CN113600031A - 一种复合纳滤膜及其制备方法 - Google Patents

一种复合纳滤膜及其制备方法 Download PDF

Info

Publication number
CN113600031A
CN113600031A CN202110780993.9A CN202110780993A CN113600031A CN 113600031 A CN113600031 A CN 113600031A CN 202110780993 A CN202110780993 A CN 202110780993A CN 113600031 A CN113600031 A CN 113600031A
Authority
CN
China
Prior art keywords
nanofiltration membrane
composite nanofiltration
membrane
casting solution
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110780993.9A
Other languages
English (en)
Inventor
刘海亮
秦杨
孙昱旻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN202110780993.9A priority Critical patent/CN113600031A/zh
Publication of CN113600031A publication Critical patent/CN113600031A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种复合纳滤膜及其制备方法,制备方法包括:1)将聚氯乙烯树脂、添加剂溶解于有机溶剂中形成均一铸膜液,将胺化剂加入铸膜液中,在50‑70℃条件下充分搅拌2‑7h、真空脱泡1h,得到胺基化改性聚氯乙烯铸膜液;2)将胺基化改性铸膜液通过自动刮膜机在固定有无纺布的玻璃板上均匀刮制成平板状,然后浸入凝固浴一定时间,取出后吸干表面水分,再浸入浓度为0.02‑1w/v%的多元酰氯单体的有机溶液中一定时间,取出;再将得到的初生复合纳滤膜进行后处理,得到复合纳滤膜。本发明的方法简化了复合纳滤膜的制备工艺,提高了膜制备效率,降低了制备成本,易于工业化生产;所制得复合纳滤膜具有长期运行稳定性。

Description

一种复合纳滤膜及其制备方法
技术领域
本发明涉及膜分离技术领域,具体涉及一种复合纳滤膜及其制备方法。
背景技术
水是生命之源。随着全球变暖、人口增长以及工业化快速发展,水污染和淡水资源短缺问题日益严峻,饮用水安全问题也威胁着人类健康。如何解决水资源匮乏以及饮用水安全问题是社会发展和人类生存面临的巨大挑战。膜分离技术是近年来快速发展的一种新型高效的分离技术,具有便于操作、高效节能、环保无污染等特点,广泛应用于工业废水与生活污水处理与回用、海水淡化和饮用水净化等领域,为解决水资源短缺以及饮用水安全问题提供了技术保障。
在各种膜分离技术中,纳滤技术能够脱除水体体系中的水合离子、微型污染物和小的有机分子,是获得供人类生存、生活水资源的关键技术。纳滤是介于反渗透与超滤之间的一种压力驱动膜分离过程,内部起分离作用的孔道尺寸为0.5~2nm,可用于分子量为200~1000Da溶质的脱除,能高效截留二价及多价离子、允许单价离子通过。因此,纳滤膜在海水淡化以及饮用水净化方面有独特优势。目前,界面聚合法制备的复合纳滤膜仍是市场的主流产品,其主要优势在于基膜和分离层可分别制备并分别优化。例如,CN111111480A公开了一种唑来磷酸改性纳滤膜及其制备方法,该方法通过在水相溶液中加入含有不对称性以及不参与界面聚合反应的咪唑基的唑来磷酸来调控分离层结构,使得新型纳滤膜中产生了一种缺陷性孔道,制备出高通量、抗污染的复合纳滤膜。CN112755812A公开了一种具有中间层的高通量交联复合纳滤膜及其制备方法,该方法通过在微滤膜表面沉积一层超亲水纤维素纳米晶,赋予了基膜良好的储存水相单体能力,促进了水的渗透,制备出高通量复合纳滤膜。然而,界面聚合法制备复合纳滤膜也存在一些缺点,如分步制备和优化效率较低、能耗大,导致生产时间和制备成本增加,且基膜和分离层之间仅存在物理相互作用,结合牢度低,难以适应复杂环境体系的长期稳定运行。因此,改进复合纳滤膜的制备工艺、简化膜的制备方法同时解决复合纳滤膜稳定性差的问题具有实际研究意义。
发明内容
针对现有技术的不足,本发明的一个目的是提供一种复合纳滤膜的制备方法。
本发明的另一目的是提供一种上述方法制备的复合纳滤膜。
为此,本发明的技术方案如下:
一种复合纳滤膜的制备方法,包括以下步骤:
S1,铸膜液的配制:将聚氯乙烯树脂、添加剂溶解于有机溶剂中,50-70℃条件下充分搅拌形成均一透明的铸膜液,然后将胺化剂加入到所述铸膜液中,在50-70℃条件下充分搅拌2-7h、真空脱泡1h,得到混合均匀的胺基化改性聚氯乙烯铸膜液,其中:
所述添加剂为聚乙烯吡咯烷酮、聚乙二醇、聚乙烯醇、聚丙三醇、普朗尼克(Pluronic-F127)和聚氧乙烯中的至少一种;
所述有机溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮、二甲基亚砜和四氢呋喃中的至少一种;
所述胺化剂为乙二胺、丙二胺、丁二胺、戊二胺、己二胺、二乙烯三胺、三乙烯四胺、四乙烯五胺、哌嗪、邻苯二胺、间苯二胺和对苯二胺中的至少一种;
S2,复合纳滤膜的制备:将无纺布在玻璃板上平铺固定,将步骤S1得到的胺基化改性聚氯乙烯铸膜液通过自动刮膜机在固定有无纺布的玻璃板上均匀刮制成平板状,然后将其浸入凝固浴一定时间,取出,用滤纸吸干表面残余的水分后,再浸入浓度为0.02-1w/v%的多元酰氯单体的有机溶液(即100ml总溶液中含0.02-1g多元酰氯单体,以下同)中一定时间,取出;再将得到的初生复合纳滤膜进行后处理,完善界面聚合反应,得到复合纳滤膜,其中:
所述多元酰氯单体的有机溶液是一种或多种多元酰氯单体溶解于有机烷烃溶剂中形成的溶液;
所述多元酰氯单体为邻苯二甲酰氯、间苯二甲酰氯、对苯二甲酰氯、己二酰氯、壬二酰氯、均苯三甲酰氯和均苯四甲酰氯中的至少一种;
所述有机烷烃溶剂为正己烷、环己烷、正庚烷、正癸烷和异构烷烃中的至少一种。
优选的是,步骤S1中,所述铸膜液的质量分数组成为:8-18%的聚氯乙烯树脂、0-10%的添加剂和72-92%的有机溶剂,所述胺化剂的用量为所述聚氯乙烯树脂质量的8-100%。
优选的是,步骤S2中,所述刮膜温度为20-70℃。
优选的是,步骤S2中,所用刮刀厚度为20-250μm。
优选的是,步骤S2中,所述凝固浴为水,凝固浴的温度为20-70℃。
优选的是,步骤S2中,浸入凝固浴的时间为5s-1200s。
优选的是,步骤S2中,浸入多元酰氯单体的有机溶液中的时间为10-600s。
优选的是,步骤S2中,所述后处理的方法为空气浴热处理、水浴热处理中的至少一种。
优选的是,步骤S2中,所述后处理的温度为20-70℃,后处理时间为0-30min。
一种由上述方法制备的复合纳滤膜,由基膜支撑层和聚酰胺分离层组成,基膜支撑层的改性和分离层的界面聚合过程同时完成;所述基膜支撑层与聚酰胺分离层之间以共价键作用结合,所述分离层由胺化剂和多元酰氯单体经界面聚合反应形成。
本发明的制备方法改进了传统的界面聚合方法,提高了复合纳滤膜的制备效率;同时通过调控聚氯乙烯树脂与胺化剂的质量比以及胺基化反应条件来控制铸膜液凝胶化程度以及聚氯乙烯胺基化程度,从而精准控制界面结合牢固度,构建了支撑层和分离层之间的共价键连接。
与现有技术相比,本发明具有以下有益效果:
(1)本发明选取价格低廉的聚氯乙烯为基膜原材料,利用聚氯乙烯分子链中存在活性改性位点C-Cl键,对其进行原位胺基化改性,形成可参与界面聚合的胺基可反应位点,通过调控聚氯乙烯树脂与胺化剂的质量比、胺基化反应条件、铸膜液浸入凝固浴的时间以及界面聚合的条件,同时完成了基膜支撑层的改性和分离层的界面聚合过程。
(2)本发明改进了传统界面聚合方法,解决了复合纳滤膜制备步骤繁琐的问题,提高了制备效率、降低了能耗且制备成本低,便于工业化生产。
(3)在原位胺基化改性聚氯乙烯铸膜液的配制过程中,铸膜液会出现凝胶化现象,本发明通过调控聚氯乙烯树脂与胺化剂的质量比以及胺基化反应条件,能够精准控制铸膜液的凝胶化程度以及聚氯乙烯胺基化程度,而凝胶化程度及胺基化程度分别决定了成膜的难易程度以及界面结合度,由此可实现对界面结合牢固度的精准控制。
(4)本发明通过对聚氯乙烯的原位胺基化改性,构建了支撑层和分离层之间的共价键连接,克服了传统复合纳滤膜因两层之间仅依靠物理作用连接,分离层易脱落问题,赋予了该复合纳滤膜较强的界面结合力,使之适用于恶劣环境下的长期稳定运行。
附图说明
图1为实施例1制得的复合纳滤膜的表面扫描电镜图;
图2为实施例2制得的复合纳滤膜的表面扫描电镜图;
图3为实施例4制得的复合纳滤膜的表面扫描电镜图。
具体实施方式
以下结合实施例对本发明的技术方案进行详细说明。
实施例1
(1)铸膜液的配制:按照质量分数计,14%的聚氯乙烯树脂溶于86%的N,N-二甲基乙酰胺中,70℃下搅拌溶解,形成均一透明的聚氯乙烯铸膜液;将质量为所述聚氯乙烯树脂质量60%的三乙烯四胺加入上述铸膜液体系中,在70℃下搅拌5h、真空脱泡1h,得到胺基化改性聚氯乙烯铸膜液。
(2)复合纳滤膜的制备:将聚酯无纺布在玻璃板上平铺固定,将步骤(1)制备的胺基化改性聚氯乙烯铸膜液倾倒在无纺布上,室温下,经自动刮膜机均匀刮制成平板状,然后将其浸入水凝固浴中10s,取出,用滤纸吸干表面残余的水分后,再浸入浓度为0.3w/v%的均苯三甲酰氯正己烷溶液中5min,取出;最后将其在60℃空气浴中热处理8min,即得复合纳滤膜。
图1为本实施例制得的复合纳滤膜表面扫描电镜图,由图可知,复合纳滤膜表面形成了聚酰胺层,呈现“脊-谷”结构并不规则分布有明显突起的较大结节以及较深的凹坑结构;经测定,本实施例制得的复合纳滤膜,在0.6MPa,25℃的测试条件下,对2g/L的硫酸钠(Na2SO4)水溶液的截留率为61.30%,渗透通量为3.96L·m-2·h-1
实施例2
与实施例1的区别在于:步骤(2)中浸入凝固浴的时间变为60s。
其他所有步骤与实施例1相同。
图2为本实施例制得的复合纳滤膜表面扫描电镜图,由图可知,膜表面形成了聚酰胺层,整体呈现条纹状结构,条纹状凸起处及平坦处都分布有脊-谷结构且结节小而密集;经测定,本实施例制得的复合纳滤膜,在0.6MPa,25℃的测试条件下,对2g/L的硫酸钠(Na2SO4)水溶液的截留率为89.42%,渗透通量为3.54L·m-2·h-1
实施例3
与实施例1的区别在于:步骤(1)中三乙烯四胺的含量变为聚氯乙烯树脂质量的20%;步骤(2)中浸入凝固浴的时间变为60s。
其他所有步骤与实施例1相同。
经测定,本实施例制得的复合纳滤膜,在0.6MPa,25℃的测试条件下,对2g/L的硫酸钠(Na2SO4)水溶液的截留率为60.38%,渗透通量为5.24L·m-2·h-1
实施例4
与实施例1的区别在于:步骤(2)中浸入凝固浴的时间变为60s,60℃空气浴中热处理的时间变为4min。
其他所有步骤与实施例1相同。
图3为本实施例制得的复合纳滤膜表面扫描电镜图,由图可知,膜表面形成了较为平坦的聚酰胺层,分布有较浅的凹坑;经测定,本实施例制得的复合纳滤膜,在0.6MPa,25℃的测试条件下,对2g/L的硫酸钠(Na2SO4)水溶液的截留率为91.50%,渗透通量为6.37L·m-2·h-1,连续运行24h其截留率保持稳定。
实施例5
(1)铸膜液的配制:按照质量分数计,14%的聚氯乙烯树脂、5%的聚乙二醇(分子量6000)溶于81%的N,N-二甲基乙酰胺中,70℃下搅拌溶解,形成均一透明的聚氯乙烯铸膜液;将质量为所述聚氯乙烯树脂质量60%的乙二胺加入上述铸膜液体系中,在70℃下搅拌3h、真空脱泡1h,得到胺基化改性聚氯乙烯铸膜液。
(2)复合纳滤膜的制备:将聚酯无纺布在玻璃板上平铺固定,将步骤(1)制备的胺基化改性聚氯乙烯铸膜液倾倒在无纺布上,室温下,经自动刮膜机均匀刮制成平板状,然后将其浸入水凝固浴中60s,取出,用滤纸吸干表面残余的水分后,再浸入浓度为0.1w/v%的均苯三甲酰氯正己烷溶液中1min,取出;最后将其在40℃空气浴中热处理4min,即得复合纳滤膜。
经测定,本实施例制得的复合纳滤膜,在0.6MPa,25℃的测试条件下,对2g/L的硫酸钠(Na2SO4)水溶液的截留率为88.39%,渗透通量为14.72L·m-2·h-1
实施例6
(1)铸膜液的配制:按照质量分数计,10%的聚氯乙烯树脂、5%的聚乙二醇(分子量6000)溶于85%的N,N-二甲基乙酰胺中,70℃下搅拌溶解,形成均一透明的聚氯乙烯铸膜液;将质量为所述聚氯乙烯树脂质量60%的三乙烯四胺加入上述铸膜液体系中,在70℃下搅拌5h、真空脱泡1h,得到胺基化改性聚氯乙烯铸膜液。
(2)复合纳滤膜的制备:将聚酯无纺布在玻璃板上平铺固定,将步骤(1)制备的胺基化改性聚氯乙烯铸膜液倾倒在无纺布上,室温下,经自动刮膜机均匀刮制成平板状,然后将其浸入水凝固浴中60s,取出,用滤纸吸干表面残余的水分后,再浸入浓度为0.1w/v%的均苯三甲酰氯正己烷溶液中5min,取出;最后将其在60℃去离子水中热处理4min,即得复合纳滤膜。
经测定,本实施例制得的复合纳滤膜,在0.6MPa,25℃的测试条件下,对2g/L的硫酸钠(Na2SO4)水溶液的截留率为81.95%,渗透通量为16.93L·m-2·h-1

Claims (10)

1.一种复合纳滤膜的制备方法,包括以下步骤:
S1,铸膜液的配制:将聚氯乙烯树脂、添加剂溶解于有机溶剂中,50-70℃条件下充分搅拌形成均一透明的铸膜液,然后将胺化剂加入到所述铸膜液中,在50-70℃条件下充分搅拌2-7h、真空脱泡1h,得到混合均匀的胺基化改性聚氯乙烯铸膜液,其中:
所述添加剂为聚乙烯吡咯烷酮、聚乙二醇、聚乙烯醇、聚丙三醇、普朗尼克(Pluronic-F127)和聚氧乙烯中的至少一种;
所述有机溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮、二甲基亚砜和四氢呋喃中的至少一种;
所述胺化剂为乙二胺、丙二胺、丁二胺、戊二胺、己二胺、二乙烯三胺、三乙烯四胺、四乙烯五胺、哌嗪、邻苯二胺、间苯二胺和对苯二胺中的至少一种;
S2,复合纳滤膜的制备:将无纺布在玻璃板上平铺固定,将步骤S1得到的胺基化改性聚氯乙烯铸膜液通过自动刮膜机在固定有无纺布的玻璃板上均匀刮制成平板状,然后将其浸入凝固浴一定时间,取出,用滤纸吸干表面残余的水分后,再浸入浓度为0.02-1w/v%,的多元酰氯单体的有机溶液中一定时间,取出;再将得到的初生复合纳滤膜进行后处理,完善界面聚合反应,得到复合纳滤膜,其中:
所述多元酰氯单体的有机溶液是一种或多种多元酰氯单体溶解于有机烷烃溶剂中形成的溶液;
所述多元酰氯单体为邻苯二甲酰氯、间苯二甲酰氯、对苯二甲酰氯、己二酰氯、壬二酰氯、均苯三甲酰氯和均苯四甲酰氯中的至少一种;
所述有机烷烃溶剂为正己烷、环己烷、正庚烷、正癸烷和异构烷烃中的至少一种。
2.根据权利要求1所述的制备方法,其特征在于:步骤S1中,所述铸膜液的质量分数组成为:8-18%的聚氯乙烯树脂、0-10%的添加剂和72-92%的有机溶剂,所述胺化剂的用量为所述聚氯乙烯树脂质量的8-100%。
3.根据权利要求1所述的制备方法,其特征在于:步骤S2中,所述刮膜温度为20-70℃。
4.根据权利要求1所述的制备方法,其特征在于:步骤S2中,所用刮刀厚度为20-250μm。
5.根据权利要求1所述的制备方法,其特征在于:步骤S2中,所述凝固浴为水,凝固浴的温度为20-70℃。
6.根据权利要求1所述的制备方法,其特征在于:步骤S2中,浸入凝固浴的时间为5s-1200s。
7.根据权利要求1所述的制备方法,其特征在于:步骤S2中,浸入多元酰氯单体的有机溶液中的时间为10-600s。
8.根据权利要求1所述的制备方法,其特征在于:步骤S2中,所述后处理的方法为空气浴热处理、水浴热处理中的至少一种。
9.根据权利要求1所述的制备方法,其特征在于:步骤S2中,所述后处理的温度为20-70℃,后处理时间为0-30min。
10.一种由权利要求1-9中任一项的方法制备的复合纳滤膜,其特征在于:由基膜支撑层和聚酰胺分离层组成,基膜支撑层的改性和分离层的界面聚合过程同时完成;所述基膜支撑层与聚酰胺分离层之间以共价键作用结合,所述分离层由胺化剂和多元酰氯单体经界面聚合反应形成。
CN202110780993.9A 2021-07-10 2021-07-10 一种复合纳滤膜及其制备方法 Pending CN113600031A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110780993.9A CN113600031A (zh) 2021-07-10 2021-07-10 一种复合纳滤膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110780993.9A CN113600031A (zh) 2021-07-10 2021-07-10 一种复合纳滤膜及其制备方法

Publications (1)

Publication Number Publication Date
CN113600031A true CN113600031A (zh) 2021-11-05

Family

ID=78304396

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110780993.9A Pending CN113600031A (zh) 2021-07-10 2021-07-10 一种复合纳滤膜及其制备方法

Country Status (1)

Country Link
CN (1) CN113600031A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114534525A (zh) * 2021-12-31 2022-05-27 山东华夏神舟新材料有限公司 胺化改性抗污染多孔膜及其制备方法
CN115463551A (zh) * 2022-10-20 2022-12-13 盐城海普润科技股份有限公司 一种芳香聚酰胺水处理分离膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009035415A1 (en) * 2007-09-10 2009-03-19 National University Of Singapore Polymeric membranes incorporating nanotubes
CN108993178A (zh) * 2018-07-27 2018-12-14 天津工业大学 一种高通量耐高温复合纳滤膜的制备方法
CN110314559A (zh) * 2019-07-31 2019-10-11 朱军勇 一种界面聚合复合膜的制备方法
CN112370976A (zh) * 2020-11-23 2021-02-19 天津工业大学 一种界面增强型复合纳滤膜及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009035415A1 (en) * 2007-09-10 2009-03-19 National University Of Singapore Polymeric membranes incorporating nanotubes
CN108993178A (zh) * 2018-07-27 2018-12-14 天津工业大学 一种高通量耐高温复合纳滤膜的制备方法
CN110314559A (zh) * 2019-07-31 2019-10-11 朱军勇 一种界面聚合复合膜的制备方法
CN112370976A (zh) * 2020-11-23 2021-02-19 天津工业大学 一种界面增强型复合纳滤膜及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114534525A (zh) * 2021-12-31 2022-05-27 山东华夏神舟新材料有限公司 胺化改性抗污染多孔膜及其制备方法
CN115463551A (zh) * 2022-10-20 2022-12-13 盐城海普润科技股份有限公司 一种芳香聚酰胺水处理分离膜及其制备方法
CN115463551B (zh) * 2022-10-20 2023-06-06 盐城海普润科技股份有限公司 一种芳香聚酰胺水处理分离膜及其制备方法

Similar Documents

Publication Publication Date Title
CN111185103B (zh) 一种纳米纤维基有机/无机复合纳滤膜及其制备方法
CN113600031A (zh) 一种复合纳滤膜及其制备方法
CN111408281B (zh) 一种复合正渗透膜及制备方法
KR101267825B1 (ko) 정삼투 복합막 및 그 제조방법
CN113262644B (zh) 一种高通量荷正电纳滤膜及其制备方法
CN110917907B (zh) 一种高通量的反渗透膜及其制备方法和应用
CN108479395B (zh) 一种正渗透膜及其制备方法
CN114471157A (zh) 一种荷正电耐酸纳滤膜的制备方法及荷正电耐酸纳滤膜
CN111841343B (zh) 一种非对称聚酰胺纳米膜及制备方法
CN114713042B (zh) 一种高分辨率和水通量的纳滤膜及其制备方法
KR101743808B1 (ko) 폴리아마이드계 복합막의 제조방법
CN115121128A (zh) 一种复合膜的制备方法及复合膜
CN112755812A (zh) 一种具有中间层的高通量交联复合纳滤膜及其制备方法
CN112370976B (zh) 一种界面增强型复合纳滤膜及其制备方法
CN115672066A (zh) 一种基于水凝胶中间层制备薄层聚酰胺层的纳滤膜的方法
CN111346526B (zh) 一种中空纤维纳滤膜及其制备方法
CN113318598B (zh) 一种通过调节基膜孔径增强反渗透膜选择渗透性的方法
KR101076221B1 (ko) 전해질 고분자 다층박막을 이용한 역삼투막 제조방법 및 이를 이용하여 제조한 역삼투막
CN112007513A (zh) 一种间位芳纶基聚酰胺复合纳滤膜的制备方法
CN114432896A (zh) 一种纳滤膜的制备方法
JP2002224546A (ja) 下水処理用複合半透膜およびその製造方法
CN114405291B (zh) 一种纳米纤维正渗透复合膜的制备方法
KR20140003278A (ko) 압력지연삼투 분리막 및 그의 제조방법
CN115350603A (zh) 聚偏氟乙烯基薄层复合纳滤膜及其制备方法
CN113750818B (zh) 一种高渗透性聚酰胺反渗透复合膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination