CN113445025A - 一种通过化学气相沉积制备晶圆级二维In2Se3薄膜的方法 - Google Patents

一种通过化学气相沉积制备晶圆级二维In2Se3薄膜的方法 Download PDF

Info

Publication number
CN113445025A
CN113445025A CN202110620178.6A CN202110620178A CN113445025A CN 113445025 A CN113445025 A CN 113445025A CN 202110620178 A CN202110620178 A CN 202110620178A CN 113445025 A CN113445025 A CN 113445025A
Authority
CN
China
Prior art keywords
dimensional
wafer
film
level
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110620178.6A
Other languages
English (en)
Other versions
CN113445025B (zh
Inventor
冯伟
许弋
杨绪轩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Forestry University
Original Assignee
Northeast Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Forestry University filed Critical Northeast Forestry University
Priority to CN202110620178.6A priority Critical patent/CN113445025B/zh
Publication of CN113445025A publication Critical patent/CN113445025A/zh
Application granted granted Critical
Publication of CN113445025B publication Critical patent/CN113445025B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种通过化学气相沉积制备晶圆级二维In2Se3薄膜的方法;属于晶圆级二维半导体材料薄膜制备领域。本发明要解决现有机械剥离法制备获得的二维In2Se3尺寸过小且难以控制,以及脉冲激光沉积制备成本过高、性能较差的技术问题。本发明的方法:一、配置硝酸铟溶液,过滤;二、量取步骤一所得溶液,高速旋涂于晶圆级尺寸的基底上,进行加热除杂后再受热分解,得到氧化铟薄膜,再对氧化铟薄膜进行高温退火处理;三、对氧化铟薄膜置于CVD炉中进行原位硒化处理,得到大尺寸二维In2Se3薄膜。本发明合成得到的二维In2Se3薄膜尺寸大、均匀度好、表面清洁,用于制作大面积、集成化电子和光电器件。

Description

一种通过化学气相沉积制备晶圆级二维In2Se3薄膜的方法
技术领域
本发明属于晶圆级二维半导体薄膜制备领域;具体涉及一种通过化学气相沉积制备晶圆级二维In2Se3薄膜的方法。
背景技术
2010年诺贝尔物理学奖得主Andre Geim和KonstantinNovoselov通过胶带剥离石墨得到单层石墨烯,表现出极好的载流子迁移率(2×105cm2V-1s-1),由此打开二维材料的研究领域。但是石墨烯本征零带隙导致其无法作为高性能场效应晶体管以及光电探测器的沟道材料使用,从而使其他类石墨烯材料成为相关研究的优选对象。In2Se3是Ⅲ-Ⅵ族半导体材料,具有层状结构和较小的直接带隙能带,对可见光与近红外光均有很好的光响应性与光吸收性,同时也具有优异的电子迁移率与稳定性,是当今研究的热门材料。
然而,目前关于大面积二维In2Se3薄膜制备领域报道较少。最早,2013年华盛顿州立大学的Xin Tao和Yi Gu采用机械剥离法首次获取二维In2Se3薄膜,该方法获得薄膜质量较高但产率低,得到的薄膜尺寸很小(微米级)且形状尺寸复现困难,不利于大规模生产。之后人们又采用脉冲激光沉积的方法,得到晶圆级尺寸的二维In2Se3薄膜,但其因设备昂贵,晶粒细小,生产所需的原材料成本过高且操作流程复杂等问题,使得大面积二维In2Se3薄膜的合成仍然是一个难题。
发明内容
本发明要解决现有机械剥离获得的二维In2Se3薄膜产率低、尺寸过小且难以控制的问题,以及脉冲激光沉积成本高,不利于大规模生产与应用的技术问题,提供了一种通过化学气相沉积制备晶圆级二维In2Se3薄膜的方法。
为解决上述问题,本发明的一种通过化学气相沉积制备晶圆级二维In2Se3薄膜的方法按照以下步骤进行:
步骤一、取用一定量块状硝酸铟固体加入有机溶剂,配制一定浓度的硝酸铟溶液,并将溶液加热搅拌足够的时间,然后对溶液进行过滤;
步骤二、将步骤一所得溶液按一定量取用,高速旋涂于晶圆级尺寸的基底上得到硝酸铟薄膜,然后进行加热除杂后再受热分解,得到氧化铟(In2O3氧化物半导体材料)薄膜,并对氧化铟薄膜进行高温退火处理;
步骤三、将步骤二所得薄膜置于CVD炉中在氩气与氢气氛围下进行高温硒化,得到大尺寸二维In2Se3薄膜。
进一步限定,步骤一中所述有机溶剂为乙二醇甲醚(2-Me)。
进一步限定,步骤一中所述块状硝酸铟固体为硝酸铟水合物(In(NO3)3·xH2O)。
进一步限定,步骤一中所述配置的硝酸铟溶液的浓度为0.1mol/ml~0.5mol/ml。
进一步限定,步骤一中所述溶液加热温度为70℃~80℃,搅拌转速为400rpm~1200rpm,加热搅拌时间为8h~20h。
进一步限定,步骤一中所述过滤采用PVDF微米级滤头进行过滤。
进一步限定,步骤二中量取20μl~500μl步骤一所得溶液。
进一步限定,步骤二中所述基底为硅片、天然云母或氟晶云母。
进一步限定,步骤二中所述高速旋涂转速为2000rpm到6000rpm,时间为60s。
进一步限定,步骤二中加热除杂是按下述操作进行的:在7min时间内升温至100℃并保持5min;再在3min时间内升温至130℃并保持60min;然后在15min时间内升温至300℃。
进一步限定,步骤二中所述受热分解温度为300℃,加热时间为60min~120min。
进一步限定,步骤二中所述高温退火温度为500℃,加热时间为60min~120min。
进一步限定,步骤三中所述氩气与氢气氛围之比为(4~1):1,具体使用通量为氩气(Ar)为20sccm~40sccm,氢气通量为5sccm~20sccm。
进一步限定,步骤三中所述氩气使用时间为从加热到降温的全程时间,氢气使用时间从加热到高温反应结束,具体时间为40min~140min。
进一步限定,步骤三中所述高温硒化温度为630℃~700℃,相应的硒粉加热温度为180℃~220℃,反应时间为10min~90min。
本发明步骤一中块状硝酸铟水合物为乳白色固体,称量完成捻成粉状溶于乙二醇甲醚,长时间加热搅拌后呈现为淡黄色或无色透明溶液。步骤二中受热分解旋涂样品,在100℃温度下除去水(H2O),130℃温度下除去乙二醇甲醚(2-Me),300℃温度下受热分解,在硅片上得到淡黄色的氧化铟薄膜,在云母与氟金云母上得到无色透明的氧化铟薄膜,其中具体发生的化学反应如下:
100℃:In(NO3)3·xH2O→In(NO3)3·(x-1)H2O+H2O
300℃:In(NO3)3→In2O3+3NO2
本发明步骤四中在氩气与氢气混合气氛下630℃~700℃高温硒化氧化铟薄膜,反应结束降低到室温后得到大尺寸二维In2Se3薄膜,其中具体发生的化学反应如下:
In2O3+3H2+3Se→In2Se3+3H2O
与现有技术相比本发明的有益效果如下:
本发明采用化学气相沉积的方法,在晶圆级尺寸基底上制备出几纳米至几十纳米厚度的二维In2Se3薄膜。此方法具有非常好的重复性,且获得二维In2Se3薄膜质量较高。可以用于制作二维In2Se3光电探测器阵列,并为其他大尺寸二维材料薄膜的制备起到很好的借鉴作用,具体优点如下:
1.相对于传统机械剥离制备二维In2Se3薄膜的方法,本发明制备的二维In2Se3薄膜尺寸极大,可达到晶圆级尺寸,且薄膜质量很高,成分均一,表面清洁,可用于制备二维In2Se3光电探测器阵列。
2.本发明工艺流程少,操作简单,所需的设备成本低,安全性好,重复性高,适用于工业化生产。
3.本发明通过严格控制硝酸铟薄膜的旋涂转速,制备获得不同厚度的In2O3与二维In2Se3薄膜,薄膜厚度可由几纳米到几十纳米的范围。
4.本发明最终得到的二维In2Se3薄膜均匀度高,对基于二维In2Se3薄膜在电子器件和光电探测器的构建提供了良好的基础。
附图说明
图1为实施例1得到的大尺寸二维In2Se3薄膜的照片;
图2为实施例1得到的大尺寸二维In2Se3薄膜的拉曼位移(Raman Shift)图谱。
具体实施方式
实施例1:本实施例的一种通过化学气相沉积制备晶圆级二维In2Se3薄膜的方法按以下步骤进行:
步骤一、以硝酸铟水合物(In(NO3)3·xH2O)为溶质,乙二醇甲醚(2-Me)为溶剂,配制0.2mol/L的硝酸铟溶液,置于磁力加热搅拌器上,以75℃、900rpm的转速加热搅拌12h。用PVDF微米级滤头对加热搅拌完成的溶液进行过滤;
步骤二、用移液枪每次吸取30μl溶液以“回”字型旋涂方法将溶液均匀旋涂在1×1cm2的正方形硅片上,使用匀胶机以5000rpm的转速旋涂60s;将旋涂后的硅片置于石英片上,放入石英管,按以下步骤进行热处理得到氧化铟薄膜:(1)在7min内升温至100℃并保持5min;(2)在3min内升温至130℃并保持60min;(3)在15min时间内升温至300℃并保持120min,之后降低至室温;(4)在35min内升温至500℃并保持60min,之后降低至室温;
步骤三、将步骤二制得的氧化铟薄膜置于石英片上放置于双区加热CVD炉的石英管下风口温区,并称量200mg硒粉置于石英舟中放置于石英管上风口温区;密封石英管,并以300sccm高纯氩气通入石英管中,持续30min;改变氩气通量至20sccm,同时通入5sccm氢气,并对石英管按一下步骤同时对两个热区进行加热:上风口热区保持32min室温,之后在14min时间内升温至200℃并保持50min,之后降低至室温;下风口热区在46min时间内升温至680℃并保持50min;加热时间结束,关闭氢气阀门,以20sccm通入氩气,直至石英管降低至室温。
由图1可知,薄膜尺寸极大,可达到晶圆级尺寸;由图2可知,薄膜的拉曼特征峰峰型尖锐,且特征峰位置与相关文献报道二维In2Se3晶体一致,说明薄膜质量高且成分均一。
实施例2:本实施例的一种通过化学气相沉积制备晶圆级二维In2Se3薄膜的方法按以下步骤进行:
步骤一、以硝酸铟水合物(In(NO3)3·xH2O)为溶质,乙二醇甲醚(2-Me)为溶剂,配制0.2mol/L的硝酸铟溶液,置于磁力加热搅拌器上,以75℃、900rpm的转速加热搅拌12h。用PVDF微米级滤头对加热搅拌完成的溶液进行过滤;
步骤二、用移液枪每次吸取50μl溶液以“回”字型旋涂方法将溶液均匀旋涂在2×2cm2的正方形天然云母上,使用匀胶机以5000rpm的转速旋涂60s;将旋涂后的云母片置于石英片上,放入石英管,按以下步骤进行热处理得到氧化铟薄膜:(1)在7min内升温至100℃并保持5min;(2)在3min内升温至130℃并保持60min;(3)在15min时间内升温至300℃并保持120min,之后降低至室温;(4)在35min内升温至500℃并保持60min,之后降低至室温;
步骤三、将步骤二制得的氧化铟薄膜置于石英片上放置于双区加热CVD炉的石英管下风口温区,并称量200mg硒粉置于石英舟中放置于石英管上风口温区;密封石英管,并以300sccm高纯氩气通入石英管中,持续30min;改变氩气通量至20sccm,同时通入5sccm氢气,并对石英管按一下步骤同时对两个热区进行加热:上风口热区保持32min室温,之后在14min时间内升温至200℃并保持50min,之后降低至室温;下风口热区在46min时间内升温至680℃并保持50min;加热时间结束,关闭氢气阀门,以20sccm通入氩气,直至石英管降低至室温。

Claims (10)

1.一种通过化学气相沉积制备晶圆级二维In2Se3薄膜的方法,其特征在于,该方法按以下步骤进行:
步骤一、硝酸铟加入有机溶剂中,搅拌下加热,然后过滤;
步骤二、量取步骤一所得溶液,高速旋涂于晶圆级尺寸的基底上,进行加热除杂后再受热分解,得到氧化铟薄膜,再对氧化铟薄膜进行高温退火处理;
步骤三、将步骤二所得薄膜置于CVD炉中在氩气与氢气氛围下进行高温硒化,得到大尺寸二维In2Se3薄膜。
2.根据权利要求1所述一种通过化学气相沉积制备晶圆级二维In2Se3薄膜的方法,其特征在于,步骤一中所述有机溶剂为乙二醇甲醚,步骤一中所述硝酸铟溶液浓度为0.1mol/ml~0.5mol/ml。
3.根据权利要求1所述一种通过化学气相沉积制备晶圆级二维In2Se3薄膜的方法,其特征在于,步骤一中所述溶液加热温度为70℃~80℃,搅拌转速为400rpm~1200rpm,加热搅拌足够的时间为8h~20h。
4.根据权利要求1所述一种通过化学气相沉积制备晶圆级二维In2Se3薄膜的方法,其特征在于,步骤一中所述过滤为微米级过滤。
5.根据权利要求1所述一种通过化学气相沉积制备晶圆级二维In2Se3薄膜的方法,其特征在于,步骤二中量取30μl~500μl步骤一所得溶液。
6.根据权利要求1所述一种通过化学气相沉积制备晶圆级二维In2Se3薄膜的方法,其特征在于,步骤二中所述高速旋涂转速为2000rpm~6000rpm,步骤二中所述高速旋涂时间为60s。
7.根据权利要求1所述一种通过化学气相沉积制备晶圆级二维In2Se3薄膜的方法,其特征在于,步骤二中所述加热除杂是按下述操作进行的:在7min内升温至100℃并保持5min;再在3min内升温至130℃并保持60min;然后在15min时间内升温至300℃;步骤二中所述受热分解温度为300℃,受热分解时间为60min~120min。
8.根据权利要求1所述一种通过化学气相沉积制备晶圆级二维In2Se3薄膜的方法,其特征在于,步骤二中所述高温退火温度为500℃,高温退火时间为60min~120min。
9.根据权利要求1所述一种通过化学气相沉积制备晶圆级二维In2Se3薄膜的方法,其特征在于,步骤三中所述氩气与氢气氛围之比为(4~1):1,氩气通量为20sccm~40sccm,氢气通量为5sccm~20sccm,步骤三中所述氩气使用时间为从加热到降温的全程时间,氢气使用时间从加热到高温反应结束,具体时间为40min~140min。
10.根据权利要求1所述一种通过化学气相沉积制备晶圆级二维In2Se3薄膜的方法,其特征在于,步骤三中所述高温硒化温度为630℃~700℃,相应的硒粉加热温度为180℃~220℃,反应时间为10min~90min。
CN202110620178.6A 2021-06-03 2021-06-03 一种通过化学气相沉积制备晶圆级二维In2Se3薄膜的方法 Expired - Fee Related CN113445025B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110620178.6A CN113445025B (zh) 2021-06-03 2021-06-03 一种通过化学气相沉积制备晶圆级二维In2Se3薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110620178.6A CN113445025B (zh) 2021-06-03 2021-06-03 一种通过化学气相沉积制备晶圆级二维In2Se3薄膜的方法

Publications (2)

Publication Number Publication Date
CN113445025A true CN113445025A (zh) 2021-09-28
CN113445025B CN113445025B (zh) 2022-08-02

Family

ID=77810651

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110620178.6A Expired - Fee Related CN113445025B (zh) 2021-06-03 2021-06-03 一种通过化学气相沉积制备晶圆级二维In2Se3薄膜的方法

Country Status (1)

Country Link
CN (1) CN113445025B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115304096A (zh) * 2022-08-24 2022-11-08 华中科技大学 氧化铟纳米颗粒晶圆级成膜方法、薄膜及应用

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020006470A1 (en) * 1997-10-02 2002-01-17 Chris Eberspacher Method for forming particulate materials
US20110017283A1 (en) * 2009-07-24 2011-01-27 Centrotherm Photovoltaics Ag Method and apparatus for deposition of a layer of an indium chalcogenide onto a substrate
CN102194925A (zh) * 2010-02-26 2011-09-21 韩国电子通信研究院 制造薄膜光吸收层的方法及使用其制造薄膜太阳能电池的方法
CN102790130A (zh) * 2012-08-09 2012-11-21 中国科学院长春应用化学研究所 一种吸光层薄膜的制备方法
CN105489486A (zh) * 2016-01-18 2016-04-13 青岛大学 一种基于超薄氧化镁高k介电层薄膜晶体管的制备方法
CN105862009A (zh) * 2015-02-06 2016-08-17 炬力奈米科技有限公司 硫属化物薄膜的制造方法
CN106328492A (zh) * 2016-09-14 2017-01-11 齐鲁工业大学 一种制备高迁移率氧化铟薄膜晶体管的低温溶液方法
KR101867310B1 (ko) * 2017-08-25 2018-07-17 주식회사 메카로 칼코파이라이트계 박막 태양전지의 제조 방법
CN108546994A (zh) * 2018-04-20 2018-09-18 清华-伯克利深圳学院筹备办公室 一种二维三硒化二铟原子晶体及其制备方法和用途
CN109411331A (zh) * 2018-10-23 2019-03-01 东北林业大学 二维超晶格硒化铟及其制备方法与在制备光电探测器中的应用
CN109999850A (zh) * 2019-04-23 2019-07-12 福州大学 一种正交相第ⅲ主族硫属化物光催化材料及制备方法
CN110195259A (zh) * 2019-06-29 2019-09-03 华南理工大学 一种生长在Si衬底上的In2Se3二维材料及其制备方法
CN110205609A (zh) * 2019-06-14 2019-09-06 清华-伯克利深圳学院筹备办公室 一种二维材料及其制备方法、制备装置及用途
CN111455456A (zh) * 2020-03-31 2020-07-28 河南师范大学 一种大尺寸二维三硒化二铟晶体的制备方法及其应用
CN111960388A (zh) * 2020-07-31 2020-11-20 天津理工大学 制备大面积不同层数二维二硒化钼薄膜的方法和应用
US20210217617A1 (en) * 2018-09-28 2021-07-15 The Penn State Research Foundation Method of growing crystalline layers on amorphous substrates using two-dimensional and atomic layer seeds

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020006470A1 (en) * 1997-10-02 2002-01-17 Chris Eberspacher Method for forming particulate materials
US20110017283A1 (en) * 2009-07-24 2011-01-27 Centrotherm Photovoltaics Ag Method and apparatus for deposition of a layer of an indium chalcogenide onto a substrate
CN102194925A (zh) * 2010-02-26 2011-09-21 韩国电子通信研究院 制造薄膜光吸收层的方法及使用其制造薄膜太阳能电池的方法
CN102790130A (zh) * 2012-08-09 2012-11-21 中国科学院长春应用化学研究所 一种吸光层薄膜的制备方法
CN105862009A (zh) * 2015-02-06 2016-08-17 炬力奈米科技有限公司 硫属化物薄膜的制造方法
CN105489486A (zh) * 2016-01-18 2016-04-13 青岛大学 一种基于超薄氧化镁高k介电层薄膜晶体管的制备方法
CN106328492A (zh) * 2016-09-14 2017-01-11 齐鲁工业大学 一种制备高迁移率氧化铟薄膜晶体管的低温溶液方法
KR101867310B1 (ko) * 2017-08-25 2018-07-17 주식회사 메카로 칼코파이라이트계 박막 태양전지의 제조 방법
CN108546994A (zh) * 2018-04-20 2018-09-18 清华-伯克利深圳学院筹备办公室 一种二维三硒化二铟原子晶体及其制备方法和用途
US20210217617A1 (en) * 2018-09-28 2021-07-15 The Penn State Research Foundation Method of growing crystalline layers on amorphous substrates using two-dimensional and atomic layer seeds
CN109411331A (zh) * 2018-10-23 2019-03-01 东北林业大学 二维超晶格硒化铟及其制备方法与在制备光电探测器中的应用
CN109999850A (zh) * 2019-04-23 2019-07-12 福州大学 一种正交相第ⅲ主族硫属化物光催化材料及制备方法
CN110205609A (zh) * 2019-06-14 2019-09-06 清华-伯克利深圳学院筹备办公室 一种二维材料及其制备方法、制备装置及用途
CN110195259A (zh) * 2019-06-29 2019-09-03 华南理工大学 一种生长在Si衬底上的In2Se3二维材料及其制备方法
CN111455456A (zh) * 2020-03-31 2020-07-28 河南师范大学 一种大尺寸二维三硒化二铟晶体的制备方法及其应用
CN111960388A (zh) * 2020-07-31 2020-11-20 天津理工大学 制备大面积不同层数二维二硒化钼薄膜的方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAN-CHING CHANG: "Synthesis of Large-Area InSe Monolayers by Chemical Vapor Deposition", 《ADVANCED SCIENCE NEWS》 *
WEI FENG: "Sensitive Electronic-Skin Strain Sensor Array Based on the Patterned Two-Dimensional α‑In2Se3", 《CHEMISTRY OF MATERIALS》 *
黄文娟: "化学气相沉积法制备InSe 纳米片及其近红外光探测性能", 《高等学校化学学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115304096A (zh) * 2022-08-24 2022-11-08 华中科技大学 氧化铟纳米颗粒晶圆级成膜方法、薄膜及应用
CN115304096B (zh) * 2022-08-24 2024-05-14 华中科技大学 氧化铟纳米颗粒晶圆级成膜方法、薄膜及应用

Also Published As

Publication number Publication date
CN113445025B (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
Azam et al. Formation and characterization of ZnO nanopowder synthesized by sol–gel method
CN105957970B (zh) 一种大尺寸单晶钙钛矿薄膜的制备方法
CN108546994B (zh) 一种二维三硒化二铟原子晶体及其制备方法和用途
CN103952682A (zh) 化学气相沉积生长单层二硫化钼的方法
CN106191986B (zh) 液相回流一步法可控制备正交相AgIn1-xGaxSe2单晶纳米颗粒的方法
CN105624782B (zh) 一种氧化镓薄膜的制备方法
CN114197051B (zh) 一种自支撑二维硒氧化物纳米片阵列及其制备方法
CN106087051B (zh) 同步生长晶圆级ab堆垛双层石墨烯的制备方法及其设备
CN113445025B (zh) 一种通过化学气相沉积制备晶圆级二维In2Se3薄膜的方法
CN111304747B (zh) 一种非层状二维PbSe晶体材料及其制备方法
CN110571136A (zh) 一种一步化学气相沉积无铅全无机钙钛矿薄膜的制备方法
US20220081300A1 (en) Method for efficiently eliminating graphene wrinkles formed by chemical vapor deposition
CN112647130B (zh) 一种低压化学气相沉积生长氧化镓薄膜的方法
CN104671245A (zh) 一种碳化铪纳米粉体的制备方法
CN112359421A (zh) 一种反向气流法制备层状铋氧硒半导体薄膜的方法
WO2021258728A1 (zh) 一种高结晶质量纯相氧化亚铜薄膜的制备方法
CN102787309A (zh) 一种氧化铝薄膜及制备方法及其应用
CN113957527A (zh) 制备二维纳米Cs3Cu2I5晶体材料的方法及其应用
CN114606568B (zh) 低维碲晶体的制备方法
CN104477995A (zh) 一种MoO2纳米片的制备方法及MoO2纳米片
WO2019105152A1 (zh) 一种高效cis/cigs太阳能电池的制备方法
CN115084322A (zh) 一种无错配非极性ZnO薄膜的制备方法
CN104060322A (zh) 一种大尺寸原子层厚六方氮化硼单晶的制备方法
Yang et al. Different ligand exchange solvents effect on the densification of CuIn0. 7Ga0. 3Se2 prepared using the heating-up method
CN111689519A (zh) 一种采用前驱体热分解制备二维过渡金属硫族化合物的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220802