CN113314701A - 一种碳包覆的阳离子无序正极材料及制备方法和锂离子电池 - Google Patents

一种碳包覆的阳离子无序正极材料及制备方法和锂离子电池 Download PDF

Info

Publication number
CN113314701A
CN113314701A CN202110555374.XA CN202110555374A CN113314701A CN 113314701 A CN113314701 A CN 113314701A CN 202110555374 A CN202110555374 A CN 202110555374A CN 113314701 A CN113314701 A CN 113314701A
Authority
CN
China
Prior art keywords
positive electrode
carbon
teo
electrode material
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110555374.XA
Other languages
English (en)
Inventor
李盼盼
宋辉
吕迎春
郭炳焜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN202110555374.XA priority Critical patent/CN113314701A/zh
Publication of CN113314701A publication Critical patent/CN113314701A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/008Salts of oxyacids of selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明提供了一种碳包覆的阳离子无序正极材料,属于锂离子电池材料领域,其特征在于,其结构通式为Li2Ni2TeO6/C,其中Li2Ni2TeO6是一种新型的阳离子无序正极材料,Li/Ni大量混排,循环时结构稳定,无相变碳源为有机碳化合物;还提供了上述碳包覆的阳离子无序正极材料的制备方法,该制备方法包括煅烧法及化学气相沉积法,在惰性气氛中,通过高温煅烧得到碳包覆的Li2Ni2TeO6正极材料,通过碳包覆在Li2Ni2TeO6正极材料的表面,能够极大地减少正极材料与电解液的接触,减少副反应,同时碳也能够提高材料电子电导率,降低极化,提高电化学性能。

Description

一种碳包覆的阳离子无序正极材料及制备方法和锂离子电池
技术领域
本发明涉及锂离子电池材料技术领域,具体涉及一种碳包覆的阳离子无序正极材料及制备方法和锂离子电池。
背景技术
二次锂离子电池极大地促进了便携式电子产品领域的发展,并被作为未来电动汽车、智能电网等大规模储能的首选技术。为了更好地满足大规模应用,锂离子电池需要更高的能量密度。研究具有更高容量、更稳定循环性能的锂离子电池具有重要意义。
锂离子电池属于二次电池,正负极为能可逆的嵌入与脱出锂离子的化合物。正极材料是锂离子电池中极其关键的一部分,是锂离子电池高能量密度的决定性因素。传统正极材料主要包括层状、尖晶石型和橄榄石型三大类。除此之外,Ceder课题组在2014年研究发现将阳离子无序氧化物Li1.211Mo0.467Cr0.3O2(LMCO)作为锂离子电池正极材料,具有比层状氧化物正极材料更高的容量与稳定性。目前大家研究了许多种阳离子无序正极材料,都获得了较高容量及良好的循环稳定性。Li2Ni2TeO6氧化物是一种正交阳离子无序结构的氧化物,Te有序排列在8a Wykoff位点,而Li/Ni原子共同占据8b和16g位点产生大量阳离子混排。而且Li2Ni2TeO6中Li/Ni比为1,理论容量可以达到151mAh/g。研究Li2Ni2TeO6氧化物作为正极材料可以拓展阳离子无序岩盐正极的设计空间,开发新型锂离子电池正极材料。
研究过程中发现Li2Ni2TeO6作为正极并没有完全发挥其容量,且电压和容量衰减极快。因此,如何对该材料进行处理,以提高Li2Ni2TeO6材料的导电性能和电化学性能,是亟待解决的问题。
发明内容
本发明所要解决的技术问题是针对现有技术的不足,提供一种碳包覆的阳离子无序正极材料及制备方法和锂离子电池,旨在减少正极材料与电解液之间的接触,提高正极材料的导电性能和电化学性能。
本发明解决上述技术问题的技术方案如下:
一种碳包覆的阳离子无序正极材料,其特征在于,其结构通式为Li2Ni2TeO6/C,其中碳源为有机碳化合物;所述阳离子无序正极材料的结构通式为Li2Ni2TeO6,晶体结构为阳离子无序正交结构,Li/Ni大量混排,循环时结构稳定无相变。
进一步的,所述有机碳化合物采用甲苯、蔗糖或葡萄糖。
及一种如上所述的碳包覆的阳离子无序正极材料的制备方法,其特征在于,包括如下步骤:
S1、制备Li2Ni2TeO6正极材料基体:按Li:Ni:Te=2:2:1,称取对应量的Li2CO3、NiO、TeO2研磨混合均匀后,在马弗炉中进行预烧,然后在马弗炉中煅烧;或者不进行预烧,直接进行煅烧;冷却,研磨后得到Li2Ni2TeO6正极材料基体;
S2、制备碳包覆的Li2Ni2TeO6正极材料:将步骤S1得到的Li2Ni2TeO6正极材料基体及碳源按比例称量,在惰性气氛下管式炉中进行煅烧,煅烧过程中,有机碳化合物形成C均匀地包覆在Li2Ni2TeO6正极材料表面,即得结构通式为Li2Ni2TeO6/C的碳包覆的Li2Ni2TeO6正极材料。
进一步的,所述步骤S1中的预烧温度为300~400℃,预烧时间5~10h。
进一步的,所述步骤S1中的煅烧温度为800~900℃,煅烧时间24~36h。
进一步的,所述步骤S2中的煅烧温度600~800℃,煅烧时间0.5~3h。
进一步的,所述步骤S2中的惰性气氛为氮气气氛或氩气气氛。
以及一种锂离子电池,包括正极、负极、隔膜及电解液,其特征在于,正极中的正极材料为如上所述的碳包覆的阳离子无序正极材料Li2Ni2TeO6/C。
进一步的,锂离子电池的制备方法为:将碳包覆的Li2Ni2TeO6正极材料制成正极片,与负极片、隔膜、电解液一起,按照负极外壳-弹簧片-垫片-负极片-电解液-隔膜-正极片-正极外壳的顺序进行组装制得锂离子电池。
本发明的有益效果是:
1.本发明提供了一种新型锂离子电池正极材料阳离子无序岩盐结构的Li2Ni2TeO6,这种材料具有稳定的晶体结构,并且可在室温下脱嵌锂,可通过固相烧结法获得,合成工艺简单;本发明提出的Li2Ni2TeO6/C增加了锂离子电池正极材料的种类,为高容量正极材料的研发提供了新的思路;
2.本发明使用易获得的有机碳源来制备碳包覆的Li2Ni2TeO6正极材料,所采用的有机碳源在惰性气氛中高温处理形成的碳能够均匀地包覆在Li2Ni2TeO6材料表面,能很好的减小正极材料与电解液的接触,减少副反应,同时碳也能够提高材料电子电导率,降低极化,提高电化学性能;
3.本发明提供的制备方法,不需要使用球磨方法来混合有机碳源和正极材料,减少能耗,合成方法简单方便。
附图说明
图1是本发明对比例2制得的D2样品的SEM图;
图2是本发明对比例2制得的D2样品的EDS图;
图3是本发明实施例2制得的S2样品的EDS图;
图4是本发明实施例1和对比例1的0.05C首周充放电曲线图;
图5是本发明实施例2和对比例2的0.05C首周充放电曲线图。
具体实施方式
下面对本发明的原理和特征进行描述,所举实施例只用于解释本发明,并非用于限定本发明的范围。
实施例1
本实施例碳包覆的Li2Ni2TeO6正极材料的制备方法,具体包括以下步骤:
S1、制备Li2Ni2TeO6正极材料基体:按Li:Ni:Te=2:2:1,称取对应量的Li2CO3、NiO,TeO2研磨混合均匀后,直接在马弗炉中煅烧,煅烧温度900℃,煅烧时间24h;冷却,研磨后得到Li2Ni2TeO6正极材料基体;
S2、制备碳包覆的Li2Ni2TeO6正极材料:按Li2Ni2TeO6正极材料基体:碳源的质量比为4:1,将步骤S1得到的Li2Ni2TeO6正极基体及蔗糖按比例称量,在氩气气氛管式炉中进行煅烧,煅烧温度900℃,煅烧时间2h,得到碳包覆的Li2Ni2TeO6正极材料,记为样品S1。
实施例2
本实施例碳包覆的阳离子无序正极材料的制备方法,具体包括以下步骤:
S1、制备Li2Ni2TeO6正极材料基体:按Li:Ni:Te=2:2:1,称取对应量的Li2CO3、NiO,TeO2研磨混合后,在马弗炉中进行预烧以使原材料充分混合均匀,避免最终产物中产生NiO等杂质,预烧温度400℃,预烧时间8h;然后在马弗炉中煅烧,煅烧温度900℃,煅烧时间32h;冷却,研磨后得到Li2Ni2TeO6正极材料基体;
S2、制备碳包覆的Li2Ni2TeO6正极材料:将步骤S1得到的Li2Ni2TeO6正极材料基体置于氧化铝坩埚,以甲苯为碳源,采用化学气相沉积法,在氩气气氛下管式炉中进行煅烧,煅烧温度800℃,煅烧时间0.5h,得到碳包覆的Li2Ni2TeO6正极材料,记为样品S2。
对比例1
本对比例与实施例1的区别在于,直接在步骤S1停止,得到没有进行碳包覆的Li2Ni2TeO6对照样品,记为D1。
对比例2
本对比例与实施例2的区别在于,步骤S1停止,得到没有进行碳包覆的Li2Ni2TeO6对照样品,记为D2。
对上述Li2Ni2TeO6正极材料样品S1~S2、D1~D2进行如下分析:
1)对样品D1~D2进行粉末X射线衍射,其结果证明合成的材料是阳离子无序正交相;
2)对样品D2使用扫描电子显微镜(SEM)测试,其结果如附图1所示,从图1可以看到,得到的样品表面比较光滑,颗粒尺寸在微米级;
3)对样品S2、D2使用能量分散谱仪(EDS)测试,其结果如附图2及图3所示,从图可以看到,包覆后碳元素在材料表面均匀分布;
4)将上述正极材料制成正极片,组装得到CR2032扣式电池。具体操作为:将碳包覆的Li2Ni2TeO6正极材料研磨制成浆料涂布在铝箔上制备成正极片;在真空手套箱中组装CR2032扣式电池。
5)对电池样品在25℃,电压范围1.5~4.8V,0.05C进行充放电性能测试,结果如图4、图5所示;
充放电性能测试结果如下表1所示:
表1电池样品的0.05C充放电容量
S1 S2 D1 D2
首周充电容量(mAh/g) 55.0 59.5 45.9 46.7
首周放电容量(mAh/g) 63.8 67.2 45.8 46.2
首周库伦效率 116.11% 112.86% 99.65% 98.97%
从上表1的结果,结合附图4~5可以得知:本发明碳包覆的Li2Ni2TeO6正极材料的首周充放电容量要优于其对应的未进行碳包覆改性的Li2Ni2TeO6正极材料。说明碳包覆改性能较大程度地提高离子电池的放电容量及循环性能,提高其电化学性能。
本发明上述实施例碳包覆的阳离子无序正极Li2Ni2TeO6及其制备方法,是一种新型的阳离子无序正极材料,结构稳定,并且可室温脱嵌锂。本发明上述实施例碳包覆的阳离子无序正极Li2Ni2TeO6采用煅烧方法制备,不需要复杂的手段,具有工艺简单,成本低的优势。本发明上述实施例制备的碳包覆的阳离子无序正极Li2Ni2TeO6拓展了正极材料的设计空间,在动力电池和储能电池领域具有广泛的应用前景。
以上所述为本发明的具体实施方式,但不能对本发明构成任何限制,因此需特别指出,凡是以本发明为基础,做得任何修改与改进均落在本发明保护范围之内。

Claims (10)

1.一种碳包覆的阳离子无序正极材料,其特征在于,其结构通式为Li2Ni2TeO6/C,其中碳源为有机碳化合物;所述阳离子无序正极材料的结构通式为Li2Ni2TeO6,晶体结构为阳离子无序正交结构。
2.根据权利要求1所述的碳包覆的阳离子无序正极材料,其特征在于,所述有机碳化合物采用甲苯、蔗糖或葡萄糖。
3.一种如权利要求1所述的碳包覆的阳离子无序正极材料的制备方法,其特征在于,包括如下步骤:
S1、制备Li2Ni2TeO6正极材料基体:按Li:Ni:Te=2:2:1,称取对应量的Li2CO3、NiO、TeO2研磨混合均匀后,在马弗炉中进行预烧,然后在马弗炉中煅烧;或者不预烧直接煅烧;冷却,研磨后得到Li2Ni2TeO6正极材料基体;
S2、制备碳包覆的Li2Ni2TeO6正极材料:将步骤S1得到的Li2Ni2TeO6正极材料基体及碳源按比例称量,在惰性气氛下管式炉中进行煅烧,煅烧过程中,有机碳化合物形成C均匀地包覆在Li2Ni2TeO6正极材料表面,即得结构通式为Li2Ni2TeO6/C的碳包覆的Li2Ni2TeO6正极材料。
4.根据权利要求3所述的碳包覆的阳离子无序正极材料的制备方法,其特征在于,所述步骤S1中的煅烧温度为800~900℃,煅烧时间24~36h。
5.根据权利要求3所述的碳包覆的阳离子无序正极材料的制备方法,其特征在于,所述步骤S2中的煅烧温度600~800℃,煅烧时间0.5~3h。
6.根据权利要求3所述的碳包覆的阳离子无序正极材料的制备方法,其特征在于,所述步骤S2中研磨混合均匀后、在煅烧之前先进行预烧。
7.根据权利要求6所述的碳包覆的阳离子无序正极材料的制备方法,其特征在于,所述预烧温度为300~400℃,预烧时间5~10h。
8.根据权利要求3所述的碳包覆的阳离子无序正极材料的制备方法,其特征在于,所述步骤S2中的惰性气氛为氮气气氛或氩气气氛。
9.一种锂离子电池,包括正极、负极、隔膜及电解液,其特征在于,正极中的正极材料为权利要求1-8任一项所述的碳包覆的阳离子无序正极材料Li2Ni2TeO6/C。
10.根据权利要求9所述的锂离子电池,其特征在于,其制备方法为:将碳包覆的Li2Ni2TeO6正极材料制成正极片,与负极片、隔膜、电解液一起,按照负极外壳-弹簧片-垫片-负极片-电解液-隔膜-正极片-正极外壳的顺序进行组装制得锂离子电池。
CN202110555374.XA 2021-05-21 2021-05-21 一种碳包覆的阳离子无序正极材料及制备方法和锂离子电池 Pending CN113314701A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110555374.XA CN113314701A (zh) 2021-05-21 2021-05-21 一种碳包覆的阳离子无序正极材料及制备方法和锂离子电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110555374.XA CN113314701A (zh) 2021-05-21 2021-05-21 一种碳包覆的阳离子无序正极材料及制备方法和锂离子电池

Publications (1)

Publication Number Publication Date
CN113314701A true CN113314701A (zh) 2021-08-27

Family

ID=77374063

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110555374.XA Pending CN113314701A (zh) 2021-05-21 2021-05-21 一种碳包覆的阳离子无序正极材料及制备方法和锂离子电池

Country Status (1)

Country Link
CN (1) CN113314701A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101237039A (zh) * 2008-01-08 2008-08-06 上海大学 化学气相沉积辅助固相法合成LiFePO4/C材料的方法
CN101572301A (zh) * 2008-10-30 2009-11-04 喻维杰 一种制备磷酸亚铁锂材料包覆碳的方法
CN104685679A (zh) * 2012-10-02 2015-06-03 麻省理工学院 高容量正极活性材料
CN104900865A (zh) * 2015-04-10 2015-09-09 合肥国轩高科动力能源股份公司 一种高实用性镍锰酸锂及其制备方法
CN105742610A (zh) * 2016-05-04 2016-07-06 合肥国轩高科动力能源有限公司 一种碳包覆磷酸铁锰锂薄膜型正极材料的制备方法
CN109980222A (zh) * 2012-03-23 2019-07-05 法拉典有限公司 金属酸盐电极
CN110400921A (zh) * 2019-07-17 2019-11-01 湖北锂诺新能源科技有限公司 一种碳包覆锑掺杂岩盐结构氟氧钒锂正极材料的制备方法
CN111224095A (zh) * 2018-11-23 2020-06-02 三星电子株式会社 复合正极活性材料、其制备方法、包括复合正极活性材料的正极及包括正极的锂电池
CN111725488A (zh) * 2019-03-21 2020-09-29 湘潭大学 一种纳米阳离子无序结构正极材料及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101237039A (zh) * 2008-01-08 2008-08-06 上海大学 化学气相沉积辅助固相法合成LiFePO4/C材料的方法
CN101572301A (zh) * 2008-10-30 2009-11-04 喻维杰 一种制备磷酸亚铁锂材料包覆碳的方法
CN109980222A (zh) * 2012-03-23 2019-07-05 法拉典有限公司 金属酸盐电极
CN104685679A (zh) * 2012-10-02 2015-06-03 麻省理工学院 高容量正极活性材料
CN104900865A (zh) * 2015-04-10 2015-09-09 合肥国轩高科动力能源股份公司 一种高实用性镍锰酸锂及其制备方法
CN105742610A (zh) * 2016-05-04 2016-07-06 合肥国轩高科动力能源有限公司 一种碳包覆磷酸铁锰锂薄膜型正极材料的制备方法
CN111224095A (zh) * 2018-11-23 2020-06-02 三星电子株式会社 复合正极活性材料、其制备方法、包括复合正极活性材料的正极及包括正极的锂电池
CN111725488A (zh) * 2019-03-21 2020-09-29 湘潭大学 一种纳米阳离子无序结构正极材料及其制备方法
CN110400921A (zh) * 2019-07-17 2019-11-01 湖北锂诺新能源科技有限公司 一种碳包覆锑掺杂岩盐结构氟氧钒锂正极材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NICHOLAS S. GRUNDISH ET AL.: "Electrochemical Properties of Three Li2Ni2TeO6 Structural Polymorphs", 《CHEM. MATER.》 *
YUNJIAN LIU ET AL.: "Carbon-coated cation-disordered rocksalt-type transition metal oxide composites for high energy Li-ion batteries", 《CERAMICS INTERNATIONAL》 *

Similar Documents

Publication Publication Date Title
Zhu et al. Microorganism-moulded pomegranate-like Na 3 V 2 (PO 4) 3/C nanocomposite for advanced sodium-ion batteries
CN110289416B (zh) 一种钠离子电池负极材料铋钼双金属硫化物的制备方法
Zhu et al. A simple synthesis of two-dimensional ultrathin nickel cobaltite nanosheets for electrochemical lithium storage
CN110931784B (zh) 铁基钠离子电池正极材料及其制备方法
CN110931781A (zh) 生物质碳/聚氟磷酸铁钠复合材料的制备方法及其应用
CN110993903A (zh) 一种钽改性高镍正极材料及其制备方法与应用
Nanthagopal et al. An encapsulation of nitrogen and sulphur dual-doped carbon over Li [Ni0. 8Co0. 1Mn0. 1] O2 for lithium-ion battery applications
CN112290013B (zh) 高容量的钠离子电池p2型正极材料以及通过抑制钠/空位有序提升比容量的方法
CN108002356B (zh) δ-VOPO4超薄纳米片及其可控制备方法和应用
Li et al. Preparation and electrochemical properties of Al‐F co‐doped spinel LiMn2O4 single‐crystal material for lithium‐ion battery
Zhao et al. Self-assembled hierarchical porous NiMn 2 O 4 microspheres as high performance Li-ion battery anodes
CN110444741A (zh) 石墨烯修饰磷酸铁锂量子点复合材料及其制备方法和用途
CN115172742A (zh) 预碱金属化磷酸钒钠,其制备方法以及钠离子电池
CN114388772A (zh) 钼钒钛铌复合氧化物负极材料及其制备方法、锂离子电池
CN113540410A (zh) 一种快速高温热冲击法合成磷酸铁锂正极材料的制备方法及应用
CN110931733B (zh) 一种表面锰掺杂及Li-Mn-PO4包覆高镍正极材料及其制备方法和应用
CN116230917B (zh) 一种海洋环境用高熵富锂层状正极材料及其制备方法
CN111063871B (zh) 一种钠离子全电池及其制备方法
KR20110004500A (ko) 고상합성법에 따른 리튬이차전지용 양극 활물질 LiFePO4 분말의 제조방법
CN101286562A (zh) 一种锂离子电池正极材料的制备方法
CN111430703A (zh) 用于锂离子电池的富锂锰基正极材料及其制备方法、正极片、锂离子电池和电动汽车
CN106611846B (zh) 锂离子电池负极α-LiFeO2/多孔碳复合材料的合成方法
Xia et al. Submicron single-crystal structure for enhanced structural stability of LiNi0. 8Mn0. 2O2 Ni-rich cobalt-free cathode materials
CN113314701A (zh) 一种碳包覆的阳离子无序正极材料及制备方法和锂离子电池
CN114906882A (zh) 一种铌基双金属氧化物负极材料的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210827

RJ01 Rejection of invention patent application after publication