供高功率晶体管。然而,通常,高压操作下的场效应晶体管在栅极的漏极边缘处遭受高电场,这导致晶体管的击穿和/或在高压开关操作期间增加的动态导通电阻。为了降低最大电场强度,场板结构被广泛使用。场板结构的一个缺点是它增加了栅电容,并且对截止频率(fT)和最大频率(fmax)具有不利影响。
在现有技术中,已经使用了与场板电介质共形的栅极,这导致了比必需的电容更高的电容。现有技术已经描述了具有一个或多个场板的器件。传统上,较长的场板将有助于抑制跨栅漏区域的俘获,但电容的急剧增加极大地抑制高频操作。
以下参考文献【1】至【5】描述现有技术的场板结构,此处以引证的方式将参考文献并入。
参考文献
此处将以下参考文献并入,如同完全阐述一样。
【1】Y.Pei,Z.Chen,D.Brown,S.Keller,S.P.Denbaars,和U.K.Mishra"Deep-Submicrometer AlGaN/GaN HEMTs With Slant Field Plates",IEEE Electron DeviceLetters,第30卷,第4期,第328–330页,2009年4月。
【2】K.Kobayashi,S.Hatakeyama,T.Yoshida,D.Piedra,T.Palacios,T.Otsuji,和T.Suemitsu"Current Collapse Suppression in AlGaN/GaN HEMTs by Means of SlantField Plates Fabricated by Multi-layer SiCN",Solid State Electronics,第101卷,第63–69页,2014年11月。
【3】G.Xie,E.Xu,J.Lee,N.Hashemi,F.Fu,B.Zhang,和W.Ng,"Breakdown voltageenhancement for power AlGaN/GaN HEMTs with Air-bridge Field Plate",2011IEEEInternational Conference of Electron Devices and Solid-State Circuits,2011年11月17日–18日。
【4】J.Wong,K.Shinohara,A.Corrion,D.Brown,Z.Carlos,A.Williams,Y.Tang,J.Robinson,I.Khalaf,H.Fung,A.Schmitz,T.Oh,S.Kim,S.Chen,S.Burnham,A.Margomenos,和M.Micovic,"Novel Asymmetric Slant Field Plate Technology forHigh-Speed Low-Dynamic Ron E/D-mode GaN HEMTs",IEEE Electron Device Letters,第38卷,第1期,第95–98页,2017年1月。
【5】D.Brown,K.Shinohara,A.Corrion,R.Chu,A.Williams,J.Wong,I.Alvarado-Rodriguez,R.Grabar,M.Johnson,C.Butler,D.Santos,S.Burnham,J.Robinson,D.Zehnder,S.Kim,T.Oh,M.Micovic,"High-Speed,Enhancement-Mode GaN Power SwitchWith Regrown n+GaN Ohmic Contacts and Staircase Field Plates",IEEE ElectronDevice Letters,第34卷,第9期,第1118–1120页,2013年9月。
需要一种改进的晶体管结构,其提供高频操作、低动态导通电阻、减小的寄生电容和高压操作。本公开的实施方式符合这些和其他需求。
【发明内容】
在本文公开的第一实施方式中,一种制造用于晶体管的具有微型场板的栅极的方法包括:在衬底上的外延层上方形成电介质钝化层;用第一抗蚀剂层涂布电介质钝化层;蚀刻第一抗蚀剂层和电介质钝化层以在电介质钝化层中形成第一开口;去除第一抗蚀剂层;以及形成三层栅极,该三层栅极具有:在第一开口中的栅极底脚,栅极底脚具有第一宽度;栅极颈部,其从栅极底脚延伸并且在第一开口的两侧上的电介质钝化层上方延伸一长度,栅极颈部具有比栅极底脚的第一宽度宽的第二宽度;以及栅极头部,其从栅极颈部延伸,栅极头部具有比栅极颈部的第二宽度宽的第三宽度。
在本文公开的另一实施方式中,一种栅极具有微型场板的晶体管包括:衬底;衬底上的外延层;外延层上的电介质钝化层;电介质钝化层中的第一开口;以及三层栅极,该三层栅极包括:在第一开口中的栅极底脚,栅极底脚具有第一宽度;栅极颈部,其从栅极底脚延伸并且在第一开口的两侧上的电介质钝化层上方延伸一长度,栅极颈部具有比栅极底脚的第一宽度宽的第二宽度;以及栅极头部,其从栅极颈部延伸,栅极头部具有比栅极颈部的第二宽度宽的第三宽度。
这些和其他特征以及优点将从下面的详细描述和附图变得更显而易见。在附图和说明书中,附图标记指示各种特征,同样的附图标记贯穿附图和说明书这两者指代同样的特征。
【附图说明】
图1A、图1B、图1C、图1D、图1E、图1F和图1G示出了根据本公开的微型场板栅极制造处理;
图2示出了根据本公开的短/微型场板的位置;以及
图3示出了根据本公开的栅极和场板长度以及场板电介质厚度的尺寸。
【具体实施方式】
在以下描述中,阐述了大量具体细节,以清楚地描述本文公开的各种具体实施方式。然而,本领域技术人员将理解,可以在没有下面讨论的所有具体细节的情况下实践当前要求保护的发明。在其他情况下,未描述众所周知的特征,以免使本发明模糊不清。
本公开描述了一种晶体管,其将高fT和fmax T型栅极结构的优点与短场板相结合,以提高射频(RF)GaN晶体管的性能。最接近2DEG的场板在降低动态导通电阻方面具有最大的效果。在本公开中,使用小或“微型”场板来扩展电场,同时保持相对低的栅极寄生电容。另外,由于机械上较强的栅极颈部,本公开的晶体管具有较高的制造产量和较好的可重复性。
如图3中最佳示出的,微型场板60在栅极底脚80的边缘处,以减小峰值电场,同时在T型栅极头部的主体与下面的半导体结构之间留下气隙,以减小寄生电容。与现有技术的GaN T型栅极处理相比,处理时间可能稍微增加,但是由于微型场板,栅极主干或栅极颈部厚度增加,这允许机械上更坚固的T型栅极。通过将剥离(lift-off)T型栅极与微型场板结构组合,根据本公开制造的器件可以获得场板的益处,同时改善高频操作。
本发明公开的晶体管可以是三层栅极,并且使用电介质将栅极处理分成两个单独的光刻步骤,以获得小的栅极长度或宽度,其可以是40纳米或更小,如图3所示,同时改善电场分布并最小化栅极电容,以实现高频操作。大多数具有场板的现有技术器件用于低频应用和操作,并且具有大的(>100nm)栅极底脚。
图1A、图1B、图1C、图1D、图1E、图1F和图1G示出了根据本公开的微型场板栅极制造处理。该处理例示了GaN基HEMT的处理流程,但是本文描述的本发明的处理和特征不限于GaN。也可以使用其它半导体材料,例如GaAs、InP、Si和InSb。
制造步骤如下。如图1A所示,在合适的衬底14上生长可包括AlGaN势垒层12的外延层10以便形成HEMT结构,该衬底被示出为GaN,但也可为蓝宝石、碳化硅(SiC)、硅(Si)、GaAs、InP或InSb。然后,形成欧姆接触部16。形成欧姆接触部的优选实施方式是通过n+GaN再生长处理,该处理可以被执行为提供低电阻欧姆接触部16。
然后,如图1B所示,可以使用例如化学气相沉积(CVD)、等离子体增强CVD(PECVD)或原子层沉积(ALD)在结构上方形成电介质钝化层18。电介质可以是Al2O3、Si3N4或SiO2
接着,如图1C所示,可以在结构上方涂布电子束(E-beam)抗蚀剂20,随后进行栅极底脚图案化,并蚀刻电子束限定的栅极底脚图案22穿过抗蚀剂20和电介质钝化层18,并在外延层10处停止。优选干法蚀刻处理,因为湿法蚀刻更难以控制。化学过程取决于电介质,但是基于氟或氯的干法蚀刻通常是适用的。在优选实施方式中,可以使用CF4。
然后如图1D所示,去除抗蚀剂20,这在电介质钝化层18中留下开口24。抗蚀剂可以使用溶剂浴来去除。
接着,如图1E所示,执行另外的电子束处理以在开口24的顶部上限定三层(tri-layer)栅极50(参见图1F和图1G)。该处理开始于在器件上方沉积抗蚀剂26,该器件通常是在晶片或衬底上同时制造的多个相同器件中的一个。抗蚀剂优选通过旋涂处理来沉积,然后使用典型的光刻技术图案化。图案化的结果是在开口24上方的抗蚀剂中的开口28。开口28具有比开口24更大的横向尺寸。在图1E至图1G所示的实施方式中,开口28被示出为在开口24上方居中;然而,通常,两个开口不需要相对于彼此居中。
然后,在开口28的任一侧上的抗蚀剂26上沉积另外的电子束抗蚀剂30,使得电子束抗蚀剂30具有比开口28宽的开口32。然后,在开口32的任一侧上的抗蚀剂30上沉积另外的电子束抗蚀剂34,使得电子束抗蚀剂34具有比开口28宽但比开口32窄的开口36。
只要可以获得特征分辨率,可以使用其它光刻技术。顶部和底部抗蚀剂可以是ZEP,并且中间可以是PMGI;或者,顶部和底部可以是PMMA,而中间可以是MMA。可以使用其它堆叠,只要中间抗蚀剂具有相对于顶部和底部的选择性显影剂并且可以分辨特征即可。
然后,如图1F所示,蒸发金属38以形成三层栅极50。金属38可以是Ni、Ti、Pt、W、TaN或TiN。栅极也可以由多于一种金属组成。通常,栅极堆叠的底部是具有高功函数的金属;其余部分可以是任何低电阻金属。在优选实施方式中,底部20nm是Pt,其余部分是Au。
如图1F所示,金属38填充开口24和28,并部分填充开口32。金属38涂布电介质钝化层18的顶部的一部分,这形成场板70,如下面进一步描述。金属38还涂布抗蚀剂26和抗蚀剂34的顶部的一部分。
栅极50和抗蚀剂34上的金属38的形状是金属沉积方法的制品和特征。即,金属沉积的图案是金属经热蒸发的结果。其它沉积技术,诸如化学气相沉积、原子层沉积或其它技术,可以产生不同的栅极50形状。
然后,如图1G所示,将抗蚀剂26、30和34与涂布在抗蚀剂34上的金属38一起去除。该步骤可以使用溶剂,诸如丙酮、异丙醇或PRS,使用金属剥离处理执行。
最后,如图1G所示,可以可选地在三层栅极50上沉积电介质52,并且该电介质通常还将覆盖电介质18的表面。电介质52可以通过PECVD或ALD或者甚至溅射来沉积。
如图1G所示,三层栅极50具有栅极底脚80、栅极颈部82和栅极头部84。
图2示出了由三层栅极50形成的短/微型场板60的位置。短/微型场板60的宽度由开口24的宽度与开口28的宽度之间的差限定,如上所述,开口28的宽度大于开口24的宽度。图2中还示出了在GaN基HEMT中的势垒层12下方形成的二维电子气(2DEG)54。
图3示出了栅极底脚80的尺寸,栅极底脚可以具有40纳米或更小的长度或宽度83。栅极底脚80形成在开口24中。微型场板60的长度81可以在10纳米到40纳米长度的范围内。微型场板60可以具有不同的长度。例如,微型场板60可以在朝向晶体管的漏极的一侧上更长。场板电介质64是电介质18的在微型场板60下面的部分。如图所示,微型场板60在外延层10上方的高度可以是5纳米至75纳米。
当金属38被蒸发并涂布抗蚀剂26的顶部的一部分时,形成作为三层栅极50的一部分的场板70。场板70通过气隙72与场板电介质64分离,该气隙的高度可以是10nm到200nm。场板70的长度可以是栅极头部84宽度的一半减去栅极颈部82宽度的一半。栅极头部84的宽度大于栅极颈部82的宽度。
由场板电介质64支撑的微型场板60提供了比现有技术的T型栅极结构中的栅极底脚更强的栅极底脚80,因为在现有技术的T型栅极结构中,栅极底脚从外延层一直向上延伸到栅极头部,这导致了弱的栅极底脚。在本公开中,从栅极底脚80的顶部—可为外延层10上方5nm至75nm—至栅极头部84的底部的栅极颈部82的宽度是栅极底脚宽度的大约3倍,并且由场板电介质64支撑,如图3所示,从而大幅增加了栅极的机械强度。结果是更高产量的器件和更好的可重复性。
根据本公开制造的HEMT晶体管改善了电场分布并最小化了栅极电容,这提供了高频操作。
现在已经根据专利法规的要求描述了本发明,本领域技术人员将理解如何对本发明进行改变和修改以满足其特定要求或条件。这种改变和修改可以在不脱离如本文公开的本发明的范围和精神的情况下进行。
为了例示和公开,根据法律的要求,呈现了示例性和优选实施方式的前述详细描述。不旨在穷尽也不将本发明限于所述的精确形式,而是仅使得本领域其他技术人员能够理解本发明如何适合于特定的用途或实施方案。修改例和变型例的可能性对于本领域技术人员将是明显的。示例性实施方式的描述不旨在限制,这些实施方式可以已包括公差、特征尺寸、特定操作条件、工程规范等,并且可以在实施方案之间变化或随着现有技术的变化而变化,并且不应从其暗示任何限制。申请人已经关于当前技术水平做出了本公开,但是还预期进展,并且未来的改编可以考虑这些进展,即根据当时的当前技术水平。如果适用,则预期本发明的范围由书面权利要求以及等同物来限定。对单数形式的权利要求元件的参照不旨在意指“一个且仅一个”,除非明确这样陈述。而且,不管本公开中的元件、部件、方法或处理步骤是否在权利要求中明确列举,该元件、部件或步骤都不旨在专用于公众。此处的权利要求元件都不在35U.S.C.第112章第六段的规定下解释,除非使用短语“用于…的装置”明确叙述该元件,并且本文的方法或处理步骤均不在这些规定下进行解释,除非步骤使用短语“包括步骤……”明确叙述。
广义地,本申请公开了至少以下内容:一种制造具有微型场板的栅极的方法包括:在衬底上的外延层上方形成电介质钝化层;用第一抗蚀剂层涂布电介质钝化层;蚀刻第一抗蚀剂层和电介质钝化层以在电介质钝化层中形成第一开口;去除第一抗蚀剂层;以及形成三层栅极,该三层栅极具有:在第一开口中的栅极底脚,栅极底脚具有第一宽度;栅极颈部,其从栅极底脚延伸并且在第一开口的两侧上的电介质钝化层上方延伸一长度,栅极颈部具有比栅极底脚的第一宽度宽的第二宽度;以及栅极头部,其从栅极颈部延伸,栅极头部具有比栅极颈部的第二宽度宽的第三宽度。
概念
已经公开了至少以下概念。
概念1、一种制造用于晶体管的具有微型场板的栅极的方法,包括:
在衬底上的外延层上方形成电介质钝化层;
用第一抗蚀剂层涂布电介质钝化层;
蚀刻第一抗蚀剂层和电介质钝化层以在电介质钝化层中形成第一开口;
去除第一抗蚀剂层;以及
形成三层栅极,该三层栅极具有:在第一开口中的栅极底脚,栅极底脚具有第一宽度;栅极颈部,其从栅极底脚延伸并且在第一开口的两侧上的电介质钝化层上方延伸一长度,栅极颈部具有比栅极底脚的第一宽度宽的第二宽度;以及栅极头部,其从栅极颈部延伸,栅极头部具有比栅极颈部的第二宽度宽的第三宽度。
概念2、根据概念1的方法,其中,形成三层栅极,其中,三层栅极具有:在第一开口中的栅极底脚,栅极底脚具有第一宽度;栅极颈部,其从栅极底脚延伸并且在第一开口的两侧上的电介质钝化层上方延伸一长度,栅极颈部具有比栅极底脚的第一宽度宽的第二宽度;以及栅极头部,其从栅极颈部延伸,栅极头部具有比栅极颈部的第二宽度宽的第三宽度,包括:
在第一开口的任一侧上的电介质钝化层上沉积第二抗蚀剂层,使得第二抗蚀剂层在第二抗蚀剂层中具有第二开口,并且使得第二开口比第一开口宽;
在第二开口的任一侧上的第二抗蚀剂层上沉积第三抗蚀剂层,使得第三抗蚀剂层在第三抗蚀剂层中具有第三开口,并且使得第三开口比第二开口宽;
在第三开口的任一侧上的第三抗蚀剂层上沉积第四抗蚀剂层,使得第四抗蚀剂层在第四抗蚀剂层中具有第四开口,并且使得第四开口比第二开口宽且比第三开口窄;
在第四抗蚀剂层上方蒸发金属,使得金属填充第一开口和第二开口并部分地填充第三开口;以及
去除第二抗蚀剂层、第三抗蚀剂层以及第四抗蚀剂层。
概念3、根据概念1或2的方法,还包括:
使用再生长处理形成低电阻欧姆接触部。
概念4、根据概念1、2或3的方法,其中,衬底包括GaN、蓝宝石、碳化硅(SiC)、硅(Si)、GaAs、InP或InSb。
概念5、根据概念1、2、3或4的方法,还包括在三层栅极上沉积电介质。
概念6、根据概念2的方法,其中,
第一抗蚀剂层包括电子束抗蚀剂层;
第二抗蚀剂层包括电子束抗蚀剂层;
第三抗蚀剂层包括电子束抗蚀剂层;并且
第四抗蚀剂层包括电子束抗蚀剂层。
概念7、根据概念1、2、3、4、5或6的方法,其中,蚀刻第一抗蚀剂层和电介质钝化层以在电介质钝化层中形成第一开口包括:蚀刻电子束限定的栅极底脚图案。
概念8、根据概念1、2、3、4、5、6或7的方法,其中,外延层包括AlGaN势垒层。
概念9、根据概念1、2、3、4、5、6、7或8的方法,其中,晶体管包括高电子迁移率晶体管。
概念10、根据概念1、2、3、4、5、6、7、8或9的方法,其中,在第一开口的两侧上的电介质钝化层上方延伸一长度的栅极颈部,在第一开口的一侧上形成第一微型场板,并且在第一开口的另一侧上形成第二微型场板。
概念11、根据概念1、2、3、4、5、6、7、8、9或10的方法,
其中,具有比栅极颈部的第二宽度宽的第三宽度的栅极头部在栅极颈部的一侧上形成第三场板并且在栅极颈部的另一侧上形成第四场板;
其中,第三场板通过气隙与电介质钝化层分离;并且
其中,第四场板通过气隙与电介质钝化层分离。
概念12、根据概念1、2、3、4、5、6、7、8、9、10或11的方法,其中,电介质钝化层具有5纳米至75纳米的厚度。
概念13、根据概念1、2、3、4、5、6、7、8、9、10、11或12的方法,其中,栅极底脚具有40纳米或更小的宽度。
概念14、根据概念10的方法,
其中,第一微型场板具有10纳米至40纳米的宽度;并且
其中,第二微型场板具有10纳米至40纳米的宽度。
概念15、根据概念10的方法,
其中,第一微型场板在外延层上方的高度为5纳米至75纳米;并且
其中,第二微型场板在外延层上方的高度为5纳米至75纳米。
概念16、一种栅极具有微型场板的晶体管,包括:
衬底;
衬底上的外延层;
外延层上的电介质钝化层;
电介质钝化层中的第一开口;以及
三层栅极,三层栅极包括:
在第一开口中的栅极底脚,栅极底脚具有第一宽度;
栅极颈部,其从栅极底脚延伸并且在第一开口的两侧上的电介质钝化层上方延伸一长度,栅极颈部具有比栅极底脚的第一宽度宽的第二宽度;以及
栅极头部,其从栅极颈部延伸,栅极头部具有比栅极颈部的第二宽度宽的第三宽度。
概念17、根据概念16的晶体管,还包括欧姆接触部。
概念18、根据概念16或17的晶体管,其中,衬底包括GaN、蓝宝石、碳化硅(SiC)、硅(Si)、GaAs、InP或InSb。
概念19、根据概念16、17或18的晶体管,还包括在三层栅极上方的电介质。
概念20、根据概念16、17、18或19的晶体管,其中,外延层包括AlGaN势垒层。
概念21、根据概念16、17、18、19或20的晶体管,其中,晶体管包括高电子迁移率晶体管。
概念22、根据概念16、17、18、19、20或21的晶体管,
其中,在第一开口的两侧上的电介质钝化层上方延伸一长度的栅极颈部包括:
在第一开口的一侧上的第一微型场板;和
在第一开口的另一侧上的第二微型场板。
概念23、根据概念16、17、18、19、20、21或22的晶体管,
其中,具有比栅极颈部的第二宽度宽的第三宽度的栅极头部包括:
在栅极颈部的一侧上的第三场板;和
在栅极颈部的另一侧上的第四场板。
概念24、根据概念23的晶体管,
其中,第三场板通过气隙与电介质钝化层分离;并且
其中,第四场板通过气隙与电介质钝化层分离。
概念25、根据概念16、17、18、19、20、21、22、23或24的晶体管,其中,电介质钝化层具有5纳米至75纳米的厚度。
概念26、根据概念16、17、18、19、20、21、22、23、24或25的晶体管,其中,栅极底脚具有40纳米或更小的宽度。
概念27、根据概念22的晶体管,
其中,第一微型场板具有10纳米至40纳米的宽度;并且
其中,第二微型场板具有10纳米至40纳米的宽度。
概念28、根据概念22的晶体管,
其中,第一微型场板在外延层上方的高度为5纳米至75纳米;并且
其中,第二微型场板在外延层上方的高度为5纳米至75纳米。

Claims (14)

1.一种制造用于晶体管的具有微型场板的栅极的方法,包括:
在衬底上的外延层上方形成电介质钝化层;
用第一抗蚀剂层涂布所述电介质钝化层;
蚀刻所述第一抗蚀剂层和所述电介质钝化层以在所述电介质钝化层中形成第一开口;
去除所述第一抗蚀剂层;以及
形成三层栅极,该三层栅极具有:在所述第一开口中的栅极底脚,从所述栅极底脚延伸的栅极颈部,以及从所述栅极颈部延伸的栅极头部,其中所述栅极底脚具有第一宽度,其中所述栅极颈部具有比所述第一宽度宽的第二宽度,其中所述栅极颈部在所述第一开口的两侧上的所述电介质钝化层上方延伸一长度,并且其中所述栅极头部具有比所述栅极颈部的所述第二宽度宽的第三宽度,
其中,形成所述三层栅极包括:
在所述第一开口的任一侧上的所述电介质钝化层上沉积第二抗蚀剂层,使得所述第二抗蚀剂层在所述第二抗蚀剂层中具有第二开口,并且使得所述第二开口比所述第一开口宽;
在所述第二开口的任一侧上的所述第二抗蚀剂层上沉积第三抗蚀剂层,使得所述第三抗蚀剂层在所述第三抗蚀剂层中具有第三开口,并且使得所述第三开口比所述第二开口宽;
在所述第三开口的任一侧上的所述第三抗蚀剂层上沉积第四抗蚀剂层,使得所述第四抗蚀剂层在所述第四抗蚀剂层中具有第四开口,并且使得所述第四开口比所述第二开口宽且比所述第三开口窄;
在所述第四抗蚀剂层上方蒸发金属,使得所述金属填充所述第一开口和所述第二开口并部分地填充所述第三开口;以及
去除所述第二抗蚀剂层、所述第三抗蚀剂层以及所述第四抗蚀剂层,在所述栅极头部的主体与下面的半导体结构之间留下气隙,以减小所述栅极的寄生电容。
2.根据权利要求1所述的方法,还包括:
使用再生长处理形成低电阻欧姆接触部。
3.根据权利要求1所述的方法,其中,所述衬底包括GaN、蓝宝石、碳化硅(SiC)、硅(Si)、GaAs、InP或InSb。
4.根据权利要求1所述的方法,还包括在所述三层栅极上沉积电介质。
5.根据权利要求1所述的方法,其中,
所述第一抗蚀剂层包括电子束抗蚀剂层;
所述第二抗蚀剂层包括电子束抗蚀剂层;
所述第三抗蚀剂层包括电子束抗蚀剂层;并且
所述第四抗蚀剂层包括电子束抗蚀剂层。
6.根据权利要求1所述的方法,其中,蚀刻所述第一抗蚀剂层和所述电介质钝化层以在所述电介质钝化层中形成第一开口包括:蚀刻电子束限定的栅极底脚图案。
7.根据权利要求1所述的方法,其中,所述外延层包括AlGaN势垒层。
8.根据权利要求1所述的方法,其中,所述晶体管包括高电子迁移率晶体管。
9.根据权利要求1所述的方法,其中,在所述第一开口的两侧上的所述电介质钝化层上方延伸一长度的所述栅极颈部,在所述第一开口的一侧上形成第一微型场板,并且在所述第一开口的另一侧上形成第二微型场板。
10.根据权利要求9所述的方法,
其中,具有比所述栅极颈部的所述第二宽度宽的第三宽度的所述栅极头部,在所述栅极颈部的一侧上形成第三场板,并且在所述栅极颈部的另一侧上形成第四场板;
其中,所述第三场板通过所述气隙与所述电介质钝化层分离;并且
其中,所述第四场板通过所述气隙与所述电介质钝化层分离。
11.根据权利要求1所述的方法,其中,所述电介质钝化层具有5纳米至75纳米的厚度。
12.根据权利要求1所述的方法,其中,所述栅极底脚具有40纳米或更小的宽度。
13.根据权利要求9所述的方法,
其中,所述第一微型场板具有10纳米至40纳米的宽度;并且
其中,所述第二微型场板具有10纳米至40纳米的宽度。
14.根据权利要求9所述的方法,
其中,所述第一微型场板在所述外延层上方的高度为5纳米至75纳米;并且
其中,所述第二微型场板在所述外延层上方的高度为5纳米至75纳米。
CN202080021166.5A 2019-04-04 2020-01-27 微型场板t型栅极及其制造方法 Active CN113646870B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962829192P 2019-04-04 2019-04-04
US62/829,192 2019-04-04
PCT/US2020/015252 WO2020214227A2 (en) 2019-04-04 2020-01-27 Miniature field plate t-gate and method of fabricating the same

Publications (2)

Publication Number Publication Date
CN113646870A CN113646870A (zh) 2021-11-12
CN113646870B true CN113646870B (zh) 2022-11-25

Family

ID=72663260

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080021166.5A Active CN113646870B (zh) 2019-04-04 2020-01-27 微型场板t型栅极及其制造方法

Country Status (4)

Country Link
US (2) US11302786B2 (zh)
EP (1) EP3948955A4 (zh)
CN (1) CN113646870B (zh)
WO (1) WO2020214227A2 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3948955A4 (en) 2019-04-04 2023-05-10 HRL Laboratories, LLC MINIATURE FIELD PLATE T-GRID AND METHOD OF MAKING IT
US20230141865A1 (en) * 2021-11-05 2023-05-11 Analog Devices, Inc. Lateral gallium nitride superjunction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101005019A (zh) * 2005-11-29 2007-07-25 韩国电子通信研究院 形成t或伽玛形电极的方法
US9142626B1 (en) * 2013-04-23 2015-09-22 Hrl Laboratories, Llc Stepped field plate wide bandgap field-effect transistor and method
CN109103245A (zh) * 2018-07-26 2018-12-28 厦门市三安集成电路有限公司 一种双t型栅及制作方法和应用

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3077524B2 (ja) * 1994-09-12 2000-08-14 株式会社村田製作所 半導体装置の製造方法
TW301061B (en) * 1996-06-07 1997-03-21 Ind Tech Res Inst Manufacturing method of submicron T-type gate
US7084021B2 (en) * 2003-03-14 2006-08-01 Hrl Laboratories, Llc Method of forming a structure wherein an electrode comprising a refractory metal is deposited
EP1843390B1 (en) * 2005-01-25 2011-11-09 Fujitsu Limited Semiconductor device provided with mis structure and method for manufacturing the same
KR100631051B1 (ko) * 2005-09-12 2006-10-04 한국전자통신연구원 부정형 고 전자 이동도 트랜지스터의 제조 방법
US7709269B2 (en) * 2006-01-17 2010-05-04 Cree, Inc. Methods of fabricating transistors including dielectrically-supported gate electrodes
US7592211B2 (en) * 2006-01-17 2009-09-22 Cree, Inc. Methods of fabricating transistors including supported gate electrodes
JP2007311684A (ja) * 2006-05-22 2007-11-29 Mitsubishi Electric Corp 電界効果型トランジスタ
US7750370B2 (en) * 2007-12-20 2010-07-06 Northrop Grumman Space & Mission Systems Corp. High electron mobility transistor having self-aligned miniature field mitigating plate on a protective dielectric layer
US8741715B2 (en) * 2009-04-29 2014-06-03 Cree, Inc. Gate electrodes for millimeter-wave operation and methods of fabrication
US8105889B2 (en) * 2009-07-27 2012-01-31 Cree, Inc. Methods of fabricating transistors including self-aligned gate electrodes and source/drain regions
US8390000B2 (en) * 2009-08-28 2013-03-05 Transphorm Inc. Semiconductor devices with field plates
KR101140285B1 (ko) * 2010-01-29 2012-04-27 서울대학교산학협력단 멀티 스텝형 티 게이트 제조방법
IT1401747B1 (it) * 2010-08-02 2013-08-02 Selex Sistemi Integrati Spa Fabbricazione di transistori ad alta mobilita' elettronica con elettrodo di controllo a lunghezza scalabile
IT1401748B1 (it) * 2010-08-02 2013-08-02 Selex Sistemi Integrati Spa Transistori ad alta mobilita' elettronica con elettrodo di field plate
KR101848244B1 (ko) * 2011-12-13 2018-05-29 한국전자통신연구원 계단형 게이트 전극을 포함하는 반도체 소자 및 그 제조 방법
US9099433B2 (en) 2012-04-23 2015-08-04 Freescale Semiconductor, Inc. High speed gallium nitride transistor devices
US20130313561A1 (en) * 2012-05-25 2013-11-28 Triquint Semiconductor, Inc. Group iii-nitride transistor with charge-inducing layer
US8772865B2 (en) * 2012-09-26 2014-07-08 Semiconductor Components Industries, Llc MOS transistor structure
KR101736277B1 (ko) * 2012-12-12 2017-05-17 한국전자통신연구원 전계 효과 트랜지스터 및 그 제조 방법
US9148092B1 (en) * 2013-08-20 2015-09-29 Hrl Laboratories, Llc Monolithic integration of field-plate and T-gate devices
KR102154336B1 (ko) * 2014-01-09 2020-09-10 한국전자통신연구원 고전압 구동용 전계효과 트랜지스터 및 제조 방법
US9412830B2 (en) * 2014-04-17 2016-08-09 Fujitsu Limited Semiconductor device and method of manufacturing semiconductor device
US9281204B2 (en) * 2014-04-23 2016-03-08 Freescale Semiconductor, Inc. Method for improving E-beam lithography gate metal profile for enhanced field control
US9419083B2 (en) * 2014-11-21 2016-08-16 Raytheon Company Semiconductor structures having a gate field plate and methods for forming such structure
US10177061B2 (en) * 2015-02-12 2019-01-08 Infineon Technologies Austria Ag Semiconductor device
FR3041150B1 (fr) * 2015-09-14 2017-09-29 Commissariat Energie Atomique Transistor a enrichissement comportant une heterojonction algan/gan et une grille en diamant dope p
JP6790682B2 (ja) * 2016-09-29 2020-11-25 富士通株式会社 化合物半導体装置、電源装置、及び増幅器
US10084074B1 (en) * 2017-03-24 2018-09-25 Qualcomm Incorporated Compound semiconductor field effect transistor gate length scaling
US11538921B2 (en) * 2017-05-15 2022-12-27 Mitsubishi Electric Corporation Method for manufacturing semiconductor device
EP3948955A4 (en) 2019-04-04 2023-05-10 HRL Laboratories, LLC MINIATURE FIELD PLATE T-GRID AND METHOD OF MAKING IT

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101005019A (zh) * 2005-11-29 2007-07-25 韩国电子通信研究院 形成t或伽玛形电极的方法
US9142626B1 (en) * 2013-04-23 2015-09-22 Hrl Laboratories, Llc Stepped field plate wide bandgap field-effect transistor and method
CN109103245A (zh) * 2018-07-26 2018-12-28 厦门市三安集成电路有限公司 一种双t型栅及制作方法和应用

Also Published As

Publication number Publication date
EP3948955A2 (en) 2022-02-09
WO2020214227A3 (en) 2021-01-21
WO2020214227A2 (en) 2020-10-22
US20220190123A1 (en) 2022-06-16
EP3948955A4 (en) 2023-05-10
US11302786B2 (en) 2022-04-12
US20200321441A1 (en) 2020-10-08
US11764271B2 (en) 2023-09-19
CN113646870A (zh) 2021-11-12
WO2020214227A9 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
US7750370B2 (en) High electron mobility transistor having self-aligned miniature field mitigating plate on a protective dielectric layer
US8105889B2 (en) Methods of fabricating transistors including self-aligned gate electrodes and source/drain regions
US8383471B1 (en) Self aligned sidewall gate GaN HEMT
US7800132B2 (en) High electron mobility transistor semiconductor device having field mitigating plate and fabrication method thereof
JP6050350B2 (ja) Iii−vエピタキシャル層を成長させる方法および半導体構造
JP4143068B2 (ja) 選択的エッチングした自己整列二重リセス高電子移動度トランジスターの製造方法
US10734498B1 (en) Method of making a dual-gate HEMT
US8586462B2 (en) Method of manufacturing a field-effect transistor
US20220190123A1 (en) Miniature Field Plate T-Gate and Method of Fabricating the Same
US10170611B1 (en) T-gate field effect transistor with non-linear channel layer and/or gate foot face
KR102154336B1 (ko) 고전압 구동용 전계효과 트랜지스터 및 제조 방법
US9449833B1 (en) Methods of fabricating self-aligned FETS using multiple sidewall spacers
US11538908B2 (en) Semiconductor device
US8722474B2 (en) Semiconductor device including stepped gate electrode and fabrication method thereof
US20130069127A1 (en) Field effect transistor and fabrication method thereof
US10868162B1 (en) Self-aligned gallium nitride FinFET and method of fabricating the same
TWI521641B (zh) 製作氮化鎵裝置及積體電路中之自我對準隔離部的方法
US20240072130A1 (en) T-gate transistor with mini field plate and angled gate stem
US20240128365A1 (en) Nitride based semiconductor device and method for manufacturing same
US20230207675A1 (en) Semiconductor device with a gate electrode having multiple regions and method of fabrication therefor
KR20210023180A (ko) 반도체 기반 전계 효과 트랜지스터 및 반도체 기반 전계 효과 트랜지스터의 제조 방법
JP2005051165A (ja) Mesfetおよびその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant