CN113299869B - 一种用于抑制锌离子电池/电容器中锌枝晶生长的方法 - Google Patents

一种用于抑制锌离子电池/电容器中锌枝晶生长的方法 Download PDF

Info

Publication number
CN113299869B
CN113299869B CN202110505959.0A CN202110505959A CN113299869B CN 113299869 B CN113299869 B CN 113299869B CN 202110505959 A CN202110505959 A CN 202110505959A CN 113299869 B CN113299869 B CN 113299869B
Authority
CN
China
Prior art keywords
zinc
ion battery
inhibiting
sodium citrate
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110505959.0A
Other languages
English (en)
Other versions
CN113299869A (zh
Inventor
韩高义
王娜
常云珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi University
Original Assignee
Shanxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi University filed Critical Shanxi University
Priority to CN202110505959.0A priority Critical patent/CN113299869B/zh
Publication of CN113299869A publication Critical patent/CN113299869A/zh
Application granted granted Critical
Publication of CN113299869B publication Critical patent/CN113299869B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种用于抑制锌离子电池/电容器中锌枝晶生长的方法,属于电化学镀锌和锌离子电池/电容器技术领域。本发明通过以导电柔性基底为工作电极,锌片用作对电极和参比电极,配置硫酸锌和柠檬酸钠的混合溶液作为电沉积液,在‑1.8V的电压下沉积锌晶种,使导电柔性基底表面沉积一层锌晶种,随后在‑0.8V的电压下继续沉积,得到柔性的锌阳极;以硫酸锌和柠檬酸钠的混合溶液与聚乙烯醇混匀并搅拌至凝胶呈无色透明状,得到固态凝胶电解质;将锌阳极、阴极材料和固态凝胶电解质组装成无枝晶生长的柔性锌离子电池/电容器。本发明电解液中的柠檬酸钠可有效减少锌离子周围的水分子,并减小去锌离子溶剂化能,从而可达到抑制锌枝晶生长的目的。

Description

一种用于抑制锌离子电池/电容器中锌枝晶生长的方法
技术领域
本发明涉及电化学镀锌和锌离子电池/电容器技术领域,具体涉及一种含有抑制锌枝晶生长电解液的一维柔性锌离子电池的制备方法。
背景技术
随着可穿戴电子设备的快速发展,开发一种柔性的且无锌枝晶生长的锌离子电池/电容器已经成为了一个重要的研究方向。在重复充放电过程中,锌枝晶的生长会破坏器件的电化学稳定性能。通常,通过使用高导电性或亲锌基底制备锌电极、对锌电极表面进行修饰和使用高浓度电极液或在电解液中加入添加剂等方法都可有效抑制锌枝晶的生长。例如,通过使用三维碳纳米框架、金属铜或锡等基底制备锌阳极,在锌阳极表面涂覆碳酸钙等绝缘层或石墨烯和碳纳米管等高导电层,以及使用水包油式的高浓度电解液或在电解液中加入尿素等添加剂等方法都可有效抑制锌枝晶的生长。(Nat.Commun.,2015,6,8058;Angew.Chem.Int.Ed.2019,58,15841-15847.;Adv.Mater.Interfaces 2018,5,1800848;ACS Appl.Mater.Interfaces 2018,10,25446-25453;Adv.Energy Mater.2019,9,1901469;Nat.Mater.2018,17,543-549;ACS Appl.Mater.Interfaces 2017,9,9681-9687.)。在上述抑制锌枝晶生长的方法中,在电解液中加入添加剂更加适用于一维柔性锌离子电池/电容器的制备,且操作更为简单,因此,通过对锌离子电池/电容器的电解液进行调控成为抑制锌枝晶生长的一个研究热点。
发明内容
本发明的目的在于解决锌离子电池/电容器中锌枝晶生长的问题,提供一种工艺简单,成本低,更适用于抑制一维锌离子电池/电容器中锌枝晶生长的方法。
为了达到上述目的,本发明采用了下列技术方案:
一种用于抑制锌离子电池/电容器中锌枝晶生长的方法,包括以下步骤:
步骤1,以导电柔性基底为工作电极,锌片用作对电极和参比电极,配置硫酸锌和柠檬酸钠的混合溶液作为电沉积液,在-1.8V的电压下沉积锌晶种,使导电柔性基底表面沉积一层锌晶种,随后在-0.8V的电压下继续沉积,得到柔性的锌阳极;
步骤2,以硫酸锌和柠檬酸钠的混合溶液与聚乙烯醇混匀并搅拌至凝胶呈无色透明状,得到固态凝胶电解质;
步骤3,将锌阳极、阴极材料和固态凝胶电解质组装成无枝晶生长的柔性锌离子电池/电容器。
进一步,所述步骤1中导电柔性基底为碳纤维、碳布、钢丝或碳纤维布中的任意一种。
进一步,所述步骤1)中在-1.8V的电压下沉积锌晶种的时间为20-200s。
进一步,所述步骤1)中在-0.8V的电压下沉积金属锌的时间为100s-1800s。
进一步,所述步骤1)中硫酸锌的浓度为1-3mol/L,柠檬酸钠的浓度为0.05-0.2mol/L。
进一步,所述步骤2)中硫酸锌的浓度为1-3mol/L,柠檬酸钠的浓度为0.05-0.2mol/L。
进一步,所述步骤2)中搅拌温度为80℃。
进一步,所述硫酸锌和柠檬酸钠的混合溶液与聚乙烯醇的用量比为10mL:1g。
进一步,所述步骤3)中阴极材料为用作锌离子电池/电容器的阴极材料。
进一步,所述步骤3)中阴极材料为聚吡咯、聚苯胺、石墨烯、活性炭中的任意一种。
与现有技术相比本发明具有以下优点:
1、本发明中,电解液中的柠檬酸钠可有效减少锌离子周围的水分子,并减小去锌离子溶剂化能,从而可达到抑制锌枝晶生长的目的。
2、本发明中在制备锌阳极时,沉积液中加入柠檬酸钠可促进锌阳极形成由颗粒状组成的岩石状结构,使得锌阳极的表面分布更加均匀。
3、本发明中在制备锌阳极时,现在-1.8V点位下使柔性基底表面生成锌晶种,再在-0.8V的电位下沉积金属锌,可使得锌金属沉积更加均匀。
附图说明
图1为本发明实施例1中制备的柔性锌阳极在不同放大倍数的扫描电子显微镜图。
图2为本发明实施例1中制备的固态柔性锌离子电池在扫描速率为5mV/s的循环伏安曲线。该器件的循环伏安曲线呈现出明显的氧化还原峰。
图3为本发明实施例1中制备的固态柔性锌离子电池在电流密度为0.16A/g的放电曲线。质量电容达到116mAh/g,表现出良好的电容性能。
图4为本发明实施例2中制备的柔性锌阳极组装成对称电池的稳定性测试,其中电流密度为2mA/cm,容量为0.5mAh/cm,对称电池表现出平稳的充放电平台,表现出良好的电化学稳定性。
图5为本发明实施例3中制备的柔性锌离子电容器经过1000次循环后的扫描电子显微镜图,观察不到锌枝晶的生成。
图6为本发明实施例4中制备的柔性锌离子电容器循环前和经过1000次循环后的X射线衍射谱图,反应前后锌阳极的X射线衍射谱图几乎相同,观察不到副产物生成。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种用于抑制锌离子电池中锌枝晶生长的方法,包括如下步骤:
1)以碳纤维为工作电极,锌片用作对电极和参比电极,配置1mol/L的硫酸锌和0.05mol/L柠檬酸钠的混合溶液作为电沉积液,先在-1.8V的电压下沉积30s,使导电柔性基底表面沉积一层锌晶种,随后在-0.8V的电压下沉积170s,得到柔性的锌阳极;
2)以10mL 1mol/L的硫酸锌和0.05mol/L柠檬酸钠的混合溶液与0.1g/mL聚乙烯醇均匀混合并在80℃下搅拌至凝胶呈无色透明状,得到固态凝胶电解质。
3)将锌阳极、聚吡咯和凝胶电解质组装成无枝晶生长的柔性锌离子电池。
图1为本发明实施例1中制备的柔性锌阳极在不同放大倍数的扫描电子显微镜图。
图2为本发明实施例1中制备的固态柔性锌离子电池在扫描速率为5mV/s的循环伏安曲线。该器件的循环伏安曲线呈现出明显的氧化还原峰。
图3为本发明实施例1中制备的固态柔性锌离子电池在电流密度为0.16A/g的放电曲线。质量电容达到116mAh/g,表现出良好的电容性能。
实施例2
一种用于抑制锌离子电池中锌枝晶生长的方法,包括如下步骤:
1)以碳布为工作电极,锌片用作对电极和参比电极,配置1.5mol/L的硫酸锌和0.1mol/L柠檬酸钠的混合溶液作为电沉积液,先在-1.8V的电压下沉积100s,使导电柔性基底表面沉积一层锌晶种,随后在-0.8V的电压下沉积900s,得到柔性的锌阳极;
2)以10mL 1.5mol/L的硫酸锌和0.1mol/L柠檬酸钠的混合溶液与0.1g/mL聚乙烯醇均匀混合并在80℃下搅拌至凝胶呈无色透明状,得到固态凝胶电解质。
3)将锌阳极、聚苯胺和凝胶电解质组装成无枝晶生长的柔性锌离子电池。
图4为本发明实施例2中制备的柔性锌阳极组装成对称电池的稳定性测试,其中电流密度为0.02mA/cm,容量为0.5mAh/cm为5mV/s,对称电池表现出平稳的充放电平台,表现出良好的电化学稳定性。
实施例3
一种用于抑制锌离子电容器中锌枝晶生长的方法,包括如下步骤:
1)以钢丝为工作电极,锌片用作对电极和参比电极,配置2mol/L的硫酸锌和0.15mol/L柠檬酸钠的混合溶液作为电沉积液,先在-1.8V的电压下沉积50s,使导电柔性基底表面沉积一层锌晶种,随后在-0.8V的电压下沉积350s,得到柔性的锌阳极;
2)以10mL 2mol/L的硫酸锌和0.15mol/L柠檬酸钠的混合溶液与0.1g/mL聚乙烯醇均匀混合并在80℃下搅拌至凝胶呈无色透明状,得到固态凝胶电解质。
3)将锌阳极、石墨烯和凝胶电解质组装成无枝晶生长的柔性锌离子电容器。
图5为本发明实施例3中制备的柔性锌离子电容器经过1000次循环后的扫描电子显微镜图,观察不到锌枝晶的生成。
实施例4
一种用于抑制锌离子电容器中锌枝晶生长的方法,包括如下步骤:
1)以碳纤维布为工作电极,锌片用作对电极和参比电极,配置2.5mol/L的硫酸锌和0.2mol/L柠檬酸钠的混合溶液作为电沉积液,先在-1.8V的电压下沉积150s,使导电柔性基底表面沉积一层锌晶种,随后在-0.8V的电压下沉积750s,得到柔性的锌阳极;
2)以10mL 2.5mol/L的硫酸锌和0.2mol/L柠檬酸钠的混合溶液与0.1g/mL聚乙烯醇均匀混合并在80℃下搅拌至凝胶呈无色透明状,得到固态凝胶电解质。
3)将锌阳极、活性炭和凝胶电解质组装成无枝晶生长的柔性锌离子电容器。
图6为本发明实施例4中制备的柔性锌离子电容器循环前和经过1000次循环后的X射线衍射谱图,反应前后锌阳极的X射线衍射谱图几乎相同,观察不到副产物生成。
本发明说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。

Claims (8)

1.一种用于抑制锌离子电池/电容器中锌枝晶生长的方法,其特征在于:包括以下步骤:
步骤1,以导电柔性基底为工作电极,锌片用作对电极和参比电极,配置硫酸锌和柠檬酸钠的混合溶液作为电沉积液,在-1.8 V的电压下沉积锌晶种,使导电柔性基底表面沉积一层锌晶种,随后在-0.8 V的电压下继续沉积,得到柔性的锌阳极;
步骤2,以硫酸锌和柠檬酸钠的混合溶液与聚乙烯醇混匀并搅拌至凝胶呈无色透明状,得到固态凝胶电解质;
步骤3,将锌阳极、阴极材料和固态凝胶电解质组装成无枝晶生长的柔性锌离子电池/电容器;
所述步骤1)中在-1.8 V的电压下沉积锌晶种的时间为20-200 s;
所述步骤1)中硫酸锌的浓度为1-3 mol/L,柠檬酸钠的浓度为0.05-0.2 mol/L;
在沉积液中加入柠檬酸钠促进锌阳极形成由颗粒状组成的岩石状结构。
2.根据权利要求1所述的一种用于抑制锌离子电池/电容器中锌枝晶生长的方法,其特征在于:所述步骤1中导电柔性基底为碳纤维、碳布、钢丝中的任意一种。
3.根据权利要求2所述的一种用于抑制锌离子电池/电容器中锌枝晶生长的方法,其特征在于:所述步骤1)中在-0.8V的电压下沉积金属锌的时间为100 s-1800 s。
4.根据权利要求3所述的一种用于抑制锌离子电池/电容器中锌枝晶生长的方法,其特征在于:所述步骤2)中硫酸锌的浓度为1-3 mol/L,柠檬酸钠的浓度为0.05-0.2 mol/L。
5.根据权利要求4所述的一种用于抑制锌离子电池/电容器中锌枝晶生长的方法,其特征在于:所述步骤2)中搅拌温度为80℃。
6.根据权利要求5所述的一种用于抑制锌离子电池/电容器中锌枝晶生长的方法,其特征在于:所述硫酸锌和柠檬酸钠的混合溶液与聚乙烯醇的用量比为10 mL : 1 g。
7.根据权利要求6所述的一种用于抑制锌离子电池/电容器中锌枝晶生长的方法,其特征在于:所述步骤3)中阴极材料为用作锌离子电池/电容器的阴极材料。
8.根据权利要求7所述的一种用于抑制锌离子电池/电容器中锌枝晶生长的方法,其特征在于:所述步骤3)中阴极材料为聚吡咯、聚苯胺、石墨烯、活性炭中的任意一种。
CN202110505959.0A 2021-05-10 2021-05-10 一种用于抑制锌离子电池/电容器中锌枝晶生长的方法 Active CN113299869B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110505959.0A CN113299869B (zh) 2021-05-10 2021-05-10 一种用于抑制锌离子电池/电容器中锌枝晶生长的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110505959.0A CN113299869B (zh) 2021-05-10 2021-05-10 一种用于抑制锌离子电池/电容器中锌枝晶生长的方法

Publications (2)

Publication Number Publication Date
CN113299869A CN113299869A (zh) 2021-08-24
CN113299869B true CN113299869B (zh) 2022-09-23

Family

ID=77321249

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110505959.0A Active CN113299869B (zh) 2021-05-10 2021-05-10 一种用于抑制锌离子电池/电容器中锌枝晶生长的方法

Country Status (1)

Country Link
CN (1) CN113299869B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114141545B (zh) * 2021-10-29 2024-08-23 海南大学 一种无负极锌离子杂化电容器及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110642236A (zh) * 2019-09-02 2020-01-03 吉首大学 一种锌基水系电池负极材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017070340A1 (en) * 2015-10-21 2017-04-27 Research Foundation Of The City University Of New York Additive for increasing lifespan of rechargeable zinc-anode batteries
CN107331599B (zh) * 2017-05-08 2019-12-20 安徽长青电子机械(集团)有限公司 一种镀基底表面晶种层的制备方法
CN112086694A (zh) * 2020-09-18 2020-12-15 浙江浙能中科储能科技有限公司 一种提高中性锌锰电池可逆性的水系电解液及其制备方法
CN112341639B (zh) * 2020-11-05 2023-09-26 安徽安瓦新能源科技有限公司 一种自修复水凝胶及其制备方法、柔性自修复可充电电池
CN112448099B (zh) * 2020-11-30 2022-06-24 兰州大学 一种一体化柔性电池及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110642236A (zh) * 2019-09-02 2020-01-03 吉首大学 一种锌基水系电池负极材料及其制备方法

Also Published As

Publication number Publication date
CN113299869A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
Zhang et al. High‐yield carbon dots interlayer for ultra‐stable zinc batteries
CN106340616B (zh) 一种用于锂电池的具有三明治结构的锂负极及其制备方法
Liu et al. Recent development of Na metal anodes: Interphase engineering chemistries determine the electrochemical performance
Xu et al. Understanding the electrical mechanisms in aqueous zinc metal batteries: from electrostatic interactions to electric field regulation
CN111613773B (zh) 一种分级结构玻璃纤维与金属锂的复合物及其制备方法
CN112635698B (zh) 一种锌二次电池的负极极片及其制备方法和用途
Chen et al. Enhancement of the lithium cycling capability using Li–Zn alloy substrate for lithium metal batteries
CN109817894A (zh) 一种锂金属电池用负极及其制备方法和应用
CN114883526A (zh) 一种基于金属有机框架及其衍生碳的无金属锌负极
Kalwellis-Mohn et al. A secondary cell based on thin layers of zeolite-like nickel hexacyanometallates
CN113299869B (zh) 一种用于抑制锌离子电池/电容器中锌枝晶生长的方法
Majidzade et al. Co-electrodeposition of iron and sulfur in aqueous and non-aqueous electrolytes
Wang et al. Enabling and Boosting Preferential Epitaxial Zinc Growth via Multi‐Interface Regulation for Stable and Dendrite‐Free Zinc Metal Batteries
Liu et al. Ultrathin surface coating of Cu enabling long-life Zn metal anodes
Xu et al. An artificial zinc phosphide interface toward stable zinc anodes
CN114927677B (zh) 一种柔性钠电池负极材料及其绿色制备方法与应用
CN207909958U (zh) 一种柔性全固态电池
CN115692706A (zh) 一种金属锂的双层保护层和金属锂负极界面修饰方法
CN115051047A (zh) 一种用于水系锌离子电池的电解液添加剂及其应用
JP2023513815A (ja) 陽極片、当該極片を採用した電池及び電子装置
CN115548342B (zh) 一种3D TiC复合材料及其制备方法和应用
CN118315594B (zh) 一种新型锂金属负极材料的集流体及其制备方法和应用
CN114361581B (zh) 一种钙金属电池电解液及基于其的钙金属电池
KR101387797B1 (ko) 전지용 삼원합금
JP4023724B2 (ja) 非水電解質リチウム二次電池及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant