CN113416966B - 一种电催化制备过氧化氢的单原子催化剂、制备方法及其应用 - Google Patents

一种电催化制备过氧化氢的单原子催化剂、制备方法及其应用 Download PDF

Info

Publication number
CN113416966B
CN113416966B CN202110875092.8A CN202110875092A CN113416966B CN 113416966 B CN113416966 B CN 113416966B CN 202110875092 A CN202110875092 A CN 202110875092A CN 113416966 B CN113416966 B CN 113416966B
Authority
CN
China
Prior art keywords
cathode
hydrogen peroxide
catalyst
cavity
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110875092.8A
Other languages
English (en)
Other versions
CN113416966A (zh
Inventor
赵超
王晶
黄红锋
吴宇波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liankehua Technology Co ltd
Original Assignee
Liankehua Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liankehua Technology Co ltd filed Critical Liankehua Technology Co ltd
Priority to CN202110875092.8A priority Critical patent/CN113416966B/zh
Publication of CN113416966A publication Critical patent/CN113416966A/zh
Application granted granted Critical
Publication of CN113416966B publication Critical patent/CN113416966B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/28Per-compounds
    • C25B1/30Peroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种电催化制备过氧化氢的单原子催化剂、制备方法及其应用,属于电催化技术领域。所述的单原子催化剂由载体和过渡金属组成,所述的载体为掺氮多孔碳,所述的过渡金属为Cu、Co、Fe、Mn中的一种或者多种,所述的过渡金属以单原子的形式固定在载体的表面。本发明的单原子催化剂具有高活性、高稳定性,在酸性ORR中有最佳活性和选择性,电流和选择性皆可稳定在10h以上,能够积累3500ppm以上的H2O2在很宽的电压范围内选择性超过91%,对应到550mmol g‑1h‑1的H2O2生成速率。利用本发明的单原子催化剂制成的电催化装置可广泛应用在废水处理中,具有显著的经济效益和社会效益。

Description

一种电催化制备过氧化氢的单原子催化剂、制备方法及其 应用
技术领域
本发明属于电催化技术领域,具体涉及一种电催化制备过氧化氢的单原子催化剂、制备方法及其应用。
背景技术
过氧化氢是一种重要的无机化工产品,被广泛应用于纺织、造纸、军工、医药、食品加工和环境保护等领域。过氧化氢的分解产物是氧气和水,对环境无二次污染,属于绿色化学品,目前全球H2O2的年利用率约为400万吨,在未来有很大的希望继续增长。
现有生产过氧化氢的主要方法是蒽醌法,蒽醌法虽然有产品成本低和耗能低的优点,但是在大规模生产中有较大的安全隐患,因为其镍系催化剂和使用的氢气都属于易燃易爆物;而使用的钯系催化剂,容易结块和粉碎,在生产过程中必须严格的控制,否则很大程度上影响钯系催化剂的功效。所以这些非分布式生产,高能量消耗,大量有机副产品的浪费和需要将得到的H2O2输送到使用点等缺点需要从制备方法上改善。
针对上述缺点,一个有希望的替代途径是通过O2的二电子还原(2e-ORR)现场制备H2O2(方程式(1))。该过程可与析氧反应(OER)(方程式(2))耦合,在电解装置中利用空气、水和可再生能源生产H2O2(方程式(3))。
O2+2e-+2H+→H2O2Ered=0.695V versus RHE (1)
2H2O-+O2+4H++4e-Ered=1.229V versus RHE (2)
电催化氧化还原反应(ORR)生成H2O2的方法是以空气中的氧气和水作为唯一的原料,在常温常压的温和条件下,O2在阴极被选择性地电化学还原为H2O2。只要有电有水有空气的地方,可以直接生产使用,不会产生有害的副产品或废气流;通过一个双电子(2e-)途径提供了一个经济、安全、和环保的H2O2路线。过氧化氢生产安全隐患低,生产流程中绿色环保,生产工艺简单,还可调节过氧化氢的浓度等优点。但是,实际过程是具有挑战性的,由于许多电极材料更倾向于竞争四电子(4e-)ORR而不是(2e-)ORR,从而降低了H2O2的产率。因此,发现对H2O2具有高选择性的ORR电催化剂具有重要意义。
目前广泛使用的负载型过渡金属的催化剂尺寸通常在纳米级,由于吸附和催化过程主要发生在催化剂的表面,而纳米级颗粒的表面原子仅占总原子数很少的一部分,导致催化剂利用率较低。
相对于纳米尺度而言,单原子技术使金属呈原子级分散,每个金属原子的特性能够被淋漓尽致的体现出来,且金属原子的利用率达到了100%,实现了完全化的“原子经济”。单原子技术在实现功能金属材料特性突破,合理利用金属资源和实现原子经济方面具有巨大的潜力。单原子催化剂(SAC)是由金属原子单分散在各种固体载体上的一种新型材料,最近已成为催化科学中的一个前沿研究领域。SAC继承了非均相催化剂和均相催化剂的优点,通常都具有极高的催化性能,SAC性能远超过金属纳米颗粒催化剂。SAC的高催化效率源自其原子利用率的最大化和独特的金属原子协同作用环境,此外,由于SAC的结构简单以及同质性,有利于精确鉴定和表征它们的活性位点,同时,这也有助于全面了解催化剂结构与性能之间的关系,从而针对原子级目标反应开展合理的催化剂设计。而单原子催化剂在电催化制备过氧化氢上具有重大的作用。
发明内容
为解决背景技术存在的技术问题,本发明的目的在于提供一种电催化制备过氧化氢的单原子催化剂、制备方法及其应用。
为了实现以上目的,本发明采用如下技术方案:
一种电催化制备过氧化氢的单原子催化剂,所述的单原子催化剂由载体和过渡金属组成,所述的过渡金属以单原子的形式固定在载体的表面。
优选地,所示的过渡金属和载体的质量比为1:(100-200)。
优选地,所述的载体为掺氮多孔碳,所述的掺氮多孔碳为三聚氰胺,尿素,腐殖酸的一种煅烧后所得。
优选地,所述的过渡金属为Cu、Co、Fe、Mn中的一种或者多种。
本发明还提供一种电催化制备过氧化氢的单原子催化剂的制备方法,包括以下步骤:
(1)制备掺氮多孔碳载体前驱体:称取100g载体,超声10min,使其均匀分散在水溶液中,配置成10g/L的载体前驱体,搅拌2h得到溶液A;
(2)采用化学沉淀法制备金属单原子前驱体:将20-40ml的20%碳酸氢钠溶液以10μL/秒的速度缓慢滴加入100ml的乙酰丙酮盐溶液以500rpm的转速搅拌混合,混合液升温至60℃,继续以相同速度搅拌2h,冷却至室温,制得混合液B;
(3)制备单原子催化剂前驱体:将溶液B滴加到溶液A里,其中过渡金属与载体的质量比为1:(100-200),继续以500rpm的转速搅拌12h,搅拌停止后,用去离子水洗涤至中性,过滤烘干,得到固体产物用行星球磨机研磨至500nm,制得粉末;
(4)原位热分解生成单原子催化剂:所得粉末在5%H2/Ar气氛中煅烧,所述热处理的温度是60min升到500℃保持2h再60min升到800℃保持2h,得到产物用行星球磨机研磨至500nm,得到单原子催化剂。
优选地,步骤(2)中所述的乙酰丙酮盐溶液为5-10g/L的水溶液。
本发明还提供一种电催化制备过氧化氢的单原子催化剂的应用,是利用单原子催化剂制成的材料应用于电催化氧化还原制备双氧水中。
优选地,所述的材料为阴极材料,所述的阴极材料为单原子催化剂掺杂的泡沫碳或单原子催化剂掺杂的泡沫镍。
优选地,电催化中所用到的电催化装置由阴极、阳极和阴极腔、阳极腔构成;所述的阴极腔与阳极腔并列设置,阴极腔与阳极腔侧面通过Nafion膜隔开;阴极侧放固定在阴极腔内,阳极侧放固定在阳极腔内;阴极腔底部设置有阴极腔进水管和氧气进管;阴极腔内阴极下方设置有布气室,布气室顶面为多孔板;布气室与氧气进管的出气端连通;阴极上方的阴极腔的侧壁上设置阴极腔排水管;阳极腔底部设置有阳极腔进水管,阳极上方的阳极腔侧壁上设置有阳极腔排水管;所述的阳极的材质Pt/C电极;所述阴极与电源负极导线相连接;阳极与电源正极导线相连接;所述阴极腔与阳极腔的水力停留时间相同,所述阴极腔与阳极腔的水力停留时间在60s-300s。
优选地,所述的电催化装置应用在废水处理中,包括以下步骤:将制备过氧化氢的电催化装置的阴极腔排水管与废水处理装置的氧化剂进口连通;利用阴极腔排水管向废水处理装置中输入过氧化氢溶液作为氧化剂,即完成。
本发明制备的单原子催化剂应用在电催化过氧化氢中具有如下技术优势:
1、本发明制备的单原子催化剂在电催化过氧化氢时可表现出极大的稳定性。金属原子分布在载体内部,形成核壳结构,引入O以后可以使羧基的吸附明显弱化,使反应更倾向于两电子过程。
2、本发明制备的单原子催化剂电催化过氧化氢时,pH=7生成羧基自由基,有利于过氧化氢的合成。羟基自由基在极大的程度上提高了过氧化氢的合成纯度,能够积累3500ppm以上的H2O2在很宽的电压范围内选择性超过91%,对应到550mmol g-1h-1的H2O2生成速率。
3、本发明的单原子催化剂以原子形式锚定在载体上,具有理论上100%的利用率,金属单原子催化剂相比纳米级催化剂具有很大的优势。单原子负载掺氮多孔碳,在电催化制备过氧化氢上具有高活性、高稳定性,以及可以生成过氧化氢自由基,这些性能相对于纳米级催化剂在电催化过氧化氢上具有较大的优势。
4、本发明制备单原子催化剂的工艺简单,制备需要的原料具有广泛来源且价格便宜,可以用于广大规模生产制备。
与传统制过氧化氢设备相比,本发明的电催化装置具有以下技术优势:
1、本发明的电催化装置运行时,首先开启电源,分别向阴极腔进水管和阳极腔进水管连续通入氢氧化钾溶液作为电解液;同时阴极腔排水管和阳极腔排水管排水;向氧气进管通入氧气,到达阴极腔中的布气室,氧气在布气室;并从布气室项面的多孔板以曝气方式进入阴极腔,阴极设置在布气室中心的上方,因此布气室能够实现对阴极的两个表面进行均匀曝气;通过电催化过程,氧气在阴极表面通过氧气还原二电子体系原位产生过氧化氢,阴极表面产生的过氧化氢溶解在水中形成过氧化氢溶液,最终从极室排水管排出。
2、本发明的电催化装置能够在低电流密度下产生过氧化氢溶液,正极和负极施加的最低电流为10mA/cm2
3、本发明的电催化装置阴极表面经过单原子催化剂掺杂的电极产生的过氧化氢溶解在水中,形成过氧化氢溶液,最终从阴极腔排水管排出,得到过氧化氢溶液;本发明的电催化装置以连续流通方式运行,即能持续产生过氧化氢溶液,在连续流通情况下,本发明的电催化装置产生的过氧化氢溶液的最高浓度稳定在35mg/L。
4、本发明的电催化装置中,泡沫碳自身具备电催化功能,利用单原子催化剂与泡沫碳掺杂,能够大幅提高电极的催化活性,提高过氧化氢制备效率,提高过氧化氢的浓度和有利于稳定产生过氧化氢。
5、本发明的电催化装置使用的单原子催化剂系Cu、Fe、Mn、Co中的一种或多种,单原子催化剂具有良好的催化生成过氧化氢性能,持续催化生成过氧化氢,使用寿命长的优点。
附图说明
图1为本发明实施例1的电催化制备过氧化氢的单原子催化剂电镜图。
图2为本发明的电催化制备过氧化氢的单原子催化剂专用设备结构图。
图3为蒽醌法制备过氧化氢装置流程图。
其中A为氢化釜,B为过滤器,C为氧化塔,D为萃取塔,E为净化塔,F为工作液再生装置,G为工作液配制装置。
具体实施方式
下面结合具体实施例,对本发明作进一步详细的阐述,但本发明的实施方式并不局限于实施例表示的范围。这些实施例仅用于说明本发明,而非用于限制本发明的范围。此外,在阅读本发明的内容后,本领域的技术人员可以对本发明作各种修改,这些等价变化同样落于本发明所附权利要求书所限定的范围。
实施例1
一种电催化制备过氧化氢的单原子催化剂的制备方法,包括以下步骤:
(1)制备掺氮多孔碳载体前驱体:称取100g三聚氰胺,超声10min,使其均匀分散在水溶液中,配置成10g/L的载体前驱体,搅拌2h得到溶液A。
(2)采用化学沉淀法制备金属单原子前驱体:将20ml的20%碳酸氢钠溶液以10μL/秒的速度缓慢滴加入100ml的5g/L乙酰丙酮铜和5g/L乙酰丙酮铁混合溶液以500rpm的转速搅拌混合,混合液升温至60℃,继续以相同速度搅拌2h,冷却至室温,制得混合液B。
(3)制备单原子催化剂前驱体:将溶液B滴加到溶液A里,其中过渡金属与载体的质量比1:100,继续以500rpm的转速搅拌12h,搅拌停止后,用去离子水洗涤至中性,随后过滤烘干,得到固体产物用行星球磨机(氧化锆球磨罐)研磨至500nm,制得粉末。
(4)原位热分解生成单原子催化剂:所得粉末在5%H2/Ar气氛中煅烧,所述热处理的温度是60min升到500℃保持2h再60min升到800℃保持2h,得到产物用行星球磨机(氧化锆球磨罐)研磨至500nm,得到单原子催化剂,该实施例制备的单原子催化剂的电镜图如图1所示,由图1可知,金属以单原子的形式固定在载体的表面。
实施例2
一种电催化制备过氧化氢的单原子催化剂的制备方法,包括以下步骤:
(1)制备掺氮多孔碳载体前驱体:称取100g尿素,超声10min,使其均匀分散在水溶液中,配置成10g/L的载体前驱体,搅拌2h得到溶液A。
(2)采用化学沉淀法制备金属单原子前驱体:将20ml的20%碳酸氢钠溶液以10μL/秒的速度缓慢滴加入100ml的5g/L乙酰丙酮铜和5g/L乙酰丙酮铁混合溶液以500rpm的转速搅拌混合,混合液升温至60℃,继续以相同速度搅拌2h,冷却至室温,制得混合液B。
(3)制备单原子催化剂前驱体:将溶液B滴加到溶液A里,其中过渡金属与载体的质量比1:200,继续以500rpm的转速搅拌12h,搅拌停止后,用去离子水洗涤至中性,随后过滤烘干,得到固体产物用行星球磨机(氧化锆球磨罐)研磨至500nm,制得粉末。
(4)原位热分解生成单原子催化剂:所得粉末在5%H2/Ar气氛中煅烧,所述热处理的温度是60min升到500℃保持2h再60min升到800℃保持2h,得到产物用行星球磨机(氧化锆球磨罐)研磨至500nm,得到单原子催化剂。
实施例3
一种电催化制备过氧化氢的单原子催化剂的制备方法,包括以下步骤:
(1)制备掺氮多孔碳载体前驱体:称取100g腐殖酸,超声10min,使其均匀分散在水溶液中,配置成10g/L的载体前驱体,搅拌2h得到溶液A。
(2)采用化学沉淀法制备金属单原子前驱体:将30ml的20%碳酸氢钠溶液以10μL/秒的速度缓慢滴加入100ml的10g/L乙酰丙酮钴、10g/L乙酰丙酮铁和5g/L乙酰丙酮锰混合溶液以500rpm的转速搅拌混合,混合液升温至60℃,继续以相同速度搅拌2h,冷却至室温,制得混合液B。
(3)制备单原子催化剂前驱体:将溶液B滴加到溶液A里,其中过渡金属与载体的质量比1:150,继续以500rpm的转速搅拌12h,搅拌停止后,用去离子水洗涤至中性,随后过滤烘干,得到固体产物用行星球磨机(氧化锆球磨罐)研磨至500nm,制得粉末。
(4)原位热分解生产单原子催化剂:所得粉末在5%H2/Ar气氛中煅烧,所述热处理的温度是60min升到500℃保持2h再60min升到800℃保持2h,得到产物用行星球磨机(氧化锆球磨罐)研磨至500nm,得到单原子催化剂。
实施例4
一种电催化制备过氧化氢的单原子催化剂的制备方法,包括以下步骤:
(1)制备掺氮多孔碳载体前驱体:称取100g三聚氰胺,超声10min,使其均匀分散在水溶液中,配置成10g/L的载体前驱体,搅拌2h得到溶液A。
(2)采用化学沉淀法制备金属单原子前驱体:将30ml的20%碳酸氢钠溶液以10μL/秒的速度缓慢滴加入100ml的5g/L乙酰丙酮钴、10g/L乙酰丙酮铁和10g/L乙酰丙酮锰混合溶液以500rpm的转速搅拌混合,混合液升温至60℃,继续以相同速度搅拌2h,冷却至室温,制得混合液B。
(3)制备单原子催化剂前驱体:将溶液B滴加到溶液A里,其中过渡金属与载体的质量比1:100,继续以500rpm的转速搅拌12h,搅拌停止后,用去离子水洗涤至中性,随后过滤烘干,得到固体产物用行星球磨机(氧化锆球磨罐)研磨至500nm,制得粉末。
(4)原位热分解生产单原子催化剂:所得粉末在5%H2/Ar气氛中煅烧,所述热处理的温度是60min升到500℃保持2h再60min升到800℃保持2h,得到产物用行星球磨机(氧化锆球磨罐)研磨至500nm,得到单原子催化剂。
实施例5
一种电催化制备过氧化氢的单原子催化剂的制备方法,包括以下步骤:
(1)制备掺氮多孔碳载体前驱体:称取100g尿素,超声10min,使其均匀分散在水溶液中,配置成10g/L的载体前驱体,搅拌2h得到溶液A。
(2)采用化学沉淀法制备金属单原子前驱体:将40ml的20%碳酸氢钠溶液以10μL/秒的速度缓慢滴加入100ml的10g/L乙酰丙酮钴、10g/L乙酰丙酮铁和10g/L乙酰丙酮锰混合溶液以500rpm的转速搅拌混合,混合液升温至60℃,继续以相同速度搅拌2h,冷却至室温,制得混合液B。
(3)制备单原子催化剂前驱体:将溶液B滴加到溶液A里,其中过渡金属与载体的质量比1:200,继续以500rpm的转速搅拌12h,搅拌停止后,用去离子水洗涤至中性,随后过滤烘干,得到固体产物用行星球磨机(氧化锆球磨罐)研磨至500nm,制得粉末。
(4)原位热分解生产单原子催化剂:所得粉末在5%H2/Ar气氛中煅烧,所述热处理的温度是60min升到500℃保持2h再60min升到800℃保持2h,得到产物用行星球磨机(氧化锆球磨罐)研磨至500nm,得到单原子催化剂。
将制得的单原子催化剂结合本发明发明的电催化双氧水装置应用,有以下实施例:
实施例6
如图2所示,本发明制备过氧化氢的电催化装置由阴极腔与阳极腔并列设置,阴极腔与阳极腔侧面通过Nafion膜隔开;阴极固定在阴极腔内,阳极固定在阳极腔内;阴极腔底部设置有阴极腔进水管和氧气进管;阴极腔内阴极下方设置有布气室,布气室顶面为多孔板;布气室与氧气进管的出气端连通;阴极上方的阴极腔的侧壁上设置阴极腔排水管;阳极腔底部设置有阳极腔进水管,阳极上方的阳极腔侧壁上设置有阳极腔排水管。阴极的材质为单原子催化剂掺杂的泡沫碳或单原子催化剂掺杂的泡沫镍;所述阳极的材质Pt/C电极;
氧气进管的进气端与制氧气的出口气连通;阴极与电源负极通过导线连接;阳极与电源正极通过导线连接;阴极腔与阳极腔的水力停留时间相同;电源正极向阳极施加的电流密度为10mA/cm2
将制得的单原子催化剂制成电池材料,安装成电池装置后,测试过氧化氢合成效果,实施步骤如下:
将实施例1的单原子铜、铁催化剂制备的电极标记为电极1号,将实施例3的单原子钴、铁、锰催化剂制备的电极标记为电极2号。电极的制备方法为:
1、将5mg催化剂、2.5mL无水乙醇和30μL质量分数为5%Nafion溶液,超声混合成均匀的浆料,取10μL浆料转移至玻碳电极(直径为5.61mm)上,晾干后成薄膜电极,制得电极1号、电极2号。
2、电池装置选用0.5mol/L H2SO4溶液作为电解质溶液,1.5V的外接电压。
3、在室温下测试2h,计算过氧化氢产率。
结果如下表,过氧化氢产率(H2O2%)的计算方法为:计算过氧化氢产率(H2O2%)的公式为:H2O2%=1003iR/[(iD iR/N)/2+iR/N],其中iD为圆盘电流,iR为环形电流,N为环形收集效率。所使用的RRDE的理论收集效率为37%。在0.5mol/L H2SO4电解液中,以不同的转速对收集效率进行标定。实测采集效率为36.8%,与理论值相当接近,达到蒽醌法的生产效率。
样品 电极1号 电极2号 Pt/C电极
H2O2 3.89mg/L 3.85mg/L 4mg/L
由上表可知,本发明的单原子催化剂在本发明的电催化装置中,能够有效催化活化电催化过程生产过氧化氢,在电催化双氧水中表现极大的稳定性,并在pH=7时生成过氧化氢自由基,且能耗低。本发明制备方法简单,原材料价格低廉,有利于扩大化生产,具有广阔的商业化前景。
对比例1
蒽醌法制备过氧化氢装置流程图如3图所示,其工艺为将烷基蒽醌与有机溶剂配制成工作溶液,在压力为0.30MPa,温度55-65℃、有钯催化剂存在的条件下,通入氢气进行氢化,再在40-44℃下与空气(或氧气)进行逆流氧化,经萃取、再生、精制与浓缩制得质量分数为20%-30%的过氧化氢水溶液产品,化学反应式如下:
实施例6与对比例1相比,本发明的生产装置没有蒽醌法要求那么高,工艺也没有那么复杂,所使用的催化剂比蒽醌法便宜,生产的过氧化氢没有过多杂质。说明本发明比蒽醌法制备过氧化氢在性价比上更优异,突出技术的显著进步。
以上内容不能认定本发明具体实施只局限于这些说明,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思前提下,还可以做出若干简单推演或替换,都应当视为属于本发明由所提交的权利要求书确定的专利保护范围。

Claims (6)

1.一种电催化制备过氧化氢的单原子催化剂的制备方法,其特征在于,所述的单原子催化剂由载体和过渡金属组成,所述的过渡金属以单原子的形式固定在载体的表面;
所示的过渡金属和载体的质量比为1:150;
所述的载体为掺氮多孔碳,所述的掺氮多孔碳为腐殖酸煅烧后所得;
所述的过渡金属为Co、Fe和Mn;
所述的电催化制备过氧化氢的单原子催化剂的制备方法,包括以下步骤:
(1)制备掺氮多孔碳载体前驱体:称取100g载体,超声10min,使其均匀分散在水溶液中,配置成10g/L的载体前驱体,搅拌2h得到溶液A;
(2)采用化学沉淀法制备金属单原子前驱体:将20-40ml的20%碳酸氢钠溶液以10μL/秒的速度缓慢滴加入100ml的乙酰丙酮盐溶液,所述的乙酰丙酮盐为过渡金属的盐,以500rpm的转速搅拌混合,混合液升温至60℃,继续以相同速度搅拌2h,冷却至室温,制得混合液B;
(3)制备单原子催化剂前驱体:将溶液B滴加到溶液A里,其中过渡金属与载体的质量比为1:150,继续以500rpm的转速搅拌12h,搅拌停止后,用去离子水洗涤至中性,过滤烘干,得到固体产物用行星球磨机研磨至500nm,制得粉末;
(4)原位热分解生成单原子催化剂:所得粉末在5%H2/Ar气氛中热处理,所述热处理的温度是60min升到500℃保持2h,再60min升到800℃保持2h,得到产物用行星球磨机研磨至500nm,得到单原子催化剂。
2.根据权利要求1所述的电催化制备过氧化氢的单原子催化剂的制备方法,其特征在于,步骤(2)中所述的乙酰丙酮盐溶液为5-10g/L的水溶液。
3.一种根据权利要求1或2所述方法制备的电催化制备过氧化氢的单原子催化剂的应用,其特征在于,利用单原子催化剂制成的材料应用于电催化氧化还原制备双氧水中。
4.根据权利要求3所述的电催化制备过氧化氢的单原子催化剂的应用,其特征在于,所述的材料为阴极材料,所述的阴极材料为单原子催化剂掺杂的泡沫碳或单原子催化剂掺杂的泡沫镍。
5.根据权利要求3所述的电催化制备过氧化氢的单原子催化剂的应用,其特征在于,电催化中所用到的电催化装置由阴极、阳极和阴极腔、阳极腔构成;所述的阴极腔与阳极腔并列设置,阴极腔与阳极腔侧面通过Nafion膜隔开;阴极侧放固定在阴极腔内,阳极侧放固定在阳极腔内;阴极腔底部设置有阴极腔进水管和氧气进管;阴极腔内阴极下方设置有布气室,布气室顶面为多孔板;布气室与氧气进管的出气端连通;阴极上方的阴极腔的侧壁上设置阴极腔排水管;阳极腔底部设置有阳极腔进水管,阳极上方的阳极腔侧壁上设置有阳极腔排水管;所述的阳极的材质Pt/C电极;所述阴极与电源负极导线相连接;阳极与电源正极导线相连接;所述阴极腔与阳极腔的水力停留时间相同,所述阴极腔与阳极腔的水力停留时间在60s-300s。
6.根据权利要求5所述的电催化制备过氧化氢的单原子催化剂的应用,其特征在于,所述的电催化装置应用在废水处理中,包括以下步骤:将制备过氧化氢的电催化装置的阴极腔排水管与废水处理装置的氧化剂进口连通;利用阴极腔排水管向废水处理装置中输入过氧化氢溶液作为氧化剂,即完成。
CN202110875092.8A 2021-07-30 2021-07-30 一种电催化制备过氧化氢的单原子催化剂、制备方法及其应用 Active CN113416966B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110875092.8A CN113416966B (zh) 2021-07-30 2021-07-30 一种电催化制备过氧化氢的单原子催化剂、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110875092.8A CN113416966B (zh) 2021-07-30 2021-07-30 一种电催化制备过氧化氢的单原子催化剂、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN113416966A CN113416966A (zh) 2021-09-21
CN113416966B true CN113416966B (zh) 2023-09-22

Family

ID=77719856

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110875092.8A Active CN113416966B (zh) 2021-07-30 2021-07-30 一种电催化制备过氧化氢的单原子催化剂、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN113416966B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113809375B (zh) * 2021-09-28 2022-12-27 北京化工大学 一种应用于电催化氧还原合成过氧化氢的固体电解质及其制备方法
CN114481167B (zh) * 2022-01-26 2022-12-20 大连理工大学 一种O-Ni SAC/MWCNTs复合催化剂的制备方法及应用
CN114774979B (zh) * 2022-05-10 2024-01-30 浙江工业大学 一种基于球磨法制备的碳负载钯-锌双金属氧化物电催化剂、其制备方法和应用
CN114892197B (zh) * 2022-07-12 2022-11-01 中国科学院山西煤炭化学研究所 一种电催化合成h2o2用催化剂及其制备方法和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6566539B1 (en) * 2002-07-18 2003-05-20 E.I. Du Pont De Nemours And Company Catalyst regeneration by treatment with an oxidizing agent
CN107376970A (zh) * 2017-07-25 2017-11-24 中国石油大学(北京) 单原子铁掺氮多孔碳催化剂及其制备方法与应用
CN108620072A (zh) * 2018-05-11 2018-10-09 大连理工大学 一种基于碳量子点的单原子铁催化剂的制备及其应用
CN208844203U (zh) * 2018-10-18 2019-05-10 哈尔滨工业大学 一种制备过氧化氢的电化学装置
CN109745984A (zh) * 2017-11-08 2019-05-14 中国科学院金属研究所 一种金属单原子掺杂碳纳米管的制备方法
KR20210011309A (ko) * 2019-07-22 2021-02-01 서울대학교산학협력단 과산화수소 생성용 촉매 및 그 제조 방법
CN112593254A (zh) * 2020-11-27 2021-04-02 浙江大学衢州研究院 一种氮/硫共掺杂碳支撑铁单原子的催化剂及其制备方法和应用
CN112869264A (zh) * 2021-04-01 2021-06-01 联科华技术有限公司 一种具有抗菌抗病毒功能的单原子医用防护口罩
CN112892575A (zh) * 2021-01-26 2021-06-04 大连理工大学 一种用于活化可溶性氧化剂的金属单原子催化材料m-c3n4的制备方法及应用
CN113731416A (zh) * 2021-07-30 2021-12-03 联科华技术有限公司 一种局域酸位点改性的单原子催化剂、制备方法及其应用
CN114423887A (zh) * 2019-07-15 2022-04-29 威廉马歇莱思大学 用于高效电催化合成包括h2o2、含氧物、氨等纯液体产品溶液的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1900850T3 (da) * 2005-06-09 2014-11-10 Herrera Arturo Solis Fotoelektrokemisk metode til separering af vand i brint og ilt under brug af melanier som det centrale elektrolyseelement
US8585753B2 (en) * 2006-03-04 2013-11-19 John James Scanlon Fibrillated biodegradable prosthesis
ITMI20061799A1 (it) * 2006-09-21 2008-03-22 Industrie De Nora Spa Cella di elettrolisi per la produzione di acqua ossigenata e metodo di utilizzazione
US11248303B2 (en) * 2018-06-06 2022-02-15 Molecule Works Inc. Electrochemical device comprising thin porous metal sheet

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6566539B1 (en) * 2002-07-18 2003-05-20 E.I. Du Pont De Nemours And Company Catalyst regeneration by treatment with an oxidizing agent
CN107376970A (zh) * 2017-07-25 2017-11-24 中国石油大学(北京) 单原子铁掺氮多孔碳催化剂及其制备方法与应用
CN109745984A (zh) * 2017-11-08 2019-05-14 中国科学院金属研究所 一种金属单原子掺杂碳纳米管的制备方法
CN108620072A (zh) * 2018-05-11 2018-10-09 大连理工大学 一种基于碳量子点的单原子铁催化剂的制备及其应用
CN208844203U (zh) * 2018-10-18 2019-05-10 哈尔滨工业大学 一种制备过氧化氢的电化学装置
CN114423887A (zh) * 2019-07-15 2022-04-29 威廉马歇莱思大学 用于高效电催化合成包括h2o2、含氧物、氨等纯液体产品溶液的方法
KR20210011309A (ko) * 2019-07-22 2021-02-01 서울대학교산학협력단 과산화수소 생성용 촉매 및 그 제조 방법
CN112593254A (zh) * 2020-11-27 2021-04-02 浙江大学衢州研究院 一种氮/硫共掺杂碳支撑铁单原子的催化剂及其制备方法和应用
CN112892575A (zh) * 2021-01-26 2021-06-04 大连理工大学 一种用于活化可溶性氧化剂的金属单原子催化材料m-c3n4的制备方法及应用
CN112869264A (zh) * 2021-04-01 2021-06-01 联科华技术有限公司 一种具有抗菌抗病毒功能的单原子医用防护口罩
CN113731416A (zh) * 2021-07-30 2021-12-03 联科华技术有限公司 一种局域酸位点改性的单原子催化剂、制备方法及其应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Chang Liu等.Intrinsic Activity of Metal Centers in Metal−Nitrogen−Carbon Single-Atom Catalysts for Hydrogen Peroxide Synthesis.《J. Am. Chem. Soc.》.2020,(第142期), *
Intrinsic Activity of Metal Centers in Metal−Nitrogen−Carbon Single-Atom Catalysts for Hydrogen Peroxide Synthesis;Chang Liu等;《J. Am. Chem. Soc.》;20201217(第142期);21861-21871 *
单原子催化剂的研究进展;张宁强等;《中国稀土学报》;20181015;第36卷(第05期);513-532 *
单原子光催化剂的合成、表征及在环境与能源领域的应用;李惠惠等;《材料导报》;20200122;第34卷(第03期);3056-3068 *
石墨烯基单原子催化剂的合成、表征及分析;祁建磊等;《化学进展》;20200524;第32卷(第05期);505-518 *

Also Published As

Publication number Publication date
CN113416966A (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
CN113416966B (zh) 一种电催化制备过氧化氢的单原子催化剂、制备方法及其应用
EP3027308B1 (en) Method for forming noble metal nanoparticles on a support
CN111111690B (zh) 一种用于酸性氢析出反应的碳担载铂钴铑纳米棒状催化剂及其制备方法与应用
CN108906113A (zh) 一种高负载量的贵金属单原子催化剂及其制备方法和应用
CN105244513A (zh) 石墨相氮化碳修饰的炭黑负载铂钯合金纳米电催化剂及制备方法
WO2021232751A1 (zh) 一种多孔CoO/CoP纳米管及其制备方法和应用
CN110931805B (zh) 一种铂合金催化剂、其制备方法及在燃料电池阴极催化剂的应用
CN111628178B (zh) 用于直接甲醇和甲酸燃料电池的碳载钯铜氮化钽纳米电催化剂及其制备方法
CN111250076B (zh) 一种纳米铋催化剂及其制备方法和应用
CN113422080B (zh) 一种用于碱性氢氧化的碳担载非铂的钯钌钨合金纳米颗粒电催化剂的制备方法及应用
Su et al. Cost-effective degradation of pollutants by in-situ electrocatalytic process on Fe@ BN-C bifunctional cathode: Formation of 1O2 with high selectivity under nanoconfinement
CN111215104A (zh) 一种磷掺杂碳负载钼钨碳化物催化剂及制备和应用
CN113437305A (zh) 一种2D-Co@NC复合材料及其制备方法和应用
CN113235113B (zh) 一种中空碳包覆铜氧化物纳米颗粒催化剂及其制备方法与应用
CN111326753B (zh) 一种担载型纳米电催化剂及其制备方法与应用
Zhang et al. Batch synthesis of high activity and durability carbon supported platinum catalysts for oxygen reduction reaction using a new facile continuous microwave pipeline technology
CN112481654B (zh) 一种二维碲化镍支撑钯单原子的催化剂及其制备方法和应用
CN109908887B (zh) 一种微氧化导电炭黑担载纳米金属铋催化剂及其应用
CN114892197B (zh) 一种电催化合成h2o2用催化剂及其制备方法和应用
CN105810958A (zh) 一种用于碱性直接甲醇燃料电池的Rh纳米花电催化剂的制备方法
Yang et al. PdCu nanoalloys deposited on porous carbon as a highly efficient catalyst for ethanol oxidation
CN107230791A (zh) 一种碳球负载RhCo合金电催化剂的制备方法
CN113233961A (zh) 一种催化加氢制备糖醇的方法
CN107376973B (zh) 一种SiO2-氮掺杂石墨烯负载钯钌铋纳米催化剂的制备方法
CN105363448B (zh) 一种炭/银/二氧化锰三相复合催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 530201, 10th Floor, Unit 2, Biyuan Building, No. 4 Pange Road, China (Guangxi) Pilot Free Trade Zone (Nanning Area), Nanning City, Guangxi Zhuang Autonomous Region

Applicant after: Liankehua Technology Co.,Ltd.

Address before: 530104 No. B-9, Yiling industrial concentration zone, Nanning City, Guangxi Zhuang Autonomous Region

Applicant before: Liankehua Technology Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant