CN113603898A - 基于金属有机框架的可饱和吸收体及其制备方法与应用 - Google Patents

基于金属有机框架的可饱和吸收体及其制备方法与应用 Download PDF

Info

Publication number
CN113603898A
CN113603898A CN202111044343.4A CN202111044343A CN113603898A CN 113603898 A CN113603898 A CN 113603898A CN 202111044343 A CN202111044343 A CN 202111044343A CN 113603898 A CN113603898 A CN 113603898A
Authority
CN
China
Prior art keywords
organic framework
saturable absorber
quartz tube
metal organic
absorber based
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111044343.4A
Other languages
English (en)
Inventor
张良静
王萌
王爱武
周沧涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Technology University
Original Assignee
Shenzhen Technology University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Technology University filed Critical Shenzhen Technology University
Priority to CN202111044343.4A priority Critical patent/CN113603898A/zh
Publication of CN113603898A publication Critical patent/CN113603898A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • H01S3/1112Passive mode locking
    • H01S3/1115Passive mode locking using intracavity saturable absorbers
    • H01S3/1118Semiconductor saturable absorbers, e.g. semiconductor saturable absorber mirrors [SESAMs]; Solid-state saturable absorbers, e.g. carbon nanotube [CNT] based

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Lasers (AREA)

Abstract

本发明公开了一种基于金属有机框架的可饱和吸收体及其制备方法与应用,包括:将金属盐和有机配体配置成混合粉末,并将所述混合粉末放置于一端封闭的石英管中;在所述石英管内距离所述混合粉末预设距离处放置预先切割的衬底,并在抽真空条件下将所述石英管敞口的一端封闭;将敞口一端封闭后的所述石英管放置于化学气相沉积炉中进行加热处理,得到基于金属有机框架的可饱和吸收体;其中,在加热处理过程中,所述金属盐与所述有机配体在所述衬底表面形成导电金属有机框架晶体薄膜。本发明制备方法简单,制备出的可饱和吸收体具有高质量非线性光学特性,吸收带宽大,响应时间短,可直接应用于锁模激光器,有利于未来超快激光的发展。

Description

基于金属有机框架的可饱和吸收体及其制备方法与应用
技术领域
本发明涉及非线性光学技术领域,具体涉及一种基于金属有机框架的可饱和吸收体及其制备方法与应用。
背景技术
可饱和吸收体是被动锁模激光器的核心部件,作为可饱和吸收体的一种,半导体可饱和吸收镜(Semiconductor Saturable absorber mirror,SESAMs)被认为是一种实用的吸收器,在商业激光系统中得到广泛的应用。然而,SESAMs有制作工艺复杂、吸收带宽窄、响应时间长等缺点,极大地限制了超快激光的发展,亟需开发新型可饱和吸收材料。
因此,现有技术还有待于改进和发展。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种基于金属有机框架的可饱和吸收体及其制备方法与应用,旨在解决现有半导体可饱和吸收镜制作工艺复杂、吸收带宽窄、响应时间长的问题。
本发明解决该技术问题所采用的技术方案是:一种基于金属有机框架的可饱和吸收体的制备方法,其中,包括:
将金属盐与有机配体配置成混合粉末,并将所述混合粉末放置于一端封闭的石英管中;
在所述石英管内距离所述混合粉末预设距离处放置预先切割的衬底,并在抽真空条件下将所述石英管敞口的一端封闭;
将敞口一端封闭后的所述石英管放置于化学气相沉积炉中进行加热处理,得到基于金属有机框架的可饱和吸收体;其中,在加热处理过程中,所述金属盐与所述有机配体在所述衬底表面形成导电金属有机框架晶体薄膜。
所述的基于金属有机框架的可饱和吸收体的制备方法,其中,所述金属盐为硝酸铜、硝酸镍和硝酸钴中的一种。
所述的基于金属有机框架的可饱和吸收体的制备方法,其中,所述有机配体为2,3,6,7,10,11-六羟基三亚苯、2,3,6,7,10,11-六氨基三亚苯和六氨基苯中的一种。
所述的基于金属有机框架的可饱和吸收体的制备方法,其中,所述金属盐的摩尔质量为0.1~1mol,所述有机配体的摩尔质量为0.4~1mol。
所述的基于金属有机框架的可饱和吸收体的制备方法,其中,所述加热处理的温度为200~400℃,所述加热处理的时间为2~6h,所述加热处理的升温速率为2~5℃/min。
所述的基于金属有机框架的可饱和吸收体的制备方法,其中,所述衬底为氟晶云母、单晶SiO2和蓝宝石中的一种。
所述的基于金属有机框架的可饱和吸收体的制备方法,其中,所述预设距离为2~15cm。
所述的基于金属有机框架的可饱和吸收体的制备方法,其中,所述在所述石英管内距离所述混合粉末预设距离处放置预先切割的衬底的步骤之前包括:
对所述衬底依次用泡沫水、丙酮、乙醇和去离子水进行超声清洗,并放置于真空干燥箱中干燥。
一种基于金属有机框架的可饱和吸收体,其中,采用所述的基于金属有机框架的可饱和吸收体的制备方法制备而成。
一种所述的基于金属有机框架的可饱和吸收体在锁模激光器中的应用。
有益效果:本发明通过对放置混合粉末和衬底的密封石英管进行加热处理,使石英管内的混合粉末发生蒸发并随气流移动到衬底表面,在衬底表面形成导电金属有机框架晶体薄膜,制备方法简单,制备出的可饱和吸收体具有高质量非线性光学特性,吸收带宽大,响应时间短,可直接应用于锁模激光器,有利于未来超快激光的发展。
附图说明
图1是本发明实施例提供的基于金属有机框架的可饱和吸收体的结构示意图。
具体实施方式
本发明提供一种基于金属有机框架的可饱和吸收体的制备方法,为使本发明的目的、技术方案及优点更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
可饱和吸收体是被动锁模激光器的核心部件,作为可饱和吸收体的一种,半导体可饱和吸收镜(Semiconductor Saturable absorber mirror,SESAMs)被认为是一种实用的吸收器,在商业激光系统中得到广泛的应用。然而,SESAMs有制作工艺复杂、吸收带宽窄、响应时间长等缺点,极大地限制了超快激光的发展,亟需开发新型可饱和吸收材料。
与SESAMs相比,二维可饱和吸收体材料具有饱和吸收带宽大、恢复时间快和非线性光吸收系数高等优势,在非线性光学和超快光子学领域得到了广泛的应用。
鉴于二维半导体材料在三阶非线性光学具有优异的特性,为了解决上述问题,本发明实施例提供了一种基于金属有机框架的可饱和吸收体的制备方法,所述方法包括:
S1、将金属盐和有机配体配置成混合粉末,并将所述混合粉末放置于一端封闭的石英管中。
金属有机框架(MOFs)结构材料是一类由金属离子或团簇和有机配体通过配位作用连接起来的,具有高孔隙率、比表面的晶体材料,其结构可调、配体可带有丰富的功能基团,具有较好的热稳定性。本实施例中为了制备基于金属有机框架的可饱和吸收体,首先按照摩尔比重称量金属盐粉末和有机配体粉末,然后将金属盐粉末和有机配体粉末混合均匀,并将混合均匀后的金属盐粉末和有机配体粉末放置于一端封闭的石英管中,以便后续步骤中通过真空封管法制备基于金属有机框架的可饱和吸收体。
在一具体实施方式中,所述金属盐为硝酸盐,所述金属盐中的金属为铜、镍或钴,即所述金属盐为硝酸铜、硝酸镍和硝酸钴中的一种,选择硝酸盐作为金属盐是因为硝酸盐在后续反应过程中可以分解为氮氧化物气体和氧气,不会有残余杂质留在制备的基于金属有机框架的可饱和吸收体中。
在一具体实施方式中,所述有机配体为2,3,6,7,10,11-六羟基三亚苯(HHTP)、2,3,6,7,10,11-六氨基三亚苯(HITP)和六氨基苯(HAB)中的一种,选择这几种材料作为制备可饱和吸收体的有机配体材料是由于这几种材料可以与金属盐形成具有π-d共轭的导电金属有机框架材料。例如,金属盐为硝酸铜,有机配体为HHTP,生成的金属有机框架材料为Cu3(HHTP)2;金属盐为硝酸镍,有机配体为HITP,生成的金属有机框架材料为Ni3(HITP)2;金属盐为硝酸钴,有机配体为HAB,生成的金属有机框架材料为Co-HAB,这些金属有机框架材料均为具有π-d共轭的导电金属有机框架材料。
在一具体实施方式中,所述基于金属有机框架的可饱和吸收体的制备方法还包括:
S2、在所述石英管内距离所述混合粉末预设距离处放置预先切割的衬底,并在抽真空条件下将所述石英管敞口的一端封闭。
为了制备出高结晶度和高导电性的基于金属有机框架的可饱和吸收体,本实施例中将金属盐与有机配体配置的混合粉末放置于一端封闭的石英管后,在所述石英管内距离所述混合粉末预设距离处放置预先切割的衬底,并在抽真空条件下将所述石英管敞口的一端封闭,使石英管内部形成一个封闭的真空环境,以便后续步骤中在所述衬底表面形成具有π-d共轭的导电金属有机框架晶体薄膜,从而制备出高结晶度和高导电性的基于金属有机框架的可饱和吸收体。
在一具体实施方式中,所述衬底为单晶衬底,通过使用单晶衬底使得制备出的基于金属有机框架的可饱和吸收体不仅具有良好的导电性,而且具有高的结晶度。在一具体实施例中,所述衬底为氟晶云母、单晶SiO2和蓝宝石中的一种,通过使用不同的衬底,可以在单晶衬底上生长不同晶向的导电二维金属有机框架晶体薄膜。
为了提高衬底上沉积的导电金属有机框架晶体薄膜的均匀性,在将衬底放入所述石英管之前,本实施例对所述衬底依次使用泡沫水、丙酮、乙醇和去离子水进行超声清洗,并放置于真空干燥箱中干燥,以去除衬底上的杂质,避免杂质对衬底上沉积的导电金属有机框架晶体薄膜的均匀性的影响。
在一具体实施方式中,所述基于金属有机框架的可饱和吸收体的制备方法还包括:
S3、将敞口一端封闭后的所述石英管放置于化学气相沉积炉中进行加热处理,得到基于金属有机框架的可饱和吸收体;其中,在加热处理过程中,所述金属盐与所述有机配体在所述衬底表面形成导电金属有机框架晶体薄膜。
本实施例在抽真空条件下将所述石英管敞口的一端封闭后,将所述石英管放置于化学气相沉积炉中,通过化学气相沉积炉对所述石英管进行加热处理,在加热处理过程中,石英管内的混合粉末发生蒸发,形成蒸汽,随着气流移动到衬底表面,在所述衬底表面形成具有π-d共轭的导电金属有机框架晶体薄膜。
考虑到金属盐与有机配体的摩尔质量会影响制备出的导电金属有机框架晶体薄膜中各组分配比,进而影响制备出的导电金属有机框架晶体薄膜的结晶性和导电性。在一具体实施方式中,所述金属盐的摩尔质量为0.1~1mol,所述有机配体的摩尔质量为0.4~1mol,在该摩尔质量下制备的导电金属有机框架晶体薄膜具有高的结晶性和良好的导电性。例如,混合粉末中金属盐为0.1mol,有机配体为0.4mol;又如,混合粉末中金属盐为1mol,有机配体为1mol。
考虑到加热处理过程中的温度,加热处理的时间,加热处理过程中的升温速率,会影响制备的导电金属有机框架晶体薄膜的晶体开裂以及晶体缺陷,在一具体实施方式中,所述加热处理的温度为200~400℃,所述加热处理的时间为2~6h,所述加热处理的升温速率为2~5℃/min,在该加热条件下制备的导电金属有机框架晶体薄膜具有高的结晶性和良好的导电性。例如,以2℃/min的升温速率升温到400℃,并在400℃下加热4h;又如,以5℃/min的升温速率升温到200℃,并在200℃下加热6h。
在一具体实施方式中,本发明还提供一种采用上述基于金属有机框架的可饱和吸收体的制备方法制备而成的基于金属有机框架的可饱和吸收体。如图1所示,所述基于金属有机框架的可饱和吸收体包括衬底1和沉积于所述衬底上的导电金属有机框架晶体薄膜2,所述衬底1为氟晶云母、单晶SiO2和蓝宝石中的一种。本发明基于金属有机框架的可饱和吸收体制备方法简单,可饱和吸收体中的导电金属有机框架晶体薄膜为高结晶度和良好导电性的导电二维金属有机框架材料,使得可饱和吸收体具有高质量非线性光学特性,可以直接应用于锁模激光器,有利于未来超快激光的发展。
本发明还提供一种上述所述基于金属有机框架的可饱和吸收体在锁模激光器中的应用,本发明制备的基于金属有机框架的可饱和吸收体具有高质量非线性光学特性,可以直接应用于锁模激光器,例如,将制备出的基于金属有机框架的可饱和吸收体放置于锁模激光器中两根光纤截面的中心。
下面通过具体实施例对本发明进行进一步的解释说明。
实施例1
(1)将0.3mol硝酸铜和0.5mol HHTP配置成混合粉末,并将所述混合粉末放置于一端封闭的石英管中;
(2)在所述石英管内距离所述混合粉末10cm处放置预先切割的氟晶云母,并在抽真空条件下将所述石英管敞口的一端封闭;
(3)将封闭后的所述石英管放置于化学气相沉积炉中,将化学气相沉积炉以3℃/min的升温速率升温到400℃,并在400℃下加热5h;
(4)加热结束后,待化学气相沉积炉降温到室温,从化学气相沉积炉中取出石英管,并将石英管敲碎,取出氟晶云母,得到基于金属有机框架的可饱和吸收体。
实施例2
(1)将0.8mol硝酸镍和0.6mol HITP配置成混合粉末,并将所述混合粉末放置于一端封闭的石英管中;
(2)在所述石英管内距离所述混合粉末5cm处放置预先切割的单晶SiO2,并在抽真空条件下将所述石英管敞口的一端封闭;
(3)将封闭后的所述石英管放置于化学气相沉积炉中,将化学气相沉积炉以5℃/min的升温速率升温到300℃,并在300℃下加热6h;
(4)加热结束后,待化学气相沉积炉降温到室温,从化学气相沉积炉中取出石英管,并将石英管敲碎,取出单晶SiO2,得到基于金属有机框架的可饱和吸收体。
实施例3
(1)将0.2mol硝酸钴和1mol HAB配置成混合粉末,并将所述混合粉末放置于一端封闭的石英管中;
(2)在所述石英管内距离所述混合粉末5cm处放置预先切割的氟晶云母,并在抽真空条件下将所述石英管敞口的一端封闭;
(3)将封闭后的所述石英管放置于化学气相沉积炉中,将化学气相沉积炉以4℃/min的升温速率升温到300℃,并在300℃下加热5h;
(4)加热结束后,待化学气相沉积炉降温到室温,从化学气相沉积炉中取出石英管,并将石英管敲碎,取出氟晶云母,得到基于金属有机框架的可饱和吸收体。
综上所述,本发明公开了一种基于金属有机框架的可饱和吸收体及其制备方法与应用,包括:将金属盐和有机配体配置成混合粉末,并将所述混合粉末放置于一端封闭的石英管中;在所述石英管内距离所述混合粉末预设距离处放置预先切割的衬底,并在抽真空条件下将所述石英管敞口的一端封闭;将封闭后的所述石英管放置于化学气相沉积炉中进行加热处理,得到基于金属有机框架的可饱和吸收体;其中,在加热处理过程中,所述金属盐与所述有机配体在所述衬底表面形成导电金属有机框架晶体薄膜。本发明制备方法简单,制备出的可饱和吸收体具有高质量非线性光学特性,吸收带宽大,响应时间快短,可直接应用于锁模激光器,有利于未来超快激光的发展。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

1.一种基于金属有机框架的可饱和吸收体的制备方法,其特征在于,包括:
将金属盐和有机配体配置成混合粉末,并将所述混合粉末放置于一端封闭的石英管中;
在所述石英管内距离所述混合粉末预设距离处放置预先切割的衬底,并在抽真空条件下将所述石英管敞口的一端封闭;
将敞口一端封闭后的所述石英管放置于化学气相沉积炉中进行加热处理,得到基于金属有机框架的可饱和吸收体;其中,在加热处理过程中,所述金属盐与所述有机配体在所述衬底表面形成导电金属有机框架晶体薄膜。
2.根据权利要求1所述的基于金属有机框架的可饱和吸收体的制备方法,其特征在于,所述金属盐为硝酸铜、硝酸镍和硝酸钴中的一种。
3.根据权利要求1所述的基于金属有机框架的可饱和吸收体的制备方法,其特征在于,所述有机配体为2,3,6,7,10,11-六羟基三亚苯、2,3,6,7,10,11-六氨基三亚苯和六氨基苯中的一种。
4.根据权利要求1所述的基于金属有机框架的可饱和吸收体的制备方法,其特征在于,所述金属盐的摩尔质量为0.1~1mol,所述有机配体的摩尔质量为0.4~1mol。
5.根据权利要求1所述的基于金属有机框架的可饱和吸收体的制备方法,其特征在于,所述加热处理的温度为200~400℃,所述加热处理的时间为2~6h,所述加热处理的升温速率为2~5℃/min。
6.根据权利要求1所述的基于金属有机框架的可饱和吸收体的制备方法,其特征在于,所述衬底为氟晶云母、单晶SiO2和蓝宝石中的一种。
7.根据权利要求1所述的基于金属有机框架的可饱和吸收体的制备方法,其特征在于,所述预设距离为2~15cm。
8.根据权利要求1所述的基于金属有机框架的可饱和吸收体的制备方法,其特征在于,所述在所述石英管内距离所述混合粉末预设距离处放置预先切割的衬底的步骤之前包括:
对所述衬底依次用泡沫水、丙酮、乙醇和去离子水进行超声清洗,并放置于真空干燥箱中干燥。
9.一种基于金属有机框架的可饱和吸收体,其特征在于,采用如权利要求1~8任一项所述的基于金属有机框架的可饱和吸收体的制备方法制备而成。
10.一种如权利要求9所述的基于金属有机框架的可饱和吸收体在锁模激光器中的应用。
CN202111044343.4A 2021-09-07 2021-09-07 基于金属有机框架的可饱和吸收体及其制备方法与应用 Pending CN113603898A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111044343.4A CN113603898A (zh) 2021-09-07 2021-09-07 基于金属有机框架的可饱和吸收体及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111044343.4A CN113603898A (zh) 2021-09-07 2021-09-07 基于金属有机框架的可饱和吸收体及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN113603898A true CN113603898A (zh) 2021-11-05

Family

ID=78310139

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111044343.4A Pending CN113603898A (zh) 2021-09-07 2021-09-07 基于金属有机框架的可饱和吸收体及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN113603898A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109709160A (zh) * 2017-10-26 2019-05-03 中国科学院福建物质结构研究所 一种电子导电金属有机框架薄膜及其制备方法和用途
CN110607515A (zh) * 2019-08-27 2019-12-24 深圳大学 一种二维金属有机框架材料的制备方法及产物
CN111351824A (zh) * 2020-04-29 2020-06-30 同济大学 一种基于金属-有机框架化合物薄膜的甲醛传感器
CN111574722A (zh) * 2019-02-19 2020-08-25 中国科学院福建物质结构研究所 一种光电导金属有机骨架薄膜材料、其制备方法与应用
CN112652942A (zh) * 2020-12-21 2021-04-13 中国科学院上海光学精密机械研究所 一种基于波长可调隔板玻璃的激光放大器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109709160A (zh) * 2017-10-26 2019-05-03 中国科学院福建物质结构研究所 一种电子导电金属有机框架薄膜及其制备方法和用途
CN111574722A (zh) * 2019-02-19 2020-08-25 中国科学院福建物质结构研究所 一种光电导金属有机骨架薄膜材料、其制备方法与应用
CN110607515A (zh) * 2019-08-27 2019-12-24 深圳大学 一种二维金属有机框架材料的制备方法及产物
CN111351824A (zh) * 2020-04-29 2020-06-30 同济大学 一种基于金属-有机框架化合物薄膜的甲醛传感器
CN112652942A (zh) * 2020-12-21 2021-04-13 中国科学院上海光学精密机械研究所 一种基于波长可调隔板玻璃的激光放大器

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ANDRE MÄHRINGER, ET AL: "Oriented Thin Films of Electroactive Triphenylene Catecholate-Based Two-Dimensional Metal−Organic Frameworks", 《ACS NANO》 *
QIAN ZHANG, ET AL: "Wideband saturable absorption in metal–organic frameworks (MOFs) for mode-locking Er- and Tm-doped fiber lasers", 《NANOSCALE》 *
YANHUI SUN, ET AL: "Superb Nonlinear Absorption of Triphenylene-Based Metal–Organic Frameworks Associated with Abundant Metal d Electrons", 《ADV. OPTICAL MATER.》 *
陈海燕: "《激光原理与技术:2016年版》", 31 January 2016, 国防工业出版社 *
雷仕湛: "《激光发展史概论》", 31 October 2013, 国防工业出版社 *

Similar Documents

Publication Publication Date Title
CN102646759B (zh) 一种透明导电氧化物薄膜的制备方法
JP6116705B2 (ja) Ge量子ドットの成長方法、Ge量子ドット複合材及びその応用
US8642377B2 (en) Method of producing conductive thin film
CN108321296B (zh) 基于光子晶体异质结的反式低维钙钛矿太阳能电池的制备方法
CN106803601B (zh) 一种固态电解质锂镧钛氧化合物薄膜的制备方法
CN106012014A (zh) 二氧化钒薄膜生长方法
CN103451637A (zh) 掺铝氧化锌薄膜及其制备方法
CN103193224A (zh) 在非金属基底上低温制备石墨烯薄膜的方法
CN106773435A (zh) 一种NiO/rGO复合电致变色薄膜的制备方法
CN103904160A (zh) 一种基于CdZnTe薄膜的X射线探测器的制备方法
CN109082631A (zh) 一种Ga2O3基透明导电薄膜及其制备方法
CN113603898A (zh) 基于金属有机框架的可饱和吸收体及其制备方法与应用
CN106590618B (zh) 一种具有包覆结构的NiO/rGO复合薄膜及其制备方法
CN112259620A (zh) 一种Sb2Se3薄膜太阳能电池及其制备方法
CN108281551B (zh) 基于光子晶体异质结的反式三维钙钛矿太阳能电池的制备方法
CN108374162A (zh) 一种掺铝氧化锌透明导电薄膜的制备方法
CN109468604B (zh) 高透射率igzo薄膜的制备方法
CN108574197A (zh) 一种可调控的掺杂纳米晶可饱和吸收体及其制备方法
CN103693691A (zh) 一种双温区还原法制备二氧化钒的方法
CN109767920B (zh) 基于两步可控制备过渡金属硫化物异质结的方法
CN108461404B (zh) 一种氧化镓欧姆接触电极的制备方法
CN114242906B (zh) 一种氧化锡电子传输层的制备方法及钙钛矿太阳能电池
CN105177511A (zh) 一种负热膨胀材料Sc2Mo3O12薄膜的制备方法
KR102340587B1 (ko) 투명전도성산화물 박막의 제조 방법, 이에 의하여 제조된 산화물 박막 및 이를 포함하는 전자소자
CN110482873A (zh) 金属膜在提高玻璃基底的软化温度中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20211105