CN113430640B - 一种利用Pt系金属作为Ir缓冲层制备异质外延单晶金刚石的方法 - Google Patents

一种利用Pt系金属作为Ir缓冲层制备异质外延单晶金刚石的方法 Download PDF

Info

Publication number
CN113430640B
CN113430640B CN202110698287.XA CN202110698287A CN113430640B CN 113430640 B CN113430640 B CN 113430640B CN 202110698287 A CN202110698287 A CN 202110698287A CN 113430640 B CN113430640 B CN 113430640B
Authority
CN
China
Prior art keywords
film
preparing
based metal
heteroepitaxial
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110698287.XA
Other languages
English (en)
Other versions
CN113430640A (zh
Inventor
魏强
林芳
张晓凡
王若铮
陈根强
王宏兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202110698287.XA priority Critical patent/CN113430640B/zh
Publication of CN113430640A publication Critical patent/CN113430640A/zh
Application granted granted Critical
Publication of CN113430640B publication Critical patent/CN113430640B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种利用Pt系金属作为Ir缓冲层制备异质外延单晶金刚石的方法,包括如下步骤:步骤一、在异质外延衬底上制备出Pt系金属(001)取向薄膜;步骤二、在步骤一中的Pt系金属(001)取向薄膜上外延生长Ir(001)取向薄膜;步骤三、在步骤二中的Ir(001)取向薄膜上制备出(001)方向的金刚石核;步骤四、将步骤三中的(001)方向的金刚石核在MP‑CVD中外延生长,得到连续(001)方向的金刚石薄膜。该制备方法中,利用Pd作为Ir与衬底之间的缓冲层缓冲层,可以有效降低Ir薄膜的应力,解决了Ir薄膜容易脱落和断裂的问题。

Description

一种利用Pt系金属作为Ir缓冲层制备异质外延单晶金刚石的 方法
技术领域
本发明属于单晶金刚石外延生长技术领域,尤其涉及一种利用Pt系金属作为Ir缓冲层制备异质外延单晶金刚石的方法。
背景技术
金刚石是一种宽禁带半导体,其极端热导率为2200W/m/K,电子迁移率(电子4500,空穴3800cm2/Vs)对新型量子和高功率电子器件具有重要意义。由于金刚石在Ir薄膜上形核的特殊模式,使得Ir上外延生长的单晶金刚石具有成核密度高,结晶取向一致性好的特点,故而铱已经成为单晶金刚石晶圆制备的最重要镀层衬底材料。由于Ir具有很高弹性模量(538.3GPa),刚度大,脆性强,故而发生应变时应力也大,尤其当沉积在在氧化物衬底表面作为异质外延单晶金刚石的缓冲层,在高温生长环境下衬底与金刚石之间的Ir很容易脱落甚至断裂,不利于单晶金刚石异质外延的生长。
发明内容
本发明的目的是提供一种利用Pt系金属作为Ir缓冲层制备异质外延单晶金刚石的方法,利用Pd作为Ir与衬底之间的缓冲层缓冲层,可以有效降低Ir薄膜的应力,解决了Ir薄膜容易脱落和断裂的问题。
本发明采用以下技术方案:一种利用Pt系金属作为Ir缓冲层制备异质外延单晶金刚石的方法,该方法包括如下步骤:
步骤一、在异质外延衬底上制备出Pt系金属(001)取向薄膜;
步骤二、在步骤一中的Pt系金属(001)取向薄膜上外延生长Ir(001)取向薄膜;
步骤三、在步骤二中的Ir(001)取向薄膜上制备出(001)方向的金刚石核;
步骤四、将步骤三中的(001)方向的金刚石核在MP-CVD中外延生长,得到连续(001)方向的金刚石薄膜。
进一步地,在步骤一中,Pt系金属为Pt或Pd。
进一步地,该Pt系金属(001)取向薄膜的厚度为10纳米~1微米。
进一步地,在步骤二中,Ir(001)取向薄膜发热厚度为10纳米~1微米。
进一步地,该衬底选用Si、SrTiO3、MgO或Al2O3中的一种。
进一步地,该(001)方向的外延金刚石核在微波等离子体系统MP-CVD中外延生长的条件如下:放置于CVD生长样品台上,系统内的气压为100Torr,气体流量为500sccm,气体CH4/H2的体积比=5%,衬底温度为950℃。
进一步地,在步骤一中,利用磁控溅射法在异质外延衬底上制备出Pd(001)取向薄膜。
进一步地,Ir(001)取向薄膜在DC-CVD中增强偏压形核,具体为:Ir(001)取向薄膜表面与直流偏压电源的负极相连接,Ir(001)取向薄膜的负电压在-500V~0V之间,且在H2/CH4等离子体气氛中,在Ir(001)取向薄膜上制备出(001)方向的外延金刚石核。
本发明还公开了上述的一种利用Pt系金属作为Ir缓冲层制备异质外延单晶金刚石的方法得到的一种异质外延外延单晶金刚石,包括:
异质外延衬底;
Pt系金属(001)取向薄膜,制备于异质外延衬底上;
Ir(001)取向薄膜,制备于Pt系金属(001)取向薄膜上;
Pt系金属(001)方向的金刚石薄膜,外延生长于Ir(001)取向薄膜上;
其中,Pt系金属(001)取向薄膜作为Ir(001)取向薄膜和异质外延衬底间的缓冲层。
本发明的有益效果是:1.利用Pd作为Ir缓冲层来制备异质外延单晶金刚石,可以有效降低Ir薄膜的应力,降低在Ir表面生长的金刚石与氧化物衬底之间的应力,从而提高异质外延单晶金刚石的生长质量。2.利用价格低的Pd来作为Ir的支撑材料,可以降低Ir薄膜的制备厚度,从而减少价格昂贵的Ir材料的消耗,提高经济效益。
附图说明
图1在Al2O3(11-20)面制备异质外延单晶金刚石的流程图;
图2是利用增强偏压形核在Ir(001)/Pd(001)表面制备金刚石(001)核的结构示意图;
图3金属Ir(001)/Pd(001)薄膜表面制备金刚石(001)薄膜的结构示意图;
图4是制备的单晶Ir(001)/Pd(001)薄膜的表征图;
图4a为在Al2O3(11-20)面外延生长的Ir/Pd薄膜的XRD测试图谱;
图4b为Pd薄膜厚度与Ir薄膜的360度极图;
图4c为纯Ir薄膜的XRD摇摆曲线;
图4d为Ir/Pd薄膜的XRD摇摆曲线;
其中:10.衬底;11.Pt系金属(001)取向薄膜;12.Ir(001)取向薄膜;13.(001)方向的金刚石核;14.(001)方向的金刚石膜;15.H2/CH4等离子体;16.直流偏压电源;17.CVD生长样品台。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明一种利用Pt系金属作为Ir缓冲层制备异质外延单晶金刚石的方法,该方法包括如下步骤:
步骤一、在异质外延衬底10上制备出Pt系金属(001)取向薄膜11;Pt系金属为Pt或Pd。Pt系金属(001)取向薄膜11的厚度为10纳米~1微米。利用磁控溅射法在异质外延衬底10上制备出Pd(001)取向薄膜11。衬底选用Si、SrTiO3、MgO或Al2O3中的一种。
步骤二、在步骤一中所述的Pt系金属(001)取向薄膜11上外延生长Ir(001)取向薄膜12,Ir(001)取向薄膜12厚度为10纳米~1微米。上述Ir(001)取向薄膜12在DC-CVD中增强偏压形核,具体为:所述Ir(001)取向薄膜12表面与直流偏压电源16的负极相连接,所述Ir(001)取向薄膜12的负电压在-500V~0V之间,且在H2/CH4等离子体15气氛中,在所述Ir(001)取向薄膜12上制备出(001)方向的外延金刚石核13。
步骤三、在步骤二中所述的Ir(001)取向薄膜12上制备出(001)方向的金刚石核13。该(001)方向的外延金刚石核13在微波等离子体系统MP-CVD中外延生长的条件如下:放置于CVD生长样品台17上,系统内的气压为100Torr,气体流量为500sccm,气体CH4/H2的体积比=5%,衬底温度为950℃。
步骤四、将步骤三中所述的(001)方向的金刚石核13在MP-CVD中外延生长,得到连续(001)方向的金刚石薄膜14,如图1和2所示。
采用上述的一种利用Pt系金属作为Ir缓冲层制备异质外延单晶金刚石的方法得到的一种异质外延外延单晶金刚石,如图3所示,包括:
异质外延衬底10;Pt系金属(001)取向薄膜11,制备于所述异质外延衬底10上;Ir(001)取向薄膜12,制备于所述Pt系金属(001)取向薄膜11上;Pt系金属(001)方向的金刚石薄膜14,外延生长于所述Ir(001)取向薄膜12上。其中,所述Pt系金属(001)取向薄膜11作为Ir(001)取向薄膜12和异质外延衬底10间的缓冲层。
本实施例中,衬底10选择Al2O3(11-20),括号中的数字表示Al2O3为六方系晶体的取向,其表面粗糙度≤1nm,使用前经过硫酸和硝酸的混合溶液清洗其表面,再分别用丙酮、酒精、去离子水清洗并烘干。使用磁控溅射法在其表面制备Pd(001)取向薄膜11,溅射功率为100W,溅射时间为30分钟,然后在Pd(001)取向薄膜表面继续外延生长Ir(001)取向薄膜12。制备过程中,Ir靶和Pd靶纯度为99.95%,Ar气通量为30sccm。
将制备得到的Ir(001)/Pd(001)/Al2O3(11-20)衬底放入DC-CVD中进行增强偏压形核,具体为,在Ir(001)取向薄膜12表面接入直流偏压电源16,Ir(001)取向薄膜12的负电压在-500V到0V之间,如图2所示。在H2/CH4等离子体15气氛中,在Ir(001)取向薄膜12表面形成(001)方向的金刚石核13,即得到表面带有金刚石核的Ir(001)/Pd(001)/Al2O3(11-20)衬底。
将制备得到的表面带有金刚石核的Ir(001)/Pd(001)/Al2O3(11-20)衬底放入微波等离子体系统MP-CVD中生长,生长工艺为:气压100Torr,气体流量为500sccm,CH4/H2=5%,衬底温度为950℃生长,生长后表面得到连续(001)方向的金刚石薄膜14。
如图4,由图4a中知,在46.658°以及47.303°处分别出现Pd(002)和Ir(002)的特征峰,并且没有出现其他晶相的特征峰,表明Ir/Pb薄膜可以在Al2O3(11-20)上实现001面生长。
图4b为Ir/Pd薄膜的360°极图扫描,由图可得出,Ir/Pd薄膜具有高度的四重对称性,显示出薄膜的面心立方的单晶特征,表明薄膜的单晶性很好。
图4c和4d为相同溅射工艺下,纯Ir薄膜与Ir/Pd薄膜XRD摇摆曲线,由图中得,采用纯Ir薄膜的半高宽为0.43°,采用Ir/Pd薄膜的半高宽为0.19°,半高宽越小,薄膜的晶体质量越高。采用Ir/Pd薄膜的半高宽远小于采用纯Ir薄膜的半高宽,则表明具有Pd层的Ir薄膜,具有更高的结晶质量。
在本实施了中,利用磁控溅射法在Al2O3(11-20)衬底上制备出Ir/Pd单晶薄膜作为单晶金刚石异质外延衬底,利用Pd作为Ir与Al2O3衬底之间的缓冲层,得到Ir/Pd复合薄膜,可以提高Ir薄膜的晶体质量,降低Ir薄膜的应力,Ir/Pd复合薄膜中Ir的半高宽FWHM由1548arcsec降低到1152arcsec,降低了26%。

Claims (8)

1.一种利用Pt系金属作为Ir缓冲层制备异质外延单晶金刚石的方法,其特征在于,该方法包括如下步骤:
步骤一、在异质外延衬底(10)上制备出Pt系金属 (001) 取向薄膜(11);
步骤二、在步骤一中所述的Pt系金属(001) 取向薄膜(11)上外延生长Ir(001)取向薄膜(12);
步骤三、在步骤二中所述的Ir(001)取向薄膜(12)上制备出(001)方向的金刚石核(13);
步骤四、将步骤三中所述的(001)方向的金刚石核(13)在MP-CVD中外延生长,得到连续(001)方向的金刚石薄膜(14);
在所述步骤一中,Pt系金属为Pt或Pd。
2.根据权利要求1所述的一种利用Pt系金属作为Ir缓冲层制备异质外延单晶金刚石的方法,其特征在于,所述Pt系金属(001) 取向薄膜(11)的厚度为10纳米~1微米。
3.根据权利要求2所述的一种利用Pt系金属作为Ir缓冲层制备异质外延单晶金刚石的方法,其特征在于,在步骤二中,所述Ir(001)取向薄膜(12)的厚度为10纳米~1微米。
4.根据权利要求3所述的一种利用Pt系金属作为Ir缓冲层制备异质外延单晶金刚石的方法,其特征在于,所述衬底选用Si、SrTiO3、MgO或Al2O3中的一种。
5.根据权利要求4所述的一种利用Pt系金属作为Ir缓冲层制备异质外延单晶金刚石的方法,其特征在于,所述(001)方向的金刚石核(13)在微波等离子体系统MP-CVD中外延生长的条件如下:放置于CVD生长样品台(17)上,系统内的气压为100 Torr,气体流量为500sccm,气体CH4/H2的体积比=5%,衬底温度为 950 ℃。
6.根据权利要求5所述的一种利用Pt系金属作为Ir缓冲层制备异质外延单晶金刚石的方法,其特征在于,在所述步骤一中,利用磁控溅射法在异质外延衬底(10)上制备出Pd(001) 取向薄膜(11)。
7.根据权利要求6所述的一种利用Pt系金属作为Ir缓冲层制备异质外延单晶金刚石的方法,其特征在于,所述Ir(001)取向薄膜(12)在DC-CVD中增强偏压形核,具体为:所述Ir(001)取向薄膜(12)表面与直流偏压电源(16)的负极相连接,所述Ir(001)取向薄膜(12)的负电压在-500V~0V之间,且在H2/CH4等离子体(15)气氛中,在所述Ir(001)取向薄膜(12)上制备出(001)方向的外延金刚石核(13)。
8.根据权利要求1-7中任一项所述的一种利用Pt系金属作为Ir缓冲层制备异质外延单晶金刚石的方法得到的一种异质外延单晶金刚石,其特征在于,包括:
异质外延衬底(10);
Pt系金属(001) 取向薄膜(11),制备于所述异质外延衬底(10)上;
Ir(001)取向薄膜(12),制备于所述Pt系金属(001) 取向薄膜(11)上;
Pt系金属(001)方向的金刚石薄膜(14),外延生长于所述Ir(001)取向薄膜(12)上;
其中,所述Pt系金属(001) 取向薄膜(11)作为Ir(001)取向薄膜(12)和异质外延衬底(10)间的缓冲层。
CN202110698287.XA 2021-06-23 2021-06-23 一种利用Pt系金属作为Ir缓冲层制备异质外延单晶金刚石的方法 Active CN113430640B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110698287.XA CN113430640B (zh) 2021-06-23 2021-06-23 一种利用Pt系金属作为Ir缓冲层制备异质外延单晶金刚石的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110698287.XA CN113430640B (zh) 2021-06-23 2021-06-23 一种利用Pt系金属作为Ir缓冲层制备异质外延单晶金刚石的方法

Publications (2)

Publication Number Publication Date
CN113430640A CN113430640A (zh) 2021-09-24
CN113430640B true CN113430640B (zh) 2023-01-03

Family

ID=77755136

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110698287.XA Active CN113430640B (zh) 2021-06-23 2021-06-23 一种利用Pt系金属作为Ir缓冲层制备异质外延单晶金刚石的方法

Country Status (1)

Country Link
CN (1) CN113430640B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114016128A (zh) * 2021-10-21 2022-02-08 西安交通大学 一种异质外延单晶金刚石复制生长方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4528654B2 (ja) * 2005-03-14 2010-08-18 信越化学工業株式会社 積層基板、積層基板の製造方法及びデバイス
CN111321466A (zh) * 2020-03-25 2020-06-23 武汉大学 大尺寸单晶金刚石生长方法及生长用复合基底
CN112647127B (zh) * 2020-11-13 2022-05-20 西安交通大学 金属辅助控制cvd生长单晶金刚石位错延伸的结构及其制备方法和应用
CN112813497B (zh) * 2020-12-31 2022-08-05 西安交通大学 一种通过异质外延保护环辅助单晶金刚石生长的方法

Also Published As

Publication number Publication date
CN113430640A (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
CN111206280B (zh) 一种高质量大尺寸单晶金刚石外延生长的方法
US9752255B2 (en) Base material on which single-crystal diamond is grown comprised of a base substrate, bonded single-crystal MgO layer, and heteroepitaxial film, and method for manufacturing a single-crystal diamond substrate on the base material
CN107354506A (zh) 一种制备超平整铜单晶薄膜的方法
WO2016169108A1 (zh) 局域供碳装置及局域供碳制备晶圆级石墨烯单晶的方法
CN109585269A (zh) 一种利用二维晶体过渡层制备半导体单晶衬底的方法
CN107190315A (zh) 一种制备超平整无褶皱石墨烯单晶的方法
CN109461644B (zh) 透明单晶AlN的制备方法及衬底、紫外发光器件
CN113430640B (zh) 一种利用Pt系金属作为Ir缓冲层制备异质外延单晶金刚石的方法
CN111334856B (zh) 用等离子体辅助分子束外延以准范德华外延生长高质量ZnO单晶薄膜的方法
CN108428618A (zh) 基于石墨烯插入层结构的氮化镓生长方法
CN111477534B (zh) 氮化铝模板及其制备方法
Jia et al. Growth mechanism on graphene-regulated high-quality epitaxy of flexible AlN film
CN112490112A (zh) 氧化镓薄膜及其异质外延生长方法与应用
CN112831834A (zh) 一种在Ru(0001)薄膜上异质外延生长金刚石(111)薄膜的制备方法
CN112813497B (zh) 一种通过异质外延保护环辅助单晶金刚石生长的方法
CN114574970B (zh) 一种大尺寸柔性氮化镓单晶薄膜的制备方法
CN111211041B (zh) 一种制备大面积β相硒化铟单晶薄膜的方法
CN113871473A (zh) 一种控制范德瓦耳斯外延与远程外延生长模式的装置及方法
CN105483617A (zh) 一种在非硅衬底上制备Mg2Si薄膜的方法
CN114525581B (zh) 一种双层30度扭角石墨烯单晶晶圆的制备方法
WO2024048357A1 (ja) 下地基板及び単結晶ダイヤモンド積層基板並びにそれらの製造方法
WO2024053384A1 (ja) 下地基板及び単結晶ダイヤモンド積層基板並びにそれらの製造方法
CN114016128A (zh) 一种异质外延单晶金刚石复制生长方法
CN114438595B (zh) 一种利于提高散热性的氮化镓外延生长方法
WO2023085055A1 (ja) 下地基板及び単結晶ダイヤモンド積層基板並びにそれらの製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant