CN113388232A - 一种高导热抗压的氮化硅基板及其生产工艺 - Google Patents

一种高导热抗压的氮化硅基板及其生产工艺 Download PDF

Info

Publication number
CN113388232A
CN113388232A CN202110871493.6A CN202110871493A CN113388232A CN 113388232 A CN113388232 A CN 113388232A CN 202110871493 A CN202110871493 A CN 202110871493A CN 113388232 A CN113388232 A CN 113388232A
Authority
CN
China
Prior art keywords
silicon nitride
parts
reaction
nitride substrate
reaction kettle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110871493.6A
Other languages
English (en)
Other versions
CN113388232B (zh
Inventor
刘宗才
许建文
裴晨艺
许轶雯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shangci Zongcai Shanghai Precision Ceramics Co ltd
Original Assignee
Shangci Zongcai Shanghai Precision Ceramics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shangci Zongcai Shanghai Precision Ceramics Co ltd filed Critical Shangci Zongcai Shanghai Precision Ceramics Co ltd
Priority to CN202110871493.6A priority Critical patent/CN113388232B/zh
Publication of CN113388232A publication Critical patent/CN113388232A/zh
Application granted granted Critical
Publication of CN113388232B publication Critical patent/CN113388232B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种高导热抗压的氮化硅基板及其生产工艺,该碳化硅基板包括如下重量份原料:75‑85份α相氮化硅、8‑12份β相氮化硅、3‑8份陶瓷纤维、3‑8份纳米氮化硅、30‑50份增强颗粒、50‑60份环氧树脂862和25‑30份固化剂5010B;本发明在制备碳化硅基板的同时制备了一种增强颗粒,该增强颗粒主链含有大量的苯并噁嗪结构能够增强氮化硅基板的机械性能,同时聚苯醚腈主链和聚苯腈侧链配合,使得氮化硅基板的机械性能进一步的提升,同时增强颗粒含有超大的纵横比及片状结构使得在氮化硅基板基材中能够形成导热通路,进而提升了氮化硅基板的导热能力。

Description

一种高导热抗压的氮化硅基板及其生产工艺
技术领域
本发明涉及导热材料制备技术领域,具体涉及一种高导热抗压的氮化硅基板及其生产工艺。
背景技术
功率电子器件在电力存储、电力输送、电动汽车和电力机车等众多工业领域得到越来越广泛的应用,而随着功率电子器件本身不断的大功率化和高集成化,芯片在工作过程中将会产生大量的热,如果这些热量不能及时有效地发散出去,功率电子器件的工作性能将会受到严重影响,功率电子器件本身会被破坏,这就要求担负绝缘和散热功能的陶瓷基板封装材料,必须具备卓越的机械性能和导热性能;
但现有的氮化硅基板导热效果一般,在使用过程中不能很好地将热量释放而易出现断裂现象,不能满足大功率元器件的使用要求;
针对此方面的技术缺陷,现提出一种解决方案。
发明内容
本发明的目的在于提供一种高导热抗压的氮化硅基板及其生产工艺。
本发明的目的可以通过以下技术方案实现:
一种高导热抗压的氮化硅基板,包括如下重量份原料:75-85份α相氮化硅、8-12份β相氮化硅、3-8份陶瓷纤维、3-8份纳米氮化硅、30-50份增强颗粒、50-60份环氧树脂862和25-30份固化剂5010B;
该氮化硅基板由如下步骤制成:
步骤S1:将α相氮化硅、β相氮化硅、陶瓷纤维和纳米氮化硅加入球磨机中,加入乙醇进行球磨,球磨时间40-50h,球磨完毕后,烘干并在温度为1800-1700℃的条件下,烧结2-3h,制得增强粉末;
步骤S2:将环氧树脂862、增强粉末和增强颗粒加入反应釜中,在转速为300-500r/min,温度为60-70℃的条件下,进行搅拌1.5-3h后,加入固化剂5010B加入模具中,在温度为80-85℃的条件下固化10-15h,制得氮化硅基板。
进一步的,所述的增强颗粒由如下步骤制成:
步骤A1:将六方氮化硼和异丙醇加入搅拌釜中,搅拌均匀后,在频率为40-50kHz的条件下,进行超声剥离1-1.5h后,加入去离子水,在温度为150-170℃的条件下,进行回流15-20h后,在转速为8000r/min的条件下,离心5-10min,制得羟基化氮化硼,将羟基氮化硼分散在去离子水中,加入γ-氨丙基三乙氧基硅烷和乙醇,在转速为120-150r/min,温度为70-75℃的条件下,进行搅拌3-5h后,过滤并干燥,制得改性氮化硼;
步骤A2:将三氯化铝和四氯化碳加入反应釜中,在转速为150-200r/min,温度为5-10℃的条件下,进行搅拌并加入硝基苯,在温度为30-40℃的条件下,进行反应2-3h,制得中间体1,将中间体1、锡粉和浓盐酸加入反应釜中,在温度为20-25℃的条件下,进行反应30-50min后,调节反应液pH值为8-9,制得中间体2,将中间体2和去离子水混合,在温度为110-120℃的条件下,进行回流10-15min,制得中间体3;
反应过程如下:
Figure BDA0003189319260000021
Figure BDA0003189319260000031
步骤A3:将中间体3、苯二酚和甲醛加入反应釜中,搅拌均匀后,升温至温度为100-110℃的条件下,回流反应3-5h,制得中间体4,将N-甲基吡咯烷酮和甲苯加入反应釜中,在转速为150-200r/min的条件下,进行搅拌并加入2,6-二氟苯甲腈、中间体4、2,5-二羟基苯甲酸和碳酸钾,在温度为140-150℃的条件下,进行反应2-3h,制得中间体5,将中间体5溶于四氢呋喃中,加入硼氢化钠,在转速为150-200r/min,温度为25-30℃的条件下,进行反应20-30min后,TLC跟踪到反应结束,加入去离子水和盐酸,继续搅拌10-15min,制得中间体6;
反应过程如下:
Figure BDA0003189319260000032
Figure BDA0003189319260000041
步骤A4:将4-氨基苯酚、碳酸钾、4-硝基邻苯二甲腈和四氢呋喃加入反应釜中,通入氮气进行保护,在温度为20-25℃的条件下,进行反应20-25h,制得中间体7,将中间体7、三聚氯氰、碳酸钾和四氢呋喃加入反应釜中,在转速为120-150r/min,温度为40-50℃的条件下,进行反应15-20h,制得中间体8,将中间体6、中间体8、碳酸钠和四氢呋喃加入反应釜中,在温度为80-90℃的条件下,进行反应8-10h,制得中间体9;
反应过程如下:
Figure BDA0003189319260000042
Figure BDA0003189319260000051
步骤A5:将中间体9和改性氮化硼分散到四氢呋喃中,加入1-羟基苯并三唑,在转速为120-150r/min,温度为25-30℃的条件下,进行反应5-8h,制得增强碳化硼,将增强碳化硼、4-羟基苯氧基邻苯二甲腈和四氢呋喃加入反应釜中,在温度为150-160℃的条件下,进行回流反应10-15min后,过滤去除滤液,将滤饼放入马弗炉中,在温度为380-400℃的条件下,保温4-6h后,冷却至室温,制得增强颗粒。
进一步的,步骤A1所述的六方氮化硼、异丙醇和去离子水的用量比为0.1g:2mL:2mL,羟基氮化硼、去离子水、γ-氨丙基三乙氧基硅烷和乙醇的用量比为0.1g:2mL:0.003g:1.5mL。
进一步的,步骤A2所述的三氯化铝、四氯化碳和硝基苯的用量比为1.5g:0.01mol:0.02mol,中间体1、铁粉、乙醇和盐酸溶液的用量比为0.01mol:3.5g:80mL:10mL,盐酸溶液的质量分数为15%,中间体2和去离子水的用量比为1g:5mL。
进一步的,步骤A3所述的中间体3、苯二酚和甲醛的用量摩尔比为1:2:4,N-甲基吡咯烷酮、甲苯、2,6-二氟苯甲腈、中间体4、2,5-二羟基苯甲酸和碳酸钾的用量比为75mL:25mL:0.1mol:0.3mL:0.7mL:30g,中间体5、四氢呋喃、硼氢化钠、去离子水和盐酸的用量比为5mmol:20mL:10mmol:100mL:1mL。
进一步的,步骤A4所述的4-氨基苯酚、碳酸钾和4-硝基邻苯二甲腈的用量摩尔比为1:1.5:1,中间体7、三聚氯氰和碳酸钾的用量摩尔比2:1:2,中间体6、中间体8和碳酸钠的用量摩尔比为1:1:1。
进一步的,步骤A5所述的中间体9、改性氮化硼和1-羟基苯并三唑的用量质量比为1.5:5:1,4-羟基苯氧基邻苯二甲腈的用量为改性氮化硼质量的8-10%。
本发明的有益效果:
本发明在制备一种高导热抗压的氮化硅基板的过程中制备了一种增强颗粒,该增强颗粒以六方氮化硼为原料进行处理,制得羟基化氮化硼,再用γ-氨丙基三乙氧基硅烷水解处理羟基化氮化硼,使得氮化硼表面接枝有大量氨基,制得改性氮化硼,将四氯化碳和硝基苯进行反应,制得中间体1,将中间体1进行还原,制得中间体2,将中间体2余去离子水进行回流,制得中间体3,将中间体3、苯二酚和甲醛进行反应,制得中间体4,将2,6-二氟苯甲腈、中间体4和2,5-二羟基苯甲酸聚合,制得中间体5,将中间体5还原使得酮基转变为羟基,制得中间体6,将4-氨基苯酚和4-硝基邻苯二甲腈进行反应,制得中间体7,将中间体7通过温度控制与三聚氯氰进行反应,制得中间体8,将中间体6和中间体8进行反应,制得中间体9,将中间体9和改性碳化硼在1-羟基苯并三唑的作用下,发生脱水缩合,制得增强碳化硼,再将增强碳化硼用4-羟基苯氧基邻苯二甲腈处理,与中间体9侧链的邻苯二甲腈结构聚合,制得增强颗粒,该增强颗粒主链含有大量的苯并噁嗪结构能够增强氮化硅基板的机械性能,同时聚苯醚腈主链和聚苯腈侧链配合,使得氮化硅基板的机械性能进一步的提升,同时增强颗粒含有超大的纵横比及片状结构,使得在氮化硅基板基材中能够形成导热通路,进而提升了氮化硅基板的导热能力。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1:
一种高导热抗压的氮化硅基板,包括如下重量份原料:75份α相氮化硅、8份β相氮化硅、3份陶瓷纤维、3份纳米氮化硅、30份增强颗粒、50份环氧树脂862和25份固化剂5010B;
该氮化硅基板由如下步骤制成:
步骤S1:将α相氮化硅、β相氮化硅、陶瓷纤维和纳米氮化硅加入球磨机中,加入乙醇进行球磨,球磨时间40h,球磨完毕后,烘干并在温度为1800℃的条件下,烧结2h,制得增强粉末;
步骤S2:将环氧树脂862、增强粉末和增强颗粒加入反应釜中,在转速为300r/min,温度为60℃的条件下,进行搅拌1.5h后,加入固化剂5010B加入模具中,在温度为80℃的条件下固化10h,制得氮化硅基板。
增强颗粒由如下步骤制成:
步骤A1:将六方氮化硼和异丙醇加入搅拌釜中,搅拌均匀后,在频率为40kHz的条件下,进行超声剥离1h后,加入去离子水,在温度为150℃的条件下,进行回流15h后,在转速为8000r/min的条件下,离心5min,制得羟基化氮化硼,将羟基氮化硼分散在去离子水中,加入γ-氨丙基三乙氧基硅烷和乙醇,在转速为120r/min,温度为70℃的条件下,进行搅拌3h后,过滤并干燥,制得改性氮化硼;
步骤A2:将三氯化铝和四氯化碳加入反应釜中,在转速为150r/min,温度为5℃的条件下,进行搅拌并加入硝基苯,在温度为30℃的条件下,进行反应2h,制得中间体1,将中间体1、锡粉和浓盐酸加入反应釜中,在温度为20℃的条件下,进行反应30min后,调节反应液pH值为8,制得中间体2,将中间体2和去离子水混合,在温度为110℃的条件下,进行回流10min,制得中间体3;
步骤A3:将中间体3、苯二酚和甲醛加入反应釜中,搅拌均匀后,升温至温度为100℃的条件下,回流反应3h,制得中间体4,将N-甲基吡咯烷酮和甲苯加入反应釜中,在转速为150r/min的条件下,进行搅拌并加入2,6-二氟苯甲腈、中间体4、2,5-二羟基苯甲酸和碳酸钾,在温度为140℃的条件下,进行反应2h,制得中间体5,将中间体5溶于四氢呋喃中,加入硼氢化钠,在转速为150r/min,温度为25℃的条件下,进行反应20min后,TLC跟踪到反应结束,加入去离子水和盐酸,继续搅拌10min,制得中间体6;
步骤A4:将4-氨基苯酚、碳酸钾、4-硝基邻苯二甲腈和四氢呋喃加入反应釜中,通入氮气进行保护,在温度为20℃的条件下,进行反应20h,制得中间体7,将中间体7、三聚氯氰、碳酸钾和四氢呋喃加入反应釜中,在转速为120r/min,温度为40℃的条件下,进行反应15h,制得中间体8,将中间体6、中间体8、碳酸钠和四氢呋喃加入反应釜中,在温度为80℃的条件下,进行反应8h,制得中间体9;
步骤A5:将中间体9和改性氮化硼分散到四氢呋喃中,加入1-羟基苯并三唑,在转速为120r/min,温度为25℃的条件下,进行反应5h,制得增强碳化硼,将增强碳化硼、4-羟基苯氧基邻苯二甲腈和四氢呋喃加入反应釜中,在温度为150℃的条件下,进行回流反应10min后,过滤去除滤液,将滤饼放入马弗炉中,在温度为380℃的条件下,保温4h后,冷却至室温,制得增强颗粒。
实施例2:
一种高导热抗压的氮化硅基板,包括如下重量份原料:80份α相氮化硅、10份β相氮化硅、5份陶瓷纤维、5份纳米氮化硅、40份增强颗粒、55份环氧树脂862和28份固化剂5010B;
该氮化硅基板由如下步骤制成:
步骤S1:将α相氮化硅、β相氮化硅、陶瓷纤维和纳米氮化硅加入球磨机中,加入乙醇进行球磨,球磨时间40h,球磨完毕后,烘干并在温度为1700℃的条件下,烧结2h,制得增强粉末;
步骤S2:将环氧树脂862、增强粉末和增强颗粒加入反应釜中,在转速为500r/min,温度为60℃的条件下,进行搅拌3h后,加入固化剂5010B加入模具中,在温度为80℃的条件下固化15h,制得氮化硅基板。
增强颗粒由如下步骤制成:
步骤A1:将六方氮化硼和异丙醇加入搅拌釜中,搅拌均匀后,在频率为40kHz的条件下,进行超声剥离1.5h后,加入去离子水,在温度为150℃的条件下,进行回流20h后,在转速为8000r/min的条件下,离心5min,制得羟基化氮化硼,将羟基氮化硼分散在去离子水中,加入γ-氨丙基三乙氧基硅烷和乙醇,在转速为150r/min,温度为70℃的条件下,进行搅拌5h后,过滤并干燥,制得改性氮化硼;
步骤A2:将三氯化铝和四氯化碳加入反应釜中,在转速为150r/min,温度为10℃的条件下,进行搅拌并加入硝基苯,在温度为30℃的条件下,进行反应3h,制得中间体1,将中间体1、锡粉和浓盐酸加入反应釜中,在温度为20℃的条件下,进行反应50min后,调节反应液pH值为8,制得中间体2,将中间体2和去离子水混合,在温度为120℃的条件下,进行回流10min,制得中间体3;
步骤A3:将中间体3、苯二酚和甲醛加入反应釜中,搅拌均匀后,升温至温度为110℃的条件下,回流反应3h,制得中间体4,将N-甲基吡咯烷酮和甲苯加入反应釜中,在转速为200r/min的条件下,进行搅拌并加入2,6-二氟苯甲腈、中间体4、2,5-二羟基苯甲酸和碳酸钾,在温度为140℃的条件下,进行反应3h,制得中间体5,将中间体5溶于四氢呋喃中,加入硼氢化钠,在转速为150r/min,温度为30℃的条件下,进行反应20min后,TLC跟踪到反应结束,加入去离子水和盐酸,继续搅拌15min,制得中间体6;
步骤A4:将4-氨基苯酚、碳酸钾、4-硝基邻苯二甲腈和四氢呋喃加入反应釜中,通入氮气进行保护,在温度为20℃的条件下,进行反应25h,制得中间体7,将中间体7、三聚氯氰、碳酸钾和四氢呋喃加入反应釜中,在转速为120r/min,温度为50℃的条件下,进行反应15h,制得中间体8,将中间体6、中间体8、碳酸钠和四氢呋喃加入反应釜中,在温度为90℃的条件下,进行反应8h,制得中间体9;
步骤A5:将中间体9和改性氮化硼分散到四氢呋喃中,加入1-羟基苯并三唑,在转速为150r/min,温度为25℃的条件下,进行反应8h,制得增强碳化硼,将增强碳化硼、4-羟基苯氧基邻苯二甲腈和四氢呋喃加入反应釜中,在温度为150℃的条件下,进行回流反应15min后,过滤去除滤液,将滤饼放入马弗炉中,在温度为380℃的条件下,保温6h后,冷却至室温,制得增强颗粒。
实施例3:
一种高导热抗压的氮化硅基板,包括如下重量份原料:85份α相氮化硅、12份β相氮化硅、8份陶瓷纤维、8份纳米氮化硅、50份增强颗粒、60份环氧树脂862和30份固化剂5010B;
该氮化硅基板由如下步骤制成:
步骤S1:将α相氮化硅、β相氮化硅、陶瓷纤维和纳米氮化硅加入球磨机中,加入乙醇进行球磨,球磨时间50h,球磨完毕后,烘干并在温度为1700℃的条件下,烧结3h,制得增强粉末;
步骤S2:将环氧树脂862、增强粉末和增强颗粒加入反应釜中,在转速为500r/min,温度为70℃的条件下,进行搅拌3h后,加入固化剂5010B加入模具中,在温度为85℃的条件下固化15h,制得氮化硅基板。
增强颗粒由如下步骤制成:
步骤A1:将六方氮化硼和异丙醇加入搅拌釜中,搅拌均匀后,在频率为50kHz的条件下,进行超声剥离1.5h后,加入去离子水,在温度为170℃的条件下,进行回流20h后,在转速为8000r/min的条件下,离心10min,制得羟基化氮化硼,将羟基氮化硼分散在去离子水中,加入γ-氨丙基三乙氧基硅烷和乙醇,在转速为150r/min,温度为75℃的条件下,进行搅拌5h后,过滤并干燥,制得改性氮化硼;
步骤A2:将三氯化铝和四氯化碳加入反应釜中,在转速为200r/min,温度为10℃的条件下,进行搅拌并加入硝基苯,在温度为40℃的条件下,进行反应3h,制得中间体1,将中间体1、锡粉和浓盐酸加入反应釜中,在温度为25℃的条件下,进行反应50min后,调节反应液pH值为9,制得中间体2,将中间体2和去离子水混合,在温度为120℃的条件下,进行回流15min,制得中间体3;
步骤A3:将中间体3、苯二酚和甲醛加入反应釜中,搅拌均匀后,升温至温度为110℃的条件下,回流反应5h,制得中间体4,将N-甲基吡咯烷酮和甲苯加入反应釜中,在转速为200r/min的条件下,进行搅拌并加入2,6-二氟苯甲腈、中间体4、2,5-二羟基苯甲酸和碳酸钾,在温度为150℃的条件下,进行反应3h,制得中间体5,将中间体5溶于四氢呋喃中,加入硼氢化钠,在转速为200r/min,温度为30℃的条件下,进行反应30min后,TLC跟踪到反应结束,加入去离子水和盐酸,继续搅拌15min,制得中间体6;
步骤A4:将4-氨基苯酚、碳酸钾、4-硝基邻苯二甲腈和四氢呋喃加入反应釜中,通入氮气进行保护,在温度为25℃的条件下,进行反应25h,制得中间体7,将中间体7、三聚氯氰、碳酸钾和四氢呋喃加入反应釜中,在转速为150r/min,温度为50℃的条件下,进行反应20h,制得中间体8,将中间体6、中间体8、碳酸钠和四氢呋喃加入反应釜中,在温度为90℃的条件下,进行反应10h,制得中间体9;
步骤A5:将中间体9和改性氮化硼分散到四氢呋喃中,加入1-羟基苯并三唑,在转速为150r/min,温度为30℃的条件下,进行反应8h,制得增强碳化硼,将增强碳化硼、4-羟基苯氧基邻苯二甲腈和四氢呋喃加入反应釜中,在温度为160℃的条件下,进行回流反应15min后,过滤去除滤液,将滤饼放入马弗炉中,在温度为400℃的条件下,保温6h后,冷却至室温,制得增强颗粒。
对比例1:
本对比例与实施例1相比未加入增强颗粒,其余步骤相同。
对比例2:
本对比例与实施例1相比未加入环氧树脂、固化剂862和增强颗粒,直接将球磨完毕后的混合料烧结成型。
对比例3:
本对比例为中国专利CN112159236A公开的氮化硅基板。
对实施例1-3和对比例1-3制得的碳化硅基板经激光闪射法测试导热率,并对机械性能进行检测,结果如下表所示;
Figure BDA0003189319260000131
由上表1可知实施例1-3制得的氮化硅基板的导热性能更好,且抗弯强度、抗压强度、断裂韧性均高于实施例1-3制得的氮化硅基板,表面本发明具有很好的导热效果和机械性能。
以上内容仅仅是对本发明的构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (7)

1.一种高导热抗压的氮化硅基板,其特征在于:包括如下重量份原料:75-85份α相氮化硅、8-12份β相氮化硅、3-8份陶瓷纤维、3-8份纳米氮化硅、30-50份增强颗粒、50-60份环氧树脂862和25-30份固化剂5010B;
所述的增强颗粒由如下步骤制成:
步骤A1:将六方氮化硼和异丙醇混合均匀后,进行超声剥离并进行水热处理,离心制得羟基化氮化硼,将羟基氮化硼分散在去离子水中,加入γ-氨丙基三乙氧基硅烷和乙醇,进行反应,制得改性氮化硼;
步骤A2:将三氯化铝和四氯化碳加入反应釜中,进行搅拌并加入硝基苯,进行反应,制得中间体1,将中间体1、锡粉和浓盐酸加入反应釜中,进行反应后,调节反应液pH值,制得中间体2,将中间体2和去离子水混合,进行回流,制得中间体3;
步骤A3:将中间体3、苯二酚和甲醛混合均匀后,回流反应,制得中间体4,将N-甲基吡咯烷酮和甲苯加入反应釜中,进行搅拌并加入2,6-二氟苯甲腈、中间体4、2,5-二羟基苯甲酸和碳酸钾,进行反应,制得中间体5,将中间体5溶于四氢呋喃中,加入硼氢化钠,TLC跟踪到反应结束,加入去离子水和盐酸,继续搅拌,制得中间体6;
步骤A4:将4-氨基苯酚、碳酸钾、4-硝基邻苯二甲腈和四氢呋喃加入反应釜中,进行反应,制得中间体7,将中间体7、三聚氯氰、碳酸钾和四氢呋喃加入反应釜中,进行反应,制得中间体8,将中间体6、中间体8、碳酸钠和四氢呋喃加入反应釜中,进行反应,制得中间体9;
步骤A5:将中间体9和改性氮化硼分散到四氢呋喃中,加入1-羟基苯并三唑,进行反应,制得增强碳化硼,将增强碳化硼、4-羟基苯氧基邻苯二甲腈和四氢呋喃加入反应釜中,回流反应后,过滤去除滤液,将滤饼放入马弗炉中,保温制得增强颗粒。
2.根据权利要求1所述的一种高导热抗压的氮化硅基板,其特征在于:步骤A1所述的六方氮化硼、异丙醇和去离子水的用量比为0.1g:2mL:2mL,羟基氮化硼、去离子水、γ-氨丙基三乙氧基硅烷和乙醇的用量比为0.1g:2mL:0.003g:1.5mL。
3.根据权利要求1所述的一种高导热抗压的氮化硅基板,其特征在于:步骤A2所述的三氯化铝、四氯化碳和硝基苯的用量比为1.5g:0.01mol:0.02mol,中间体1、铁粉、乙醇和盐酸溶液的用量比为0.01mol:3.5g:80mL:10mL,盐酸溶液的质量分数为15%,中间体2和去离子水的用量比为1g:5mL。
4.根据权利要求1所述的一种高导热抗压的氮化硅基板,其特征在于:步骤A3所述的中间体3、苯二酚和甲醛的用量摩尔比为1:2:4,N-甲基吡咯烷酮、甲苯、2,6-二氟苯甲腈、中间体4、2,5-二羟基苯甲酸和碳酸钾的用量比为75mL:25mL:0.1mol:0.3mL:0.7mL:30g,中间体5、四氢呋喃、硼氢化钠、去离子水和盐酸的用量比为5mmol:20mL:10mmol:100mL:1mL。
5.根据权利要求1所述的一种高导热抗压的氮化硅基板,其特征在于:步骤A4所述的4-氨基苯酚、碳酸钾和4-硝基邻苯二甲腈的用量摩尔比为1:1.5:1,中间体7、三聚氯氰和碳酸钾的用量摩尔比2:1:2,中间体6、中间体8和碳酸钠的用量摩尔比为1:1:1。
6.根据权利要求1所述的一种高导热抗压的氮化硅基板,其特征在于:步骤A5所述的中间体9、改性氮化硼和1-羟基苯并三唑的用量质量比为1.5:5:1,4-羟基苯氧基邻苯二甲腈的用量为改性氮化硼质量的8-10%。
7.根据权利要求1所述的一种高导热抗压的氮化硅基板的生产工艺,其特征在于:具体包括如下步骤:
步骤S1:将α相氮化硅、β相氮化硅、陶瓷纤维和纳米氮化硅加入球磨机中,加入乙醇进行球磨,球磨时间40-50h,球磨完毕后,烘干并在温度为1800-1700℃的条件下,烧结2-3h,制得增强粉末;
步骤S2:将环氧树脂862、增强粉末和增强颗粒加入反应釜中,在转速为300-500r/min,温度为60-70℃的条件下,进行搅拌1.5-3h后,加入固化剂5010B加入模具中,在温度为80-85℃的条件下固化10-15h,制得氮化硅基板。
CN202110871493.6A 2021-07-30 2021-07-30 一种高导热抗压的氮化硅基板及其生产工艺 Active CN113388232B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110871493.6A CN113388232B (zh) 2021-07-30 2021-07-30 一种高导热抗压的氮化硅基板及其生产工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110871493.6A CN113388232B (zh) 2021-07-30 2021-07-30 一种高导热抗压的氮化硅基板及其生产工艺

Publications (2)

Publication Number Publication Date
CN113388232A true CN113388232A (zh) 2021-09-14
CN113388232B CN113388232B (zh) 2022-05-06

Family

ID=77622368

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110871493.6A Active CN113388232B (zh) 2021-07-30 2021-07-30 一种高导热抗压的氮化硅基板及其生产工艺

Country Status (1)

Country Link
CN (1) CN113388232B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114316674A (zh) * 2021-12-30 2022-04-12 广州市三国新材料有限公司 一种高附着水性环保油墨及其制备方法
CN114479324A (zh) * 2022-03-08 2022-05-13 山东森荣新材料股份有限公司 一种高频覆铜板用ptfe保护膜及其制备工艺
CN115159851A (zh) * 2022-08-12 2022-10-11 江苏拜富科技股份有限公司 一种汽车用防粘玻璃釉料及其制备方法
CN115353400A (zh) * 2022-09-29 2022-11-18 四川交蓉思源科技有限公司 一种增韧氮化硅陶瓷材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110357638A (zh) * 2019-07-29 2019-10-22 浙江爱鑫电子科技有限公司 一种钛基高导热陶瓷电路基板材料及其制备方法
CN110395989A (zh) * 2019-07-25 2019-11-01 国网河南省电力公司方城县供电公司 一种氮化硅电路基板材料及其制备方法
CN111844951A (zh) * 2020-08-05 2020-10-30 福建臻璟新材料科技有限公司 一种高频导热基板及其制备方法
CN112159236A (zh) * 2020-10-19 2021-01-01 江苏贝色新材料有限公司 高导热氮化硅陶瓷基板及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110395989A (zh) * 2019-07-25 2019-11-01 国网河南省电力公司方城县供电公司 一种氮化硅电路基板材料及其制备方法
CN110357638A (zh) * 2019-07-29 2019-10-22 浙江爱鑫电子科技有限公司 一种钛基高导热陶瓷电路基板材料及其制备方法
CN111844951A (zh) * 2020-08-05 2020-10-30 福建臻璟新材料科技有限公司 一种高频导热基板及其制备方法
CN112159236A (zh) * 2020-10-19 2021-01-01 江苏贝色新材料有限公司 高导热氮化硅陶瓷基板及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114316674A (zh) * 2021-12-30 2022-04-12 广州市三国新材料有限公司 一种高附着水性环保油墨及其制备方法
CN114479324A (zh) * 2022-03-08 2022-05-13 山东森荣新材料股份有限公司 一种高频覆铜板用ptfe保护膜及其制备工艺
CN115159851A (zh) * 2022-08-12 2022-10-11 江苏拜富科技股份有限公司 一种汽车用防粘玻璃釉料及其制备方法
CN115353400A (zh) * 2022-09-29 2022-11-18 四川交蓉思源科技有限公司 一种增韧氮化硅陶瓷材料及其制备方法
CN115353400B (zh) * 2022-09-29 2023-06-06 四川交蓉思源科技有限公司 一种增韧氮化硅陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN113388232B (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
CN113388232B (zh) 一种高导热抗压的氮化硅基板及其生产工艺
CN102875755B (zh) 一种三聚氰胺甲醛树脂的增韧改性方法
CN102153718B (zh) 耐热酚醛树脂及其在超硬材料树脂磨具中的应用
CN111303519B (zh) 一种耐腐蚀保温建材表面复合膜及其制备工艺
CN110724320B (zh) 一种导热橡胶复合材料及其制备方法
CN110791055A (zh) 一种高强度导热塑料
CN114702752B (zh) 散热用石墨烯复合塑料及其制备方法
CN111825832A (zh) 一种环氧树脂固化剂及制备方法
CN113477926A (zh) 一种高性能陶瓷内衬复合钢管的生产工艺
CN102491779A (zh) 一种改善氧化铝陶瓷型芯孔隙率的方法
CN110628170B (zh) 一种基于硅烷改性的氧化石墨烯-酚醛气凝胶材料及其制备方法
CN102731098A (zh) 一种硅硼氧氮纤维/氮化硅陶瓷复合材料及其制备方法
CN114560703B (zh) 一种凝胶注模反应烧结碳化硅陶瓷工艺
CN110903804A (zh) 一种高韧性的聚氨酯胶粘剂
CN115558237A (zh) 一种环氧基绝缘导热复合材料及其制备方法
CN110804268A (zh) 一种六方氮化硼/聚乙烯醇/木质素纳米颗粒/纳米纤维素导热复合膜材料及其制备方法
CN113444251B (zh) 一种高韧性酚醛氰酸酯树脂及其制备方法
CN113184812B (zh) 一种氮化硅掺杂改性纳米氮化铝复合粉体及其制备方法
CN108424721A (zh) 一种用于计算机的散热涂料的制备方法
CN112852389A (zh) 一种5g通讯用高强度导热材料及其制备方法
CN116731458B (zh) 聚四氟乙烯密封垫片及其制备方法
CN117865705B (zh) 一种高导热碳化硅陶瓷的制备方法
CN114774046B (zh) 一种常温固化胶及其使用方法
KR101448241B1 (ko) 고순도 탄화규소 분말 제조용 조성물 및 이를 이용한 고순도 탄화규소의 제조방법
CN116285221B (zh) 一种玻璃纤维增强改性环氧树脂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant