CN110395989A - 一种氮化硅电路基板材料及其制备方法 - Google Patents

一种氮化硅电路基板材料及其制备方法 Download PDF

Info

Publication number
CN110395989A
CN110395989A CN201910674489.3A CN201910674489A CN110395989A CN 110395989 A CN110395989 A CN 110395989A CN 201910674489 A CN201910674489 A CN 201910674489A CN 110395989 A CN110395989 A CN 110395989A
Authority
CN
China
Prior art keywords
silicon nitride
parts
sintering
baseplate material
circuit baseplate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910674489.3A
Other languages
English (en)
Other versions
CN110395989B (zh
Inventor
赵世鑫
张德权
张亦驰
陈婧媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Co Fangcheng County Power Company Henan Electric Power Co
Original Assignee
Power Co Fangcheng County Power Company Henan Electric Power Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Co Fangcheng County Power Company Henan Electric Power Co filed Critical Power Co Fangcheng County Power Company Henan Electric Power Co
Priority to CN201910674489.3A priority Critical patent/CN110395989B/zh
Publication of CN110395989A publication Critical patent/CN110395989A/zh
Application granted granted Critical
Publication of CN110395989B publication Critical patent/CN110395989B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63444Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/806
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种氮化硅电路基板材料及其制备方法,属于电路基板材料技术领域,由以下重量份数的原料制成:氮化硅50‑60份、碳纤维15‑22份、分散剂5‑8份、表面活性剂6‑10份、烧结助剂10‑15份、偶联剂3‑8份、无水乙醇160‑200份。本发明以氮化硅和碳纤维为原料,并用分散剂、表面活性剂、烧结助剂、偶联剂等复合,经混合、浸泡、搅拌、喷雾造粒、压制成型、烧结、真空热处理等工艺步骤,制备氮化硅电路基板材料,表现出良好的综合性能:弯曲强度在23.2MPa以上,冲击强度在17.3KJ/cm3以上,热传导系数为95.8 W/(m*K)以上,最高达到98.9 W/(m*K),采用本发明的工艺,合格率到达96.3%以上,材料的合格率显著提高,节约了原料,降低成产成本。

Description

一种氮化硅电路基板材料及其制备方法
技术领域
本发明涉及电路基板材料技术领域,具体涉及一种氮化硅电路基板材料及其制备方法。
背景技术
随着我国高铁、航天、军工等领域的快速发展,未来对电力电子器件的需求也将越来越大。为了适应更加复杂、苛刻的应用条件,电力电子器件朝着高温、高频、低功耗以及智能化、模块化、系统化方向发展,这对整个电子器件的散热提出了严峻的挑战,而功率器件中基板的作用是吸收芯片产生的热量,并传到热沉上,实现与外界的热交换,所以制备高热导率基板材料成为研发大功率模块电子产品的关键所在。如果芯片的热量不能及时的散出去,就会影响芯片的性能,或者缩短芯片使用寿命甚至失效。因此,未来芯片发热量高、热应变大、要求环保无污染等应用状况对散热基板材料提出了更新、更高的要求。散热基板材料要求具有低成本、高电绝缘性、高稳定性、高导热性及与芯片匹配的热膨胀系数(CTE)、平整性和较高的强度等。为了满足这些要求,人们将目光投向了金属氧化物、陶瓷、聚合物、复合材料等,主要应用的散热基板材料有Al2O3 、AlN、BeO、SiC、BN、Si等。金属氧化物Al2O3,虽然具有机械强度高、耐热冲击和介质损耗小等优点,但因为具有较低的热导率且高纯氧化铝难以烧结造价昂贵,故已不能满足散热基板材料的要求;BeO热导率高,但其线膨胀系数与Si相差很大,高温时热导率急剧下降且制造时有毒,限制了其应用范围;BN虽然具有较好的综合性能,但作为基板材料价格太昂贵,目前只处于研究和推广之中;SiC具有高强度和高热导率,但其电阻和绝缘耐压值都较低,介电常数偏大,不宜作为基板材料。硅作为散热基板材料加工困难,成本高;单一金属材料具有导电及热膨胀系数失配等问题,因此以上材料很难满足散热基板材料的苛刻要求,而且材料表面容易出现裂纹、针眼等缺陷。
公开号为CN109181296A的专利文献公开了一种含有碳材料和氮化物的复合散热材料及含有该散热材料的LED灯。所述的复合散热材料包含如下重量份的原料组分:尼龙50~80份;散热剂30~60份;双马来酰亚胺1~3份;硅烷偶联剂0.5~2份;抗氧剂0.1~2份;润滑剂0.1~1份。所述的散热材料具有优异的散热性能,其可以作为大功率的LED灯的散热材料使用。该散热材料中,散热剂为碳纳米管、氮化硼、珍珠岩、氮化铝等成分,材料的制备方法是将各原料混合,挤出,造粒,检测到热传导系数最高仅有11.5 W/(m*K),散热效果不理想。
公开号为CN105384445A的专利文献公开了一种陶瓷散热材料及其在散热基板中的应用。该发明所述的陶瓷散热材料,按重量份数计,包括氮化硅粉40~55份、石英粉10~20份、三聚氰胺3~8份、羟甲基纤维素3~6份、聚乙烯醇8~12份和烧结助剂5~10份。该散热材料将各种原料球磨、胶凝、烧结等工艺步骤制得,机械性能有待提高,而且材料表面缺陷比较严重,合格率低。
发明内容
有鉴于此,本发明提供一种氮化硅电路基板材料及其制备方法,具有优异的导热性能和机械性能,散热效果好,显著提高了产品的合格率。
为解决上述技术问题,本发明采用的技术方案为:
一种氮化硅电路基板材料,由以下重量份数原料制成:氮化硅50-60份、碳纤维15-22份、分散剂5-8份、表面活性剂6-10份、烧结助剂10-15份、偶联剂3-8份、无水乙醇160-200份。
进一步的,所述分散剂为聚丙烯酸铵或木质素磺酸钙。
进一步的,所述表面活性剂为十六烷基三甲基溴化铵或十二烷基苯磺酸钠。
进一步的,所述烧结助剂为氮化硅镁、氧化镱和二氧化铈的一种或多种。
进一步的,所述烧结助剂为氮化硅镁、氧化镱和二氧化铈的混合物,重量比氮化硅镁:氧化镱:二氧化铈为3:1-2:0.8-1.5。
进一步的,所述偶联剂为3-氨基丙基三乙氧基硅烷或乙烯基三氯硅烷。
进一步的,所述的一种氮化硅电路基板材料的制备方法,包含以下步骤:
S1:将偶联剂与2/5重量份数的无水乙醇混合,常温以200r/min的转速,搅拌10min后,加入碳纤维浸泡30min,加入余下3/5重量份数的无水乙醇、氮化硅、分散剂、表面活性剂、烧结助剂,保持转速不变,继续搅拌1.5-2h,得到混合料;
S2:将步骤S1得到的混合料置于喷雾造粒后,然后置于压机中压制成型,得到坯体;
S3:将步骤S2得到的坯体置于烧结炉中,通入氩气,先进行300-400℃预热,升温20-30min,保温1-2h,然后依次低温700-800℃烧结,升温20-30min,保温2-3h、高温1400-1500℃烧结,升温60-100min,保温7-8h,最后降至室温得到烧结料;
S4:将步骤S3得到的烧结料置于真空炉中900-1000℃热处理3-4h,真空度为-0.05Mpa至-0.08Mpa,然后降至室温后清洗,抛光,即可。
氮化硅陶瓷是一种先进的工程陶瓷材料,氮化硅(Si3N4)是高共价性化合物(Si-N键中共价键成分为70%,离子键成分为30%),而且氮原子和硅原子的自扩散系数很低,致密化所必需的体积扩散及晶界扩散速度、烧结驱动力很小,只有当烧结温度接近氮化硅分散温度(大于1850℃)时,原子迁移才有足够的速度。这决定了纯氮化硅不能靠常规固相烧结达到致密化,所以通常都需采用烧结助剂,利用液相烧结原理进行致密化烧结。烧结助剂的种类繁多,包括各种氧化物、氮化物、硼化物、氟化物和其他一些盐类,从中选择合适的烧结助剂,并非易事。(参见文献:师瑞霞,尹衍升.烧结助剂对氮化硅陶瓷显微结构和性能的影响[J].现代技术陶瓷,2003,3(97):7-11.)。现有技术中,对于氮化硅陶瓷材料中,大多以氧化镁、氧化铝等物质作为烧结助剂,其散热效果并不理想,采用稀有金属氧化物作为烧结剂的研究不多,且散热效果也没有较大的改善。因此,本领域的技术人员对稀有金属氧化物结合其他物质作为烧结助剂的研究热情并不高,而没有想到采用氮化硅与稀有金属氧化物二氧化铈及氧化镱结合,制备散热性能优异的电路基板材料。例如,张景贤,段于森,江东亮,等.高导热氮化硅陶瓷的低温烧结和性能研究[J].真空电子技术,2017,5:16-19,公开了采用氧化锆、氧化镁和氧化钇作为烧结助剂,得到烧结后陶瓷热导率为72 W/(m*K),性能有待提高。因此,研究烧结温度、烧结助剂种类和含量、致密度等各因素对电路基板材料的机械性能和散热性能的影响,至关重要。
以往的工艺步骤烧结只有低温烧结和高温烧结两个工序,没有预热,也没有真空热处理,只是将坯料进行低温烧结和高温烧结,也能生产出产品,但是产品合格率低,烧结后坯料表面出现大量的缺陷,表面细小的针眼等,通过打磨处理,但是大的气孔,只能报废。例如,公开号为CN106957176A的专利文献公开了一种高导热性能氮化硅陶瓷的制备方法,以β-Si3N4粉体与外加10%-15%高纯AlN粉体和外加10%-20%助熔剂质量比例混合,采用热压烧结技术制备。在制备过程中,先将混合后的粉料放在4MPa压力下成型,然后放入石墨模具中,在10-35MPa、1650℃-1850℃、保温时间1-10h条件下热压烧结。该方法没有进行预热和真空处理,经验证,材料表面出现较多的针眼、气孔等缺陷,合格率仅为80%左右,原料利用率低,成本投入较大。本领域的技术人员,经过多次探索实验和研究,经本申请工艺改进后,烧结后坯料合格率由原来的75.5%提高到96.3%以上,而且不需要打磨,节省了大量的原料,省时省力。
本发明的有益效果是:本发明采用了氮化硅、碳纤维、分散剂、表面活性剂、烧结助剂、偶联剂和无水乙醇复合而成。氮化硅具有很高的强度,耐高温,耐热震性能、抗氧化性能、耐磨损性能、耐蚀性能好等特点,且具有很高的热导率,是优异的电路散热基板材料之一。碳纤维长度3-12mm,直径7um,具有耐高温、抗摩擦、导电、导热及耐腐蚀等特性,与氮化硅复合,提高材料的导热性能,散热效果更好。分散剂聚丙烯酸铵或木质素磺酸钙,使粒子分散更加均匀,提高体系的稳定性。表面活性剂十六烷基三甲基溴化铵和十二烷基苯磺酸钠,可显著降低表面张力,更容易生成胶团,润湿能力和增溶能力更强,与分散剂协同作用,是烧结过程中坯料内部结构更加致密,热导率和力学性能更优。
烧结助剂氮化硅镁可以降低氮化硅陶瓷的烧结温度,加快氮化硅陶瓷中的α→β的相变,获得β-Si3N4含量高的氮化硅陶瓷,结构更加稳定,致密;氧化镱有利于长柱状氮化硅晶粒的生长,从而提高氮化硅陶瓷的热导率、高温性能以及机械性能,二氧化铈与氮化硅镁和氧化镱协同作用,可促进晶粒生长,发育更为完善,提高热导率,同时防止烧结过程中固溶体的生成,提高机械强度和韧性。偶联剂3-氨基丙基三乙氧基硅烷和乙烯基三氯硅烷浸润碳纤维后,能使碳纤维在体系中展开,提高相容性,提高机械性能。
本发明将偶联剂用乙醇稀释后,浸泡碳纤维,提高碳纤维与其他组分之间的相容性,使坯料结构更加致密,提高材料的机械性能和热导率。喷雾造粒后得到的粉体粒度小,具有较好的流动性与压延性,以便在压制成型工序中可以得到具有较好强度、不易分层开裂、致密紧凑的坯体,提高致密度。烧结中,先预热,使坯体受热均匀,防止烧结过程中出现变形。低温烧结,用于排出坯体重的气体,防止坯料出现气孔、针眼等缺陷。高温烧结坯体粘结成整体,得到强度更高的氮化硅电路基板材料。最后真空热处理,再次排出烧结料中的气体,提高材料的纯度,大大降低了废品率。
本发明以氮化硅和碳纤维为原料,并用分散剂、表面活性剂、烧结助剂、偶联剂等复合,经混合、浸泡、搅拌、喷雾造粒、压制成型、烧结、真空热处理等工艺步骤,制备氮化硅电路基板材料。材料表现出良好的综合性能:具有优良的机械性能,弯曲强度在23.2MPa以上,冲击强度在17.3KJ/cm3以上,热传导系数为95.8 W/(m*K)以上,最高达到98.9 W/(m*K),导热性能优异,散热效果好,采用本发明的工艺,合格率到达96.3%以上,材料的合格率显著提高,节约了原料,降低成产成本。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
表1 实施例1-6 各原料的重量份数(份)
实施例1
本实施例提供一种氮化硅电路基板材料,由如表1所述的各原料的重量份数制成。其中,所述分散剂为聚丙烯酸铵。所述表面活性剂为十六烷基三甲基溴化铵。所述烧结助剂为氮化硅镁、氧化镱和二氧化铈的混合物,重量比氮化硅镁:氧化镱:二氧化铈为3:1:0.8。所述偶联剂为3-氨基丙基三乙氧基硅烷。
所述的一种氮化硅电路基板材料的制备方法,包含以下步骤:
S1:将偶联剂与2/5重量份数的无水乙醇混合,常温以200r/min的转速,搅拌10min后,加入碳纤维浸泡30min,加入余下3/5重量份数的无水乙醇、氮化硅、分散剂、表面活性剂、烧结助剂,保持转速不变,继续搅拌1.5h,得到混合料;
S2:将步骤S1得到的混合料置于喷雾造粒后,然后置于压机中压制成型,得到坯体;
S3:将步骤S2得到的坯体置于烧结炉中,先进行300℃预热,升温20min,保温2h,然后依次低温700℃烧结,升温20min,保温3h、高温1400℃烧结,升温60min,保温8h,最后降至室温得到烧结料;
S4:将步骤S3得到的烧结料置于真空炉中900℃热处理4h,真空度为-0.05Mpa,然后降至室温后清洗,抛光,即可。
实施例2
本实施例提供一种氮化硅电路基板材料,由如表1所述的各原料的重量份数制成。其中,所述分散剂为木质素磺酸钙。所述表面活性剂为十二烷基苯磺酸钠。所述烧结助剂为氮化硅镁、氧化镱和二氧化铈的混合物,重量比氮化硅镁:氧化镱:二氧化铈为3: 2: 1.5。所述偶联剂为乙烯基三氯硅烷。
所述的一种氮化硅电路基板材料的制备方法,包含以下步骤:
S1:将偶联剂与2/5重量份数的无水乙醇混合,常温以200r/min的转速,搅拌10min后,加入碳纤维浸泡30min,加入余下3/5重量份数的无水乙醇、氮化硅、分散剂、表面活性剂、烧结助剂,保持转速不变,继续搅拌2h,得到混合料;
S2:将步骤S1得到的混合料置于喷雾造粒后,然后置于压机中压制成型,得到坯体;
S3:将步骤S2得到的坯体置于烧结炉中,先进行350℃预热,升温25min,保温1.5h,然后依次低温750℃烧结,升温25min,保温2.5h、高温1450℃烧结,升温80min,保温7.5h,最后降至室温得到烧结料;
S4:将步骤S3得到的烧结料置于真空炉中950℃热处理3.5h,真空度为-0.06Mpa,然后降至室温后清洗,抛光,即可。
实施例3
本实施例提供一种氮化硅电路基板材料,由如表1所述的各原料的重量份数制成。其中,所述分散剂为聚丙烯酸铵。所述表面活性剂为十二烷基苯磺酸钠。所述烧结助剂为氮化硅镁、氧化镱和二氧化铈的混合物,重量比氮化硅镁:氧化镱:二氧化铈为3:1.5:1。所述偶联剂为3-氨基丙基三乙氧基硅烷。
所述的一种氮化硅电路基板材料的制备方法,包含以下步骤:
S1:将偶联剂与2/5重量份数的无水乙醇混合,常温以200r/min的转速,搅拌10min后,加入碳纤维浸泡30min,加入余下3/5重量份数的无水乙醇、氮化硅、分散剂、表面活性剂、烧结助剂,保持转速不变,继续搅拌2h,得到混合料;
S2:将步骤S1得到的混合料置于喷雾造粒后,然后置于压机中压制成型,得到坯体;
S3:将步骤S2得到的坯体置于烧结炉中,先进行400℃预热,升温30min,保温1h,然后依次低温800℃烧结,升温30min,保温2h、高温1500℃烧结,升温100min,保温7h,最后降至室温得到烧结料;
S4:将步骤S3得到的烧结料置于真空炉中1000℃热处理3h,真空度为-0.08Mpa,然后降至室温后清洗,抛光,即可。
实施例4
本实施例提供一种氮化硅电路基板材料,由如表1所述的各原料的重量份数制成。其中,所述分散剂为聚丙烯酸铵或木质素磺酸钙。所述表面活性剂为十六烷基三甲基溴化铵。所述烧结助剂为氮化硅镁、氧化镱和二氧化铈的混合物,重量比氮化硅镁:氧化镱:二氧化铈为3:1.8:1。所述偶联剂为乙烯基三氯硅烷。所述的一种氮化硅电路基板材料的制备方法同实施例1。
实施例5
本实施例提供一种氮化硅电路基板材料,由如表1所述的各原料的重量份数制成。其中,所述分散剂为聚丙烯酸铵。所述表面活性剂为十二烷基苯磺酸钠。所述烧结助剂为氮化硅镁、氧化镱和二氧化铈的混合物,重量比氮化硅镁:氧化镱:二氧化铈为3:1.8:1.2。所述偶联剂为3-氨基丙基三乙氧基硅烷。所述的一种氮化硅电路基板材料的制备方法同实施例2。
实施例6
本实施例提供一种氮化硅电路基板材料,由如表1所述的各原料的重量份数制成。其中,所述分散剂为木质素磺酸钙。所述表面活性剂为十六烷基三甲基溴化铵。所述烧结助剂为氮化硅镁、氧化镱和二氧化铈的混合物,重量比氮化硅镁:氧化镱:二氧化铈为3:1.1:0.9。所述偶联剂为3-氨基丙基三乙氧基硅烷。所述的一种氮化硅电路基板材料的制备方法同实施例3。
实施例7
本实施例提供一种氮化硅电路基板材料,原料和制备方法同实施例5,但与实施例5不同的是,本申请添加12重量份数的填料,所述填料为碳化硅和氮化铝的混合物,重量比碳化硅:氮化铝为1:1.5,制备方法中,该填料随氮化硅一起在步骤S1中加入。
实施例8
本实施例提供一种氮化硅电路基板材料,原料和制备方法同实施例6,但与实施例6不同的是,本申请添加15重量份数的填料,所述填料为碳化硅和氮化铝的混合物,重量比碳化硅:氮化铝为1:2,制备方法中,该填料随氮化硅一起在步骤S1中加入。另外,在步骤S2的烧结工序中,预热、低温烧结、高温烧结均通入氩气,氩气流量为90L/min。
本发明碳纤维长度3-12mm,直径7um。实施例7和8中加入的填料,碳化硅和氮化铝都具有较高的导热系数,表面活性剂和分散剂改善填料润湿程度,使填料在体系中分散更加均匀。实施例7和8中,填料碳化硅和氮化铝的粒度在60目-100目之间。控制填料的目数,有助于提高提高材料的导热率,散热效果更好。同样的含量,较小的填料粒度,会使热振动在传导过程中经过更多的基体-填料界面,这种界面具有较大的热阻,因此也会耗阻更多的热振动能,材料的热导率就会降低。而粒度过大,影响材料的烧机械强度,烧结过程中,产品合格率较低。实施例8烧结过程中通入氩气,降低空气中气体杂质的混入,净化晶粒,提高纯度,提高产品合格率。
对比例1
本对比例提供一种氮化硅电路基板材料,与实施例1不同的是,本对比例中不含碳纤维。
对比例2
本对比例提供一种氮化硅电路基板材料,与实施例1不同的是,本对比例中不含烧结助剂。
对比例3
本对比例提供一种氮化硅电路基板材料,与实施例1不同的是,本对比例中不含表面活性剂。
对比例4
本对比例提供一种氮化硅电路基板材料,与实施例1不同的是,本对比例中制备方法中,步骤S3中,没有进行预热,同时缺少步骤S4中的真空热处理。
测试方法
将实施例1-8及对比例1-4的氮化硅电路基板材料进行性能测试。
热传导系数按照GB/T10297-2015标准执行。材料的力学性能依据标准IPC-TM-650在INSTRON5848电子万能试验机上进行室温下的三点弯曲试验,控制模式为位移控制,加载速率2 mm/min,跨距为60 mm,所有试验数据均由电脑自动采集。每个材料厚度为3mm。合格率的检测,借助放大镜检测材料表面是否有变形、裂纹、气孔、针眼等缺陷。
表2 实施例1-8及对比例1-4氮化硅电路基板材料测试结果
结合表2,对本发明实施例1-8及对比例1-4氮化硅电路基板材料的性能进行测试,可以看出,实施例1-8氮化硅电路基板材料均表现出良好的综合性能:具有优良的机械性能,弯曲强度在23.2MPa以上,冲击强度在17.3KJ/cm3以上,热传导系数为95.8 W/(m*K)以上,最高达到98.9 W/(m*K),导热性能优异,散热效果好,采用本发明的工艺,合格率到达96.3%以上。对比例1缺少碳纤维,对比例2缺少烧结助剂,对比例3缺少表面活性剂,材料的机械性能和导热性能明显下降,合格率略微下降,说明本申请成分的改变,影响产品的外观。对比例4是以前的老工艺,没有进行预热和真空热处理,材料的性能有所下降,合格率最低,说明本申请工艺的改进,能有效改善产品质量,降低废品率。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,本领域普通技术人员对本发明的技术方案所做的其他修改或者等同替换,只要不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。

Claims (7)

1.一种氮化硅电路基板材料,其特征在于:由以下重量份数的原料制成:氮化硅50-60份、碳纤维15-22份、分散剂5-8份、表面活性剂6-10份、烧结助剂10-15份、偶联剂3-8份、无水乙醇160-200份。
2.如权利要求1所述的一种氮化硅电路基板材料,其特征在于:所述分散剂为聚丙烯酸铵或木质素磺酸钙。
3.如权利要求1所述的一种氮化硅电路基板材料,其特征在于:所述表面活性剂为十六烷基三甲基溴化铵或十二烷基苯磺酸钠。
4.如权利要求1所述的一种氮化硅电路基板材料,其特征在于:所述烧结助剂为氮化硅镁、氧化镱和二氧化铈的一种或多种。
5.如权利要求1所述的一种氮化硅电路基板材料,其特征在于:所述烧结助剂为氮化硅镁、氧化镱和二氧化铈的混合物,重量比氮化硅镁:氧化镱:二氧化铈为3:1-2:0.8-1.5。
6.如权利要求1所述的一种氮化硅电路基板材料,其特征在于:所述偶联剂为3-氨基丙基三乙氧基硅烷或乙烯基三氯硅烷。
7.如权利要求1至6任意一项所述的一种氮化硅电路基板材料的制备方法,其特征在于:包含以下步骤:
S1:将偶联剂与2/5重量份数的无水乙醇混合,常温以200r/min的转速,搅拌10min后,加入碳纤维浸泡30min,加入余下3/5重量份数的无水乙醇、氮化硅、分散剂、表面活性剂、烧结助剂,保持转速不变,继续搅拌1.5-2h,得到混合料;
S2:将步骤S1得到的混合料置于喷雾造粒后,然后置于压机中压制成型,得到坯体;
S3:将步骤S2得到的坯体置于烧结炉中,先进行300-400℃预热,升温20-30min,保温1-2h,然后依次低温700-800℃烧结,升温20-30min,保温2-3h、高温1400-1500℃烧结,升温60-100min,保温7-8h,最后降至室温得到烧结料;
S4:将步骤S3得到的烧结料置于真空炉中900-1000℃热处理3-4h,真空度为-0.05Mpa至-0.08Mpa,然后降至室温后清洗,抛光,即可。
CN201910674489.3A 2019-07-25 2019-07-25 一种氮化硅电路基板材料及其制备方法 Active CN110395989B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910674489.3A CN110395989B (zh) 2019-07-25 2019-07-25 一种氮化硅电路基板材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910674489.3A CN110395989B (zh) 2019-07-25 2019-07-25 一种氮化硅电路基板材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110395989A true CN110395989A (zh) 2019-11-01
CN110395989B CN110395989B (zh) 2022-04-05

Family

ID=68325916

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910674489.3A Active CN110395989B (zh) 2019-07-25 2019-07-25 一种氮化硅电路基板材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110395989B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113388232A (zh) * 2021-07-30 2021-09-14 上瓷宗材(上海)精密陶瓷有限公司 一种高导热抗压的氮化硅基板及其生产工艺
CN113800918A (zh) * 2021-09-18 2021-12-17 湖南工业大学 一种痕量原位碳诱导的Si3N4导热陶瓷材料及制备方法
CN114686071A (zh) * 2020-12-29 2022-07-01 洛阳尖端技术研究院 吸波涂料组合物、吸波涂料、吸波材料及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433037A (en) * 1987-04-13 1989-02-02 Onoda Cement Co Ltd Method for dispersing fiber for reinforcement
EP0328316A2 (en) * 1988-02-06 1989-08-16 Shinagawa Shirorenga Kabushiki Kaisha Zirconia refractory heating element
JPH05294733A (ja) * 1991-02-06 1993-11-09 Mitsubishi Kasei Corp 窒化珪素−炭素繊維複合体およびその製造方法
CN1131650A (zh) * 1994-10-19 1996-09-25 住友电气工业株式会社 氮化硅烧结体的制造方法
CN1597614A (zh) * 2004-05-17 2005-03-23 清华大学 高热导率、高强度氮化硅陶瓷制造方法
CN102781878A (zh) * 2010-03-09 2012-11-14 京瓷株式会社 陶瓷烧结体及使用其的电路基板、电子装置以及热电转换组件
CN104803696A (zh) * 2015-04-13 2015-07-29 安徽省含山瓷业股份有限公司 一种高强碳纤维增强氮化硅陶瓷基复合材料及其制备方法
CN105174969A (zh) * 2015-09-23 2015-12-23 杨洋 一种高硬度氮化硅陶瓷及其制备方法
CN106518095A (zh) * 2016-09-29 2017-03-22 中国科学院上海硅酸盐研究所 一种表面活性剂疏水改性分散剂制备泡沫陶瓷的方法
CN109987944A (zh) * 2019-03-06 2019-07-09 清华大学 一种高导热氮化硅陶瓷基板及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433037A (en) * 1987-04-13 1989-02-02 Onoda Cement Co Ltd Method for dispersing fiber for reinforcement
EP0328316A2 (en) * 1988-02-06 1989-08-16 Shinagawa Shirorenga Kabushiki Kaisha Zirconia refractory heating element
JPH05294733A (ja) * 1991-02-06 1993-11-09 Mitsubishi Kasei Corp 窒化珪素−炭素繊維複合体およびその製造方法
CN1131650A (zh) * 1994-10-19 1996-09-25 住友电气工业株式会社 氮化硅烧结体的制造方法
CN1597614A (zh) * 2004-05-17 2005-03-23 清华大学 高热导率、高强度氮化硅陶瓷制造方法
CN102781878A (zh) * 2010-03-09 2012-11-14 京瓷株式会社 陶瓷烧结体及使用其的电路基板、电子装置以及热电转换组件
CN104803696A (zh) * 2015-04-13 2015-07-29 安徽省含山瓷业股份有限公司 一种高强碳纤维增强氮化硅陶瓷基复合材料及其制备方法
CN105174969A (zh) * 2015-09-23 2015-12-23 杨洋 一种高硬度氮化硅陶瓷及其制备方法
CN106518095A (zh) * 2016-09-29 2017-03-22 中国科学院上海硅酸盐研究所 一种表面活性剂疏水改性分散剂制备泡沫陶瓷的方法
CN109987944A (zh) * 2019-03-06 2019-07-09 清华大学 一种高导热氮化硅陶瓷基板及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
唐婕等: "《环保陶瓷生产与应用》", 31 January 2018, 中国建材工业出版社 *
张长森: "《粉体技术及设备》", 31 January 2007, 华东理工大学出版社 *
王荣国等: "《复合材料概论》", 31 January 2015, 哈尔滨工业大学出版社 *
裴立宅: "《高技术陶瓷材料》", 31 March 2015, 合肥工业大学出版社 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114686071A (zh) * 2020-12-29 2022-07-01 洛阳尖端技术研究院 吸波涂料组合物、吸波涂料、吸波材料及其制备方法
CN114686071B (zh) * 2020-12-29 2023-12-29 洛阳尖端技术研究院 吸波涂料组合物、吸波涂料、吸波材料及其制备方法
CN113388232A (zh) * 2021-07-30 2021-09-14 上瓷宗材(上海)精密陶瓷有限公司 一种高导热抗压的氮化硅基板及其生产工艺
CN113388232B (zh) * 2021-07-30 2022-05-06 上瓷宗材(上海)精密陶瓷有限公司 一种高导热抗压的氮化硅基板及其生产工艺
CN113800918A (zh) * 2021-09-18 2021-12-17 湖南工业大学 一种痕量原位碳诱导的Si3N4导热陶瓷材料及制备方法
CN113800918B (zh) * 2021-09-18 2022-12-09 湖南工业大学 一种痕量原位碳诱导的Si3N4导热陶瓷材料及制备方法

Also Published As

Publication number Publication date
CN110395989B (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
CN110395989A (zh) 一种氮化硅电路基板材料及其制备方法
WO2016173528A1 (zh) 一种用于大功率光源的发光陶瓷及发光装置
CN110483060B (zh) 一种高热导率氮化硅陶瓷及其制备方法
CN109467453A (zh) 一种具有特征微观结构的荧光陶瓷及其制备方法和应用
CN100432016C (zh) 一种制备氮化铝/氮化硼复相陶瓷的方法
CN105481345B (zh) 一种低温烧结陶瓷材料及制备方法
CN105836717B (zh) 氮化铝电子陶瓷粉末的制备方法
CN106278283A (zh) 一种分步烧结制备氮化硼陶瓷材料的方法
CN110423922A (zh) 一种用于电子封装的硅铝合金及其制备方法和应用
CN110577199A (zh) 一种氮化物粉体除碳的方法
CN108675797B (zh) 氮化硅基复合陶瓷材料及其微波烧结制备方法
CN109627014A (zh) 一种高强度、高导热性的Si3N4陶瓷材料及其制备方法
CN1081178C (zh) 高热导氮化铝陶瓷的制备方法
CN113354418B (zh) 一种真空热压烧结法制备的高性能氮化铝陶瓷基板及制备方法
CN112028636A (zh) 一种高导热氮化铝/石墨烯复合陶瓷器件的制备方法
CN108689715A (zh) 一种氮化铝粉体及其制备方法
CN110204343A (zh) 一种高强度氮化硅陶瓷的低温制备方法
CN106380208B (zh) 一种led用高导热率氮化硅-氮化铝复相陶瓷基板及其制备方法
CN115724664B (zh) 一种两步烧结快速制备MCMBs/SiC复合材料的方法
CN108558405B (zh) 一种高致密度高纯度碳化硅衬底材料的制备方法
CN111170743A (zh) 一种碳化硅红外辐射陶瓷材料及其制备方法
WO2023024273A1 (zh) 一种非氧化物Y3Si2C2烧结助剂、高性能氮化硅陶瓷基板及其制备方法
CN108996902B (zh) 一种低温共烧陶瓷材料及其制备方法
CN113582732A (zh) 一种提高金属化与陶瓷结合力的膏剂配方
CN112573903B (zh) 一种氧化铝复合基板材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant