CN113553740A - 一种基于改进pgsa的轮辐式双层索网预应力优化方法 - Google Patents

一种基于改进pgsa的轮辐式双层索网预应力优化方法 Download PDF

Info

Publication number
CN113553740A
CN113553740A CN202110836183.0A CN202110836183A CN113553740A CN 113553740 A CN113553740 A CN 113553740A CN 202110836183 A CN202110836183 A CN 202110836183A CN 113553740 A CN113553740 A CN 113553740A
Authority
CN
China
Prior art keywords
type double
pgsa
layer cable
prestress
cable net
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110836183.0A
Other languages
English (en)
Inventor
区彤
林全攀
姜正荣
石开荣
张连飞
陈进于
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Architectural Design and Research Institute of Guangdong Province
Original Assignee
Architectural Design and Research Institute of Guangdong Province
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Architectural Design and Research Institute of Guangdong Province filed Critical Architectural Design and Research Institute of Guangdong Province
Publication of CN113553740A publication Critical patent/CN113553740A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

本发明公开了一种基于改进PGSA的轮辐式双层索网预应力优化方法,包括以下步骤:设置PGSA的计算参数;随机生成初始生长点;将生长点输出为设计变量数据;读取输出的设计变量数据,建立轮辐式双层索网模型;对轮辐式双层索网模型进行分析计算;获得分析计算的结果,所述结果至少包括杆件内力、节点位移中的一种或多种;读取分析结果,按约束条件和目标函数对各个生长点进行评价;读取评价;若不满足终止条件,继续计算生长点的历史最优位置与全局最优位置更新生长点的位置与生长步长,并返回;若满足终止条件,输出最优解和最优值。本发明对轮辐式双层索网结构优化,优化目标值远小于现有优化算法得到的结果,具有优化效果好,效率高的特点。

Description

一种基于改进PGSA的轮辐式双层索网预应力优化方法
技术领域
本发明涉及建筑工程领域,特别是一种基于改进PGSA的轮辐式双层索网预应力优化方法。
背景技术
随着近几十年来优化算法的发展,面对错综复杂的实际问题,优化不再局限于传统算法的求解,智能优化算法应运而生,如遗传算法、蚁群算法、粒子群算法、模拟退火算法等。但轮辐式双层索网预应力优化,用这些算法得到的结果往往出现目标值过大,位移控制不合理等问题。
申请人将模拟植物生长算法(PGSA)用于轮辐式双层索网结构的预应力优化分析。因模拟植物生长算法在生长的过程中,生长步长的取值是固定,申请人将该算法用于轮辐式双层索网结构的找力分析,因索力为连续变量,可行域较广,过大的生长步长会导致优化效果不良,而过小的生长步长会导致优化效率低下,PGSA的搜索速度需要加强。
发明内容
本发明提供一种基于改进PGSA的轮辐式双层索网预应力优化方法,以至少解决现有技术中优化分析方法结果目标值过大,位移控制不合理、搜索速度需要加强的问题。
本发明目的在于提供一种基于改进PGSA的轮辐式双层索网预应力优化方法,包括以下步骤:
S101设置PGSA的计算参数;
S102随机生成初始生长点;
S103将生长点输出为设计变量数据;
S104读取S103输出的设计变量数据,建立轮辐式双层索网模型;
S105对轮辐式双层索网模型进行分析计算;
S106获得分析计算的结果,所述结果至少包括杆件内力、节点位移中的一种或多种;
S107读取分析结果,按约束条件和目标函数对各个生长点进行评价;
S108读取S107评价;若不满足终止条件,继续计算生长点的历史最优位置与全局最优位置更新生长点的位置与生长步长,并返回S103;若满足终止条件,输出最优解和最优值。
进一步地,所述优化方法还包括初始生长步长设定过程,所述初始生长步长设定过程包括:
设定最大生长次数为m,设置初始PGSA生长步长为w1,设置终态PGSA的生长步长wm,建立生长步长的初始放大系数为
Figure BDA0003177336250000011
更进一步地,所述基于改进PGSA的轮辐式双层索网预应力优化方法还包括生长步长更新过程,所述生长步长更新过程包括:
S201设定第i-1次生长步长为wi-1,第i次生长步长为wi
Figure BDA0003177336250000021
其中
Figure BDA0003177336250000022
Figure BDA0003177336250000023
S202导入
Figure BDA0003177336250000024
获得更新后的生长步长。
进一步地,所述设计变量数据为轮辐式双层索网径向索的预应力数据。
更进一步地,所述设计变量数据设定方法为:
根据平衡状态下轮辐式双层索网的径向索预应力大小差异,对径向索进行分组,并根据分组后的径向索预应力设定为设计变量数据。
进一步地,所述目标函数为撑杆上节点竖向位移的径向位移D。
更进一步地,所述目标函数具体为:
D=min{|d1|+|d2|+|d3|+|d4|},其中,D为优化目标值;d1,d2,d3分别为内、中、外圈撑杆上节点竖向位移;d4为中部受拉环上节点径向位移。
更进一步地,所述约束条件包括:
单层网壳最大竖向位移限值
Figure BDA0003177336250000025
其中L为网壳跨度。
更进一步地,所述约束条件还包括:
容许长细比,所述容许长细比为
Figure BDA0003177336250000026
强度,所述强度f满足
Figure BDA0003177336250000027
更进一步地,所述约束条件还包括:
稳定性,所述稳定性满足公式
Figure BDA0003177336250000028
本发明相对于现有技术,将经过改进的PGSA算法应用到轮辐式双层索网结构优化,能根据实际问题所设置的优化目标,在大范围可行域空间内寻找满足优化目标的较优解,优化目标值远小于现有优化算法得到的结果,使得轮辐式双层索网结构的位移控制在了更加合理的范围内,具有优化效果好,效率高的特点。
附图说明
图1为本发明实施例轮辐式双层索网模型图;
图2为本发明实施例PGSA具体流程图;
图3为本发明实施例生长点放大系数变化情况对照表;
图4为本发明实施例MATLAB和ANSYS协同工作流程图;
图5为本发明实施例流程图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。
本发明实施例提供一种基于改进PGSA的轮辐式双层索网预应力优化方法,包括以下步骤:
S101设置PGSA的计算参数;
S102随机生成初始生长点;
S103将生长点输出为设计变量数据;
S104读取S103输出的设计变量数据,建立轮辐式双层索网模型;
S105对轮辐式双层索网模型进行分析计算;
S106获得分析计算的结果,所述结果至少包括杆件内力、节点位移中的一种或多种;
S107读取分析结果,按约束条件和目标函数对各个生长点进行评价;
S108读取S107评价;若不满足终止条件,继续计算生长点的历史最优位置与全局最优位置更新生长点的位置与生长步长,并返回S103;若满足终止条件,输出最优解和最优值。
其中,本发明实施例采用matlab编写PGSA与ansys协同工作运行文件,matlab与ansys的协同工作流程如图1、4所示。本发明实施例节点连接形式和结构边界约束条件包括,节点连接形式:钢构之间刚接,拉索与钢构之间铰接,撑杆与钢构铰接;结构边界约束条件:V型柱采用铰接。
本发明实施例采用ANSYS通用有限元分析软件,采用几何非线性和材料非线性分析,利用牛顿-拉斐逊迭代求解,通过考虑应力刚化效应,先找出轮辐式索网结构径向索的索力分布,再根据优化目标包括顶部钢结构节点的竖向位移、撑杆顶部的位移、支座反力,可快速确定预应力水平。如图1所示,分析模型包含了钢构件、拉索,荷载只考虑上部恒载。
本发明相对于现有技术,将经过改进的PGSA算法应用到轮辐式双层索网结构优化,能根据实际问题所设置的优化目标,在大范围可行域空间内寻找满足优化目标的较优解,优化目标值远小于现有优化算法得到的结果,使得轮辐式双层索网结构的位移控制在了更加合理的范围内,具有优化效果好,效率高的特点。
可选的,所述优化方法还包括初始生长步长设定过程,所述初始生长步长设定过程包括:
设定最大生长次数为m,设置初始PGSA生长步长为w1,设置终态PGSA的生长步长wm,建立生长步长的初始放大系数为
Figure BDA0003177336250000041
其中,在步骤S102过程中,随机生成初始生长点,并进行初始生长步长设定过程,设置初始PGSA生长步长为w1,设置终态PGSA的生长步长wm
特别的,所述基于改进PGSA的轮辐式双层索网预应力优化方法还包括生长步长更新过程,所述生长步长更新过程包括:
S201设定第i-1次生长步长为wi-1,第i次生长步长为wi
Figure BDA0003177336250000042
其中
Figure BDA0003177336250000043
Figure BDA0003177336250000044
S202导入
Figure BDA0003177336250000045
获得更新后的生长步长。
其中,S108中读取S107评价;若不满足终止条件,继续计算生长点的历史最优位置与全局最优位置更新生长点的位置与生长步长,并返回S103,在执行S103过程中同时进行生长步长更新过程,以更新后的生长步长进行执行S104-S107过程,实现再次生长更新,获得新的分析结果。
传统的PGSA模拟植物生长算法,在生长的过程中生长步长的取值是固定,该算法用于轮辐式双层索网结构的找力分析,因索力为连续变量,可行域较广,过大的生长步长会导致优化效果不良,而过小的生长步长会导致有效效率的低下。本发明实施例为加强PGSA的搜索速度,对PGSA每一次生长后的生长步长进行更新。在本发明实施例开始时,生长点处在可行域的随机位置,各可生长点间的距离较大,在算法优选的初期,侧重于利用算法的全局搜索能力,快速找出位于全局最优解附近的生长点。越到后期,搜索更为精细,充分利用算法的局部搜索能力,精确地找到全局最优解。
本发明实施例在生长点搜索过程中,利用改变生长步长的取值,调整该算法的优化性能,算法初期搜索时,采用大步长,过大的生长步长使得算法拥有优秀的全局搜索能力;而过小的生长步长使得算法表现出卓越的局部搜索能力,在搜索进行中,不断调低其值,从而达到该算法在不同时期拥有不同的优化性能。本发明实施例在最后一次生长时,生长步长恰好为wm
假设最大生长次数为100次,如图3所示,生长点的初始放大系数依次为10、20、10,生长点放大系数在算法运行过程中的变化情况,从图中可以看出,生长点的放大倍数的变化趋势大致为先急剧下降,后缓慢减小,符合算法刚开始优选较为粗劣,而后期优选较为精细的目的。
可选的,所述设计变量数据为轮辐式双层索网径向索的预应力数据。
特别的,所述设计变量数据设定方法为:
根据平衡状态下轮辐式双层索网的径向索预应力大小差异,对径向索进行分组,并根据分组后的径向索预应力设定为设计变量数据。
其中,本发明实施例以轮辐式双层索网的径向索的预应力作为设计变量,根据平衡状态下径向索预应力大小的差异,将径向索分为4组,因此设计变量为4个。
可选的,所述目标函数为撑杆上节点竖向位移的径向位移D。
其中,如图1所示,本发明实施例为创造良好的建筑造型,轮辐式双层索网结构在施工张拉过程中,严格控制上网壳的竖向变形,而撑杆的上节点竖向位移在整体位移中起到重要作用,因此将撑杆的上节点竖向位移考虑到目标函数中。
特别的,所述目标函数具体为:
D=min{|d1|+|d2|+|d3|+|d4|},其中,D为优化目标值;d1,d2,d3分别为内、中、外圈撑杆上节点竖向位移;d4为中部受拉环上节点径向位移。
其中,本发明实施例因轮辐式双层索网结构的受力理念为自平衡体系,轮辐式双层索网结构支座出的径向位移一定程度上表现了该结构的自平衡效果,即支座处径向位移越小,说明因预应力引起的自平衡效果更优秀,该设计预应力更加合理。
特别的,所述约束条件包括:
单层网壳最大竖向位移限值
Figure BDA0003177336250000051
其中L为网壳跨度。
特别的,所述约束条件还包括:
容许长细比,所述容许长细比为
Figure BDA0003177336250000052
其中,压弯构件[λ]=150,拉弯构件[λ]=300;
强度,所述强度f满足
Figure BDA0003177336250000053
特别的,所述约束条件还包括:
稳定性,所述稳定性满足公式
Figure BDA0003177336250000061
其中,本发明实施例稳定性指压弯构件的稳定性,式中:本例中f=310N/mm2;所述约束条件还包括拉索的应力限值,拉索在各个工况下的最大应力值不超过668N/mm2
在ansys中,轮辐式双层索网结构的撑杆采用link8单元,拉索采用link10单元,用施加初始应变法给索单元加预应力。构件力学参数如下表所示:
材料 弹性模量(MPa) 温度膨胀系数(/℃) 密度(kg/m<sup>3</sup>)
钢构件、支架、撑杆 2.06×10<sup>5</sup> 1.2×10<sup>-5</sup> 7.85×10<sup>3</sup>
拉索 1.6×10<sup>5</sup> 1.2×10<sup>-5</sup> 7.85×10<sup>3</sup>
由于顶部网壳和拉索连接处的节点构造受力情况特殊,在钢构件、支架、撑杆、拉索的密度计算时引入1.1的增大系数,密度为7.85×103×1.1=8.635×103(kg/m3)。
采用分布更新法、ANSYS优化方法与本发明实施例改进后的PGSA分别对轮辐式双层索网结构的设计预应力进行优化,对比结果如下表所示:
Figure BDA0003177336250000062
由上表可见,改进的PGSA经过约56次生长更新后,最优值趋向于定值19.3mm(而分布更新法和ANSYS优化法在经过56次迭代计算后的目标函数值分别是46.7和34.6)。在此之后,生长求得的最优解不再变化,在经过少次的生长后,生长空间不再产生新的生长点且逐渐变为空集。
在经过改进的PGSA优化之后,本发明实施例轮辐式双层索网结构优化目标值远小于用分布更新法以及ANSYS优化算法得到的结果,说明改进的PGSA的优化结果使得上轮辐式双层索网结构的位移控制在了更加合理的范围内。
在采用改进的PGSA对轮辐式双层索网结构进行预应力优化分析时,其能根据实际问题所设置的优化目标,在大范围可行域空间内寻找满足优化目标的较优解,且其优化效果非常好,优化效率极高,适合用于轮辐式双层索网结构的优化分析。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解,技术人员阅读本申请说明书后依然可以对本发明的具体实施方式进行修改或者等同替换,但这些修改或变更均未脱离本发明申请待批权利要求保护范围之内。

Claims (10)

1.一种基于改进PGSA的轮辐式双层索网预应力优化方法,其特征在于,包括以下步骤:
S101设置PGSA的计算参数;
S102随机生成初始生长点;
S103将生长点输出为设计变量数据;
S104读取S103输出的设计变量数据,建立轮辐式双层索网模型;
S105对轮辐式双层索网模型进行分析计算;
S106获得分析计算的结果,所述结果至少包括杆件内力、节点位移中的一种或多种;
S107读取分析结果,按约束条件和目标函数对各个生长点进行评价;
S108读取S107评价;若不满足终止条件,继续计算生长点的历史最优位置与全局最优位置更新生长点的位置与生长步长,并返回S103;若满足终止条件,输出最优解和最优值。
2.根据权利要求1所述的一种基于改进PGSA的轮辐式双层索网预应力优化方法,其特征在于,所述优化方法还包括初始生长步长设定过程,所述初始生长步长设定过程包括:
设定最大生长次数为m,设置初始PGSA生长步长为w1,设置终态PGSA的生长步长wm,建立生长步长的初始放大系数为
Figure FDA0003177336240000011
3.根据权利要求2所述的一种基于改进PGSA的轮辐式双层索网预应力优化方法,其特征在于,所述基于改进PGSA的轮辐式双层索网预应力优化方法还包括生长步长更新过程,所述生长步长更新过程包括:
S201设定第i-1次生长步长为wi-1,第i次生长步长为wi
Figure FDA0003177336240000012
其中
Figure FDA0003177336240000013
Figure FDA0003177336240000014
S202导入
Figure FDA0003177336240000015
获得更新后的生长步长。
4.根据权利要求1所述的一种基于改进PGSA的轮辐式双层索网预应力优化方法,其特征在于,所述设计变量数据为轮辐式双层索网径向索的预应力数据。
5.根据权利要求4所述的一种基于改进PGSA的轮辐式双层索网预应力优化方法,其特征在于,所述设计变量数据设定方法为:
根据平衡状态下轮辐式双层索网的径向索预应力大小差异,对径向索进行分组,并根据分组后的径向索预应力设定为设计变量数据。
6.根据权利要求1所述的一种基于改进PGSA的轮辐式双层索网预应力优化方法,其特征在于,所述目标函数为撑杆上节点竖向位移的径向位移D。
7.根据权利要求6所述的一种基于改进PGSA的轮辐式双层索网预应力优化方法,其特征在于,所述目标函数具体为:
D=min{|d1|+|d2|+|d3|+|d4|},其中,D为优化目标值;d1,d2,d3分别为内、中、外圈撑杆上节点竖向位移;d4为中部受拉环上节点径向位移。
8.根据权利要求7所述的一种基于改进PGSA的轮辐式双层索网预应力优化方法,其特征在于,所述约束条件包括:
单层网壳最大竖向位移限值
Figure FDA0003177336240000021
其中L为网壳跨度。
9.根据权利要求8所述的一种基于改进PGSA的轮辐式双层索网预应力优化方法,其特征在于,所述约束条件还包括:
容许长细比,所述容许长细比为
Figure FDA0003177336240000022
强度,所述强度f满足
Figure FDA0003177336240000023
10.根据权利要求9所述的一种基于改进PGSA的轮辐式双层索网预应力优化方法,其特征在于,所述约束条件还包括:
稳定性,所述稳定性满足公式
Figure FDA0003177336240000024
CN202110836183.0A 2021-03-02 2021-07-23 一种基于改进pgsa的轮辐式双层索网预应力优化方法 Pending CN113553740A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2021102285119 2021-03-02
CN202110228511 2021-03-02

Publications (1)

Publication Number Publication Date
CN113553740A true CN113553740A (zh) 2021-10-26

Family

ID=78132625

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110836183.0A Pending CN113553740A (zh) 2021-03-02 2021-07-23 一种基于改进pgsa的轮辐式双层索网预应力优化方法

Country Status (1)

Country Link
CN (1) CN113553740A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107256288A (zh) * 2017-05-18 2017-10-17 西安电子科技大学 基于索段张力方差优化的可展开星载天线索网结构设计方法
CN109101747A (zh) * 2018-08-29 2018-12-28 西安空间无线电技术研究所 一种环形网状反射器索网结构的确定方法及装置
CN109657274A (zh) * 2018-11-16 2019-04-19 广东省建筑设计研究院 建筑结构中基于粒子群优化算法的弦支穹顶索力优化方法
CN109707092A (zh) * 2018-11-16 2019-05-03 广东省建筑设计研究院 一种大跨度辐射式弦支穹顶屋面施工方法
CN110502810A (zh) * 2019-08-05 2019-11-26 中国建筑西南设计研究院有限公司 一种车辐式索网的直接找形方法
CN110909435A (zh) * 2019-11-28 2020-03-24 上海宇航系统工程研究所 一种网状天线索网形态分析方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107256288A (zh) * 2017-05-18 2017-10-17 西安电子科技大学 基于索段张力方差优化的可展开星载天线索网结构设计方法
CN109101747A (zh) * 2018-08-29 2018-12-28 西安空间无线电技术研究所 一种环形网状反射器索网结构的确定方法及装置
CN109657274A (zh) * 2018-11-16 2019-04-19 广东省建筑设计研究院 建筑结构中基于粒子群优化算法的弦支穹顶索力优化方法
CN109707092A (zh) * 2018-11-16 2019-05-03 广东省建筑设计研究院 一种大跨度辐射式弦支穹顶屋面施工方法
CN110502810A (zh) * 2019-08-05 2019-11-26 中国建筑西南设计研究院有限公司 一种车辐式索网的直接找形方法
CN110909435A (zh) * 2019-11-28 2020-03-24 上海宇航系统工程研究所 一种网状天线索网形态分析方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
区彤;谭坚;: "大跨度钢结构抗震性能化设计与实例", 建筑结构, no. 1, 15 May 2012 (2012-05-15) *
夏美梦;关富玲;: "基于改进粒子群算法的天线索网预应力优化", 浙江大学学报(工学版), no. 03, 15 March 2013 (2013-03-15) *
杨霄;张国军;管志忠;葛家琪;梁毅山;胡洋;: "成都金沙遗址博物馆轮辐式双层索网结构设计研究", 建筑结构, no. 10, 25 October 2009 (2009-10-25) *
陆赐麟: "预应力空间钢结构的现况和发展", 空间结构, no. 01, 30 March 1995 (1995-03-30) *

Similar Documents

Publication Publication Date Title
CN109657274B (zh) 建筑结构中基于粒子群优化算法的弦支穹顶索力优化方法
CN106372347B (zh) 改进双向渐进法的等效静载荷法动态响应拓扑优化方法
CN103902783B (zh) 一种基于广义逆向学习差分算法的排水管网优化方法
CN110909435B (zh) 一种网状天线索网形态分析方法
CN107729648A (zh) 一种基于Shepard插值的曲线纤维复合结构设计瀑布型多级优化方法
CN111042422B (zh) 一种零弯矩等轴力弦支穹顶结构及其计算方法
CN105354388A (zh) 一种加强筋的生长式拓扑优化设计方法
CN113345536B (zh) 一种基于极限各向异性点阵材料的结构拓扑优化方法
CN114970366B (zh) 一种功能梯度超材料结构优化设计方法及系统
CN111814231B (zh) 一种基于迭代找形的网壳形状优化方法
CN112817312B (zh) 一种基于双重搜索优化算法的路径规划方法
CN105117461A (zh) 一种基于改进的遗传算法的查询优化方法
CN110188471B (zh) 一种考虑风荷载的铝合金屋架优化方法
CN107201778B (zh) 一种斜交拉杆式单层球面温室网壳结构体系及其设计方法
CN113553740A (zh) 一种基于改进pgsa的轮辐式双层索网预应力优化方法
CN113449454B (zh) 一种钢桁架结构的拓扑优化方法
CN109255142B (zh) 基于小生境遗传算法的环形张拉整体结构拓扑优化方法
CN108564231B (zh) 一种大规模水电站水库群联合调度的代理优化降维方法
Jiang et al. A novel PGSA–PSO hybrid algorithm for structural optimization
CN113378314A (zh) Tw-ei在机械夹爪手指部件设计中的应用方法
CN111539138A (zh) 基于阶跃函数的结构动力学峰值时域响应灵敏度求解方法
CN112394640B (zh) 参数整定方法、装置、存储介质及参数整定单元
CN111502098B (zh) 一种适用于方形边界的弦支穹顶结构及其计算方法
CN110727987B (zh) 一种基于遗传梯度算法的闭环控制智能张弦梁结构
CN117610143B (zh) 一种薄壁构件的内部支撑布置方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination