CN113488631A - 一种SeS2包覆的高镍三元正极材料及其制备方法 - Google Patents

一种SeS2包覆的高镍三元正极材料及其制备方法 Download PDF

Info

Publication number
CN113488631A
CN113488631A CN202110849941.2A CN202110849941A CN113488631A CN 113488631 A CN113488631 A CN 113488631A CN 202110849941 A CN202110849941 A CN 202110849941A CN 113488631 A CN113488631 A CN 113488631A
Authority
CN
China
Prior art keywords
lini
ses
positive electrode
coated
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110849941.2A
Other languages
English (en)
Inventor
郑锋华
储有奇
潘齐常
王红强
李庆余
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi Normal University
Original Assignee
Guangxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi Normal University filed Critical Guangxi Normal University
Priority to CN202110849941.2A priority Critical patent/CN113488631A/zh
Publication of CN113488631A publication Critical patent/CN113488631A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种SeS2包覆的高镍三元正极材料及其制备方法,所述正极材料为SeS2包覆的LiNi1‑xyCoxMnyO2复合材料,所述方法为:将Ni1‑x‑yCoxMny(OH)2三元前驱体和锂源均匀混合后,在氧气氛围下热处理,得到LiNi1‑x‑yCoxMnyO2正极材料,然后将单质硫和硒和LiNi1‑x‑ yCoxMnyO2在惰性气氛下煅烧,并发生反应获得SeS2包覆LiNi1‑x‑yCoxMnyO2正极材料。这种表面改性能提高层状LiNi1‑x‑yCoxMnyO2结构稳定性,抑制氧气的析出,从而有效的提高材料的循环性能以及抑制正极材料循环过程中过渡金属溶解。这种制备方法简单、成本低、环境友好,适用于大规模工业生产。

Description

一种SeS2包覆的高镍三元正极材料及其制备方法
技术领域
本发明涉及锂离子电池电极材料制备技术领域,具体是一种SeS2包覆的高镍三元正极材料及其制备方法。
背景技术
锂离子电池是目前市场上应用最广泛的可移动储能设备、发展迅猛且发展空间十分巨大,并一跃成为目前最先进的储能系统,小到通讯设备,大到电动汽车等大型运输工具,都有锂离子电池的身影。但不幸的是,随着锂离子电池不断融入生活的方方面面,锂离子电池也遭遇了发展的颈瓶,随着各个行业的深入发展,比如轻轨动车的继续发展对锂离子电池的续航能力、输出电压等性能都有极高的要求,因此,锂离子电池需要进一步升级和优化,才能适应新兴行业对移动储存能源日益升高的需求。
正极材料对锂离子电池的性能具有直接和显着的影响,因此许多研究人员致力于实现大容量,快速充电/放电速率和长寿命的阴极。在这方面,具有约200 mAh g-1的可逆容量和低成本的高镍层状氧化物,已引起越来越多的关注。然而,在锂离子脱嵌过程中,Ni阳离子不可逆地迁移到Li平板上(即,阳离子混合)很容易导致LiNi1-x-yCoxMnyO2从层状相(R-3m)到尖晶石状(Fd-3m)和岩盐相(Fm-3m)结构降解,另外,LiNi1-x-yCoxMnyO2材料在空气中显示出快速的水分和二氧化碳吸收,这是由于将Ni3+还原为Ni2+以及表面上的Li2O/LiOH的合成锂杂质而导致的活性氧种类引起的,这种吸收不仅会导致阴极浆料凝胶化的高镍颗粒的高pH值,而且会导致电化学惰性的Li2CO3/LiOH层阻塞锂离子的传输通道,锂盐NiO相和Li2CO3/LiOH层在锂离子的嵌入/脱出过程中均无电化学活性,这导致正极高电阻和严重的容量降低。为了有效缓解上述不可避免的锂杂质和相变所引起的关键问题,表面涂层策略已显示出巨大的潜力,可以改善高镍层状氧化物的电化学性能并且可以抵抗HF的腐蚀。
研究发现,提高镍钴锰酸锂正极材料循环性能和倍率性能的方法主要有体相掺杂以及表面包覆。体相掺杂,包括用(Al、Cu、Zn、Fe、Mg、Ti、Co、Ru)取代金属阳离子的晶格掺杂以及诸如F的阴离子掺杂,对于消除杂质的形成并稳定LiNi1-x-yCoxMnyO2的尖晶石结构非常有效,因此可以有效地提高材料的容量和循环性能;表面包覆,就是利用涂覆保护层,以保护正极材料免受HF侵蚀达到保护材料的目的,金属氧化物例如Al2O3,Bi2O3,ZnO,SiO2,ZrO2,AlPO4等最常用作涂层材料。在LiNi1-x-yCoxMnyO2正极材料表面包覆一层纳米级SeS2保护膜,从而防止LiNi1-x-yCoxMnyO2正极材料与电解液直接接触和反应,以达到提高循环稳定性能的目的。
发明内容
本发明的目的是针对现有技术的不足,而提供一种SeS2包覆的高镍三元正极材料及其制备方法。这种正极材料能提高层状LiNi1-x-yCoxMnyO2结构稳定性、循环性能和抑制高层状LiNi1-x-yCoxMnyO2在循环过程中过渡金属溶解的缺陷。这种制备方法简单、成本低、环境友好,适用于大规模工业生产。
实现本发明目的的技术方案是:
一种SeS2包覆的高镍三元正极材料, 所述正极材料为SeS2包覆的LiNi1-xyCoxMnyO2复合材料,式中0<x<0.4,0<y<0.4,1-x-y≥0.6,其中,SeS2包覆的LiNi1-xyCoxMnyO2复合材料中, SeS2包覆层的质量分数为0-10%。
上述SeS2包覆的高镍三元正极材料的制备方法, 包括如下步骤:
1)将Ni1-x-yCoxMny(OH)2三元前驱体和锂源均匀混合后,置于刚玉坩埚中,放入管式炉中,在氧气氛围下热处理,得到LiNi1-x-yCoxMnyO2正极材料;
2)将硫粉、硒粉和LiNi1-x-yCoxMnyO2正极材料称量后分别放入两个烧舟中,即硫粉和硒粉放入一个烧舟中,但不混合,LiNi1-x-yCoxMnyO2正极材料放入另一个烧舟中均匀铺平,放入管式炉中,在惰性气氛下进一步进行热处理,硫粉、硒粉受热蒸发气化扩散均匀覆盖在LiNi1-x-yCoxMnyO2正极材料表面,LiNi1-x-yCoxMnyO2正极材料表面硫和硒发生反应,最终获得SeS2包覆LiNi1-x-yCoxMnyO2正极材料,此反应于惰性气Ar或N2气氛下,热处理时升温速度为2°C/min-5 °C/min,升温至250℃-400℃、保温2h,自然冷却至室温后,即得到SeS2包覆LiNi1-x-yCoxMnyO2正极材料。
步骤1)中所述的锂源为碳酸锂、氢氧化锂、硝酸锂或乙酸锂中的一种或几种。
步骤2)中所述硫粉、硒粉的加入量为硫和硒/LiNi1-x-yCoxMnyO2混合物中的质量分数为0-10%。
步骤2)中所述的热处理温度为250-400℃、热处理时间为5-30min。
用上述制备方法制得的用SeS2表面修饰层状结构LiNi1-x-yCoxMnyO2正极材料表面的化学式为:NCM@SS、且包覆层的质量为LiNi0.8Co0.1Mn0.1O2质量的0-10%。
上述制备方法制得的用SeS2修饰表面的正极材料, 应用于CR2025扣式电池时以LiNi1-x-yCoxMnyO2@SeS2锂离子正极材料、super-p导电剂和聚偏氟乙烯粘结剂按质量比8:1:1,加入N-甲基-2-吡咯烷酮混合成均匀浆料,用涂覆法均匀涂布在铝箔上,烘干滚压后,冲成圆形的电极片,120℃真空干燥12h,以制备的LiNi0.8Co0.1Mn0.1O2锂离子正极材料电极为正极、金属锂片为负极,1M LiPF6和体积比为1:1:1的EC/DMC/EMC为电解液、Celgard 23250微孔膜为隔膜,在手套箱中装配成纽扣电池。
这种正极材料能提高层状结构LiNi0.8Co0.1Mn0.1O2结构稳定性、循环性能和抑制循环过程中过渡金属溶解的缺陷,这种制备方法简单、成本低、环境友好,适用于大规模工业生产。
附图说明
图1为实施例中表面修饰前纯相LiNi0.8Co0.1Mn0.1O2正极材料SEM图;
图2为实施例制备的NCM@SS正极材料的SEM图;
图3为实施例制备的NCM@SS正极材料的XRD图谱;
图4为实施例制备的NCM@SS正极材料组装成的CR2025型半电池在2.7-4.5V、1C电流密度下的放电循环曲线示意图;
图5为实施例制备的NCM@SS正极材料组装成的CR2025型半电池在2.7-4.5V不同倍率下的倍率性能曲线示意图。
具体实施方式
下面结合附图和实施例对本发明的内容作进一步的阐述,但不是对本发明的限定。
实施例:
一种用SeS2表面修饰层状结构LiNi1-x-yCoxMnyO2正极材料的制备方法,包括如下步骤:
1)分别称取5g Ni0.8Co0.1Mn0.1(OH)2三元前驱体材料、2.40g一水合氢氧化锂,在研钵中研磨均匀后,置于烧舟中,放入充满氧气的管式炉中,以5℃/min的速率升温至480℃,保温5h ,再同样以5℃/min的速率升温至750℃ ,保温15h ,自然冷却得到LiNi0.8Co0.1Mn0.1O2正极材料,如图1所示;
2)将将硫粉、硒粉和步骤1)得到的LiNi0.8Co0.1Mn0.1O2正极材料称量后分别放入两个烧舟中,即硫粉和硒粉放入一个烧舟中但不混合,LiNi0.8Co0.1Mn0.1O2正极材料放入另一个烧舟中均匀铺平,放入管式炉中,在惰性气氛下进一步进行热处理,硫粉、硒粉受热蒸发气化扩散均匀覆盖在材料表面,硫和硒发生反应,最终获得SeS2包覆LiNi0.8Co0.1Mn0.1O2正极材料, 通过XRD图可以得知,表面改性并没有影响材料的本体结构,结果如图2和图3所示;
参见图2、图3,用上述制备方法制得的用SeS2表面修饰层状结构LiNi1-x-yCoxMnyO2正极材料表面的化学式为:NCM@SS、且包覆层的质量为LiNi0.8Co0.1Mn0.1O2质量的0-10%,。
参见图4、图5,将步骤2)制备的LiNi0.8Co0.1Mn0.1O2@SeS2锂离子正极材料、super-p导电剂和聚偏氟乙烯粘结剂按质量比8:1:1,加入N-甲基-2-吡咯烷酮混合成均匀浆料,用涂覆法均匀涂布在铝箔上,烘干滚压后,冲成圆形的电极片,120℃真空干燥12h,以制备的LiNi0.8Co0.1Mn0.1O2锂离子正极材料电极为正极,金属锂片为负极,1M LiPF6和EC/DMC/EMC(体积比为1:1:1)为电解液,Celgard 23250微孔膜为隔膜,在手套箱中装配成纽扣电池,从电化学性能图中,可以得出表面改性可以有效的提高材料的电化学性能。

Claims (6)

1.一种SeS2包覆的高镍三元正极材料,其特征在于,所述正极材料为SeS2包覆的LiNi1-xyCoxMnyO2复合材料,式中0<x<0.4,0<y<0.4,1-x-y≥0.6,其中,SeS2包覆的LiNi1- xyCoxMnyO2复合材料中, SeS2包覆层的质量分数为0-10%。
2.一种如权利要求1所述SeS2包覆的高镍三元正极材料的制备方法,其特征在于,包括如下步骤:
1)将Ni1-x-yCoxMny(OH)2三元前驱体和锂源均匀混合后,置于刚玉坩埚中,放入管式炉中,在氧气氛围下热处理,得到LiNi1-x-yCoxMnyO2正极材料;
2)将硫粉、硒粉和LiNi1-x-yCoxMnyO2正极材料称量后分别放入两个烧舟中,即硫粉和硒粉放入一个烧舟中,但不混合,LiNi1-x-yCoxMnyO2正极材料放入另一个烧舟中均匀铺平,放入管式炉中,在惰性气氛下进一步进行热处理,硫粉、硒粉受热蒸发气化扩散均匀覆盖在LiNi1-x-yCoxMnyO2正极材料表面,LiNi1-x-yCoxMnyO2正极材料表面硫和硒发生反应,最终获得SeS2包覆LiNi1-x-yCoxMnyO2正极材料,此反应于惰性气Ar或N2气氛下,热处理时升温速度为2°C/min-5 °C/min,升温至250℃-400℃、保温2h,自然冷却至室温后,即得到SeS2包覆LiNi1-x-yCoxMnyO2正极材料。
3.根据权利要求2所述的如权利要求1所述SeS2包覆的高镍三元正极材料的制备方法,其特征在于,步骤1)中所述的锂源为碳酸锂、氢氧化锂、硝酸锂或乙酸锂中的一种或几种。
4.根据权利要求2所述的如权利要求1所述SeS2包覆的高镍三元正极材料的制备方法,其特征在于,步骤2)中所述硫粉、硒粉的加入量为硫和硒/LiNi1-x-yCoxMnyO2混合物中的质量分数为0-10%。
5.根据权利要求2所述的如权利要求1所述SeS2包覆的高镍三元正极材料的制备方法,其特征在于,步骤2)中所述的热处理温度为250-400℃、热处理时间为5-30min。
6.用权利要求2-5任意一项所述制备方法制得的用SeS2修饰表面的正极材料,其特征在于,应用于CR2025扣式电池时以LiNi1-x-yCoxMnyO2@SeS2锂离子正极材料、super-p导电剂和聚偏氟乙烯粘结剂按质量比8:1:1,加入N-甲基-2-吡咯烷酮混合成均匀浆料,用涂覆法均匀涂布在铝箔上,烘干滚压后,冲成圆形的电极片,120℃真空干燥12h,以制备的LiNi0.8Co0.1Mn0.1O2锂离子正极材料电极为正极、金属锂片为负极,1M LiPF6和体积比为1:1:1的EC/DMC/EMC为电解液、Celgard 23250微孔膜为隔膜,在手套箱中装配成纽扣电池。
CN202110849941.2A 2021-07-27 2021-07-27 一种SeS2包覆的高镍三元正极材料及其制备方法 Pending CN113488631A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110849941.2A CN113488631A (zh) 2021-07-27 2021-07-27 一种SeS2包覆的高镍三元正极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110849941.2A CN113488631A (zh) 2021-07-27 2021-07-27 一种SeS2包覆的高镍三元正极材料及其制备方法

Publications (1)

Publication Number Publication Date
CN113488631A true CN113488631A (zh) 2021-10-08

Family

ID=77943989

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110849941.2A Pending CN113488631A (zh) 2021-07-27 2021-07-27 一种SeS2包覆的高镍三元正极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113488631A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114267841A (zh) * 2021-12-24 2022-04-01 广西师范大学 一种表面全包覆的高镍单晶三元材料的制备方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104617299A (zh) * 2014-12-31 2015-05-13 山东玉皇新能源科技有限公司 一种新型二次电池正极硫硒二元材料及制备方法
CN110668509A (zh) * 2019-09-30 2020-01-10 南昌大学 一种硒包覆的高镍三元层状正极材料及其制备方法
CN112768662A (zh) * 2021-01-26 2021-05-07 南昌大学 一种低温气相沉积包覆的高镍三元层状正极材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104617299A (zh) * 2014-12-31 2015-05-13 山东玉皇新能源科技有限公司 一种新型二次电池正极硫硒二元材料及制备方法
CN110668509A (zh) * 2019-09-30 2020-01-10 南昌大学 一种硒包覆的高镍三元层状正极材料及其制备方法
CN112768662A (zh) * 2021-01-26 2021-05-07 南昌大学 一种低温气相沉积包覆的高镍三元层状正极材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHENG YANG, ETAL.: "Sustainable and Facile Process for Lithium Recovery from Spent LiNixCoyMnzO2 Cathode Materials via Selective Sulfation with Ammonium Sulfate", 《ACS SUSTAINABLE CHEMISTRY ENGINEERING》, vol. 8, pages 15732 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114267841A (zh) * 2021-12-24 2022-04-01 广西师范大学 一种表面全包覆的高镍单晶三元材料的制备方法及应用

Similar Documents

Publication Publication Date Title
KR102656222B1 (ko) 스피넬 구조의 리튬 망간계 양극 활물질을 포함하는 양극재, 양극 및 리튬 이차전지
US8277683B2 (en) Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries
CN107615529B (zh) 非水电解质二次电池用正极活性物质、该正极活性物质的制造方法、非水电解质二次电池用电极以及非水电解质二次电池
KR100420034B1 (ko) 리튬 이차 전지용 양극 활물질의 제조방법
KR101920485B1 (ko) 리튬 이차전지용 양극 활물질의 전구체, 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차전지
KR100582507B1 (ko) 표면처리된 리튬이차전지용 양극활물질 및 그 제조방법
KR101670664B1 (ko) 불소가 도핑된 스피넬 구조의 리튬금속망간산화물이 코팅된 양극 활물질, 이를 포함하는 리튬 이차전지 및 이의 제조방법
EP3486980B1 (en) Positive active material for lithium secondary battery, method for producing same, and lithium secondary battery
JP2005222953A (ja) リチウム二次電池用正極活物質とその製造方法及びそれを含むリチウム二次電池
JP5494792B2 (ja) 電極活物質及び電極活物質の製造方法
JP7159639B2 (ja) 遷移金属複合水酸化物の粒子の製造方法、及び、リチウムイオン二次電池用正極活物質の製造方法
KR20190077160A (ko) 리튬 이차전지용 양극 활물질 및 그 제조방법, 리튬 이차전지
CN112038609A (zh) 一种用磷酸铁锂表面修饰尖晶石型镍锰酸锂正极材料及其制备方法
KR20190076774A (ko) 리튬 이차전지용 양극 활물질 전구체 및 그 제조방법, 리튬 이차전지용 양극 활물질 및 그 제조방법, 리튬 이차전지
KR20190073758A (ko) 흑연 물질의 정제 방법 및 흑연 물질
CN111600009B (zh) 三氧化钼-二氧化钼异质结构复合体及其制备方法和应用
CN113488631A (zh) 一种SeS2包覆的高镍三元正极材料及其制备方法
JP7183814B2 (ja) ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
JP7488021B2 (ja) 金属複合水酸化物とその製造方法、リチウムイオン二次電池用正極活物質とその製造方法、及び、それを用いたリチウムイオン二次電池
KR101986163B1 (ko) 망간을 함유하는 전이금속 복합화합물 전구체 및 이를 포함하여 제조된 이차전지용 양극 활물질
KR101392525B1 (ko) 양극 활물질, 이의 제조방법 및 이를 이용한 이차전지
CN111373583A (zh) 锂离子二次电池用正极活性物质及其制造方法
JP7480527B2 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
JP7272134B2 (ja) リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
KR101986165B1 (ko) 전이금속 복합화합물 전구체 및 이로부터 제조된 이차전지용 양극 활물질

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination